首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以贵州黔东南不同植被类型下森林土壤为研究对象,通过“外调查与室内分析相结合的方法,对黔东 南不同植被类型林下土壤混合样(0耀20 cm)养分含量和土壤酸度进行研究。结果表明院4 种典型植被土壤均呈较强的 酸性,pH 值在4.46耀5.38 之间。4 种植被类型林下土壤有机质大小关系为阔叶混交林(52.16 g/kg)>杉木林(50.16 g/ kg)>针阔混交林(40.07 g/kg)>马尾松林(30.61 g/kg);全氮含量最低的是马尾松林(1.13 g/kg),最高的是阔叶混交林 (2.31 g/kg)。全磷与全氮大小关系均表现为院阔叶混交林>针阔混交林>杉木林>马尾松林;土壤全钾含量依次为阔叶 混交林(14.33 g/kg)>杉木林(12.30 g/kg)>马尾松林(11.35 g/kg)>针阔混交林(10.5 g/kg);不同植被类型林下土壤颗粒 态有机碳大小为院马尾松林>针阔混交林>阔叶混交林>杉木林。  相似文献   

2.
  目的  通过探究油松林Pinus tabulaeformis土壤有机碳质量分数和储量的垂直变化和时间变化特征,为油松林土壤碳储量预测和碳汇管理提供理论依据。  方法  基于1980?2017年文献数据,综合运用单因素方差分析、多重比较、相关性分析和通径分析等方法,探讨棕壤和褐土2种土壤类型下油松林土壤有机碳质量分数及储量变化特征,并结合不同时期中国森林经营措施和油松生长特征分析其驱动因素。  结果  油松林土壤有机碳质量分数和储量变化随土层深度增加而显著降低(P<0.05),0~20 cm土层是碳库的主要贡献层,占0~60 cm土层土壤有机碳储量的45%~50%;近40 a间土壤有机碳质量分数和储量呈先减少后增加的时间变化特征,其中,2000?2009年为最低点,而后出现较大幅度增加,在2017年达到储量最高点,为247.02 Tg。  结论  土壤容重、土壤全氮和林分郁闭度是油松林土壤有机碳质量分数(储量)变化的主要因素,不同时期森林经营和保护措施对三者的深刻影响是油松林土壤有机碳质量分数和储量呈现明显时间变化的重要原因。图3表5参49  相似文献   

3.
  目的  研究对比油松和刺槐林在不同密度下土壤养分及其化学计量比的变化规律及差异性,以加强黄土区人工林的林分管理和生态恢复建设。  方法  以油松和刺槐人工林为研究对象,分别将其划分为高(2 000 ~ 2 700株/hm2)、中(1 100 ~ 1 600株/hm2)、低(800 ~ 1 100株/hm2)3组林分密度类型,每组挑选4个不同林分密度的林地,分别分层采取土样,测定土壤理化性质。  结果  (1)双因素方差分析显示,林分类型对全磷含量(TP)、碳磷比(C∶P)、氮磷比(N∶P)均有显著影响,林分密度仅对TP有显著影响,林分类型与林分密度的交互作用对有机碳含量(SOC)、全氮含量(TN)、TP、C∶P、N∶P均有显著影响。(2)不同林分密度的油松林和刺槐林的SOC和TN表现为:高密度油松林(油H) > 中密度油松林(油M) > 低密度刺槐林(刺L) > 高密度刺槐林(刺H) > 低密度油松林(油L) > 中密度刺槐林(刺M),全P表现为:刺M > 油H > 刺L > 刺H > 油M > 油L;随林分密度增加,油松林各土层SOC和TN逐渐增加,TP变化相对稳定且无显著性差异,刺槐林各土层SOC和TN先减少后略有增加,TP则是先增加后减少;同一密度在不同林分类型下,油松林土壤养分含量在高密度和中密度时均优于刺槐林,低密度时则相反。(3)不同林分密度的油松和刺槐林的C:N比值表现为:油H > 刺H > 刺L > 油M > 刺M > 油L,C∶P和N∶P比值均表现为:油H > 油M > 刺L > 刺H > 油L > 刺M;随林分密度的增加,油松林土壤C∶P和N∶P逐渐增大,磷的有效性逐渐减小,刺槐林土壤C∶P和N∶P先减小后增大,磷的有效性先升高后降低,油松林土壤磷的有效性在高和中密度下低于同等密度的刺槐林,低密度下则相反;土壤SOC和TN分别在很大程度上决定了C∶P和N∶P水平;不同林分密度下土壤C∶N比较稳定,土壤氮含量较缺乏,林分生长过程受氮素的限制。(4)油松和刺槐林在不同林分密度下的土壤各养分含量呈现出“表聚现象”且随土层深度增加土壤SOC、TN、TP、C∶P、N∶P逐渐减小,C∶N无明显规律;随林分密度增加,油松林土壤属性变异强度先降低后升高,刺槐林则是缓慢升高;相比于油松林,林分密度对刺槐林土壤养分及其化学计量比的垂直变异影响较小,垂直变异更趋于平稳。(5)林分密度的变化会不同程度地改变土壤物理性质对土壤养分及其化学计量比的影响力度,不同林分密度下土壤密度对土壤养分含量及化学计量比的影响最大,非毛管孔隙次之。  结论  综合来看,同一林分类型在不同密度下,油松林在中密度时土壤养分含量及其垂直变异、磷的有效性发挥、受氮素的限制等方面上均处于较优水平,而刺槐林则是在低密度时;同一密度在不同林分类型下,油松林在高密度和中密度的综合表现优于同等密度的刺槐林,低密度时则相反。   相似文献   

4.
色季拉山西坡表层土壤有机碳的小尺度空间分布特征   总被引:2,自引:1,他引:1  
  目的  对小空间尺度上土壤有机碳(SOC)及其密度(SOCD)的空间分布进行研究,以期为大尺度下高寒土壤碳储量的精确估算提供理论支撑。  方法  本研究以色季拉山西坡海拔4 200 ~ 4 400 m的苔草高寒草甸(CAM)、林芝杜鹃灌丛(RTS)和雪山杜鹃灌丛(RAS)为研究对象,采用10 m × 10 m规则格网采集表层(0 ~ 10 cm)土壤样品,借助GS+和ArcGIS软件以分析不同植被类型SOC和SOCD的空间结构性、分布格局及影响因素。  结果  (1)研究区表层SOC平均值达100.97 g/kg,表现为RAS(146.45 g/kg) > CAM(95.60 g/kg) > RTS(60.43 g/kg),SOCD平均值达6.28 kg/m2,表现为CAM(7.34 kg/m2) > RAS(6.32 kg/m2) > RTS(4.80 kg/m2),均高于全国0 ~ 10 cm土壤水平(24.56 g/kg、1.21 kg/m2)。(2)除RAS外,该区域SOC、SOCD均具有强烈的空间自相关性,结构比为1.46% ~ 12.51%,表明结构性因素引起的空间变异为主。RAS的SOC、SOCD结构比达100%,空间依赖性较弱,随机因素引起的空间变异为主。SOC、SOCD空间自相关尺度在17.44 ~ 30.29 m之间,并且SOC > SOCD,CAM > RTS,这表明植被类型可能是影响表层SOC和SOCD空间变异及格局的主要因素。(3)克里格插值表明,CAM表层SOC、SOCD的高值斑块与高土壤含水率相对应,低值斑块与沟壑位置相对应,RTS的SOC、SOCD呈高低值斑块交错分布,与地面覆被物(灌丛、草本、裸地)的镶嵌性分布对应,表明土壤含水率、微地形、植被覆盖等是影响研究区表层SOC和SOCD空间分布的主要因素。(4)冗余分析表明,土壤含水率、土壤密度、pH、全氮是影响3种植被类型SOC、SOCD含量及空间异质性的关键要素,其次是机械组成、坡度,全磷的影响不明显。  结论  色季拉山SOC含量比较丰富,小空间尺度下枯落物量、微地形、土壤性质(含水率、土壤密度等)的空间异质性显著影响SOC、SOCD的空间分布和预测。   相似文献   

5.
  目的  研究陕西省宝鸡市紫柏山国家级自然保护区不同植被类型下土壤碳氮分布特征,探讨其主要影响因素。  方法  以保护区内壤土类型(槲栎Quercus aliena林、华山松Pinus armandii林)和砂质土类型(锐齿栎Q. aliena var. acuteserrata林、栓皮栎Q. variabilis林、白桦Betula platyphylla林)不同土层土壤样品为研究对象,比较5种植被类型下土壤有机碳质量分数、全氮质量分数、土壤碳氮密度和土壤碳氮储量及碳氮比的差异,分析土壤有机碳、全氮、碳氮比与土壤理化性质的关系。  结果  ①壤土区土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量显著高于砂质土区(P<0.05),其中壤土区各土层从大到小表现为槲栎林、华山松林,砂质土区各土层从大到小表现为白桦林、锐齿栎林、栓皮栎林。②土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量在0~30 cm土层均随土层深度的增加而显著降低(P<0.05)。③各植被类型不同土层的土壤碳氮比分布无明显规律且差异不显著,碳氮比为9.94~16.23,有机质的矿化能力较强。④土壤含水量、容重是影响土壤有机碳和全氮质量分数的主要因子,土壤含水量、pH是影响碳氮比的主要因子。  结论  不同植被类型下土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量存在显著差异(P<0.05),土壤含水量是影响土壤有机碳、全氮和碳氮比的关键因子。图4表5参36   相似文献   

6.
为探究黄土高原植被恢复对深层土壤碳库的影响,选取退耕还林第一县陕北吴起县金佛坪流域5种植被恢复类型(山杏林(Armeniaca sibrica),油松林(Pinus tabulaeformis)、沙棘林(Hippophae rhamnoides)、刺槐林(Robinia pseudoacacia)、小叶杨林(Populus simonii))和以自然恢复为主的荒草地为研究对象,通过调查0~1 000 cm土层土壤有机碳含量,并计算土壤有机碳储量,分析不同植被类型的土壤有机碳剖面分布和差异。结果表明:在总体上,土壤有机碳在0~60 cm出现快速下降,60~1 000 cm出现不明显的波动变化,其中40~260 cm土层,小叶杨林地土壤有机碳含量明显最高。不同植被恢复都具有固碳效益,且不同植被土壤有机碳含量差异显著(P<0.05)。不同植被土壤有机碳储量:小叶杨(18年)(301.51 t·hm-2)>刺槐(19 年)(249.86 t·hm-2)>沙棘(18年)(242.14 t·hm-2)>山杏(8年)(226.08 t·hm-2)>油松(5年)(182.91 t·hm-2)>荒草地(160.45 t·hm-2),这可能是由于不同树龄和植被类型导致的结果。深层(100~1 000 cm)土壤有机碳储量占0~1 000 cm剖面有机碳储量的73%~84%。深层土壤有机碳含量颇丰,在今后碳汇评估中不容忽视。  相似文献   

7.
【目的】探究甘南高原合作市面山绿化林土壤养分及生态化学计量特征,为区域人工林地的可持续经营管理提供理论依据。【方法】以合作市面山绿化的3种典型人工林(中国沙棘、云杉、中国沙棘-云杉混交林)为研究对象,以草地为对照,采用野外取样法和室内分析法,测定不同深度土壤有机碳(SOC)、全氮(TN)、全磷(TP)、全钾(TK)含量,并分析其生态化学计量特征。【结果】人工林土壤SOC、TN、TP含量及C/N、C/P、N/P均显著高于天然草地,中国沙棘与混交林无显著差异,人工林与草地的TK含量无显著变化。人工林土壤SOC、TN、TP、TK含量分别为18.75,0.18,0.41,0.07 g/kg,土壤有机碳含量高于全国平均值,而TN、TP、TK含量偏低。人工林土壤C/N的值为96.33~119.88之间,高于全球及全国平均值,土壤C/P的值在36.94~53.26之间、N/P的值在0.39~0.51之间,C/P、N/P的值低于全球及全国平均值,比例严重失衡。从相关性分析来看,土壤SOC和TN、TP之间、TP和TK之间、C/N与C/P、C/K、P/K之间具有极显著正相关关系(P<0.01),土壤...  相似文献   

8.
本文以包头市石拐区山地人工油松林、沙棘林、油松沙棘混交林为对象,运用重要值、多样性、丰富度、均匀度等指标对林下植物多样性进行研究,结果表明:(1)油松沙棘混交林、沙棘林、油松林的林下植物科、种的数量均比ck增加,不同树种组成对林下植物重要值影响不同,重要值由ck和沙棘林的以多年生禾本科和菊科占优势,变化为油松林和油松沙棘混交林中以唇形科、豆科和多年生禾本科占优势;(2)油松和沙棘混交,使林下植物多样性提高。  相似文献   

9.
以大别山低海拔区常绿阔叶林、落叶阔叶林、针阔混交林、杉木林和毛竹林林下土壤为研究对象,系统分析了土壤养分、土壤微生物含量和土壤酶含量大小。结果表明:(1)不同植被类型土壤有机质(SOM)、全碳(TC)、全氮(TN)、全磷(TP)、全钾(TK)、有效磷(AP)和速效钾(AK)含量均差异显著。SOM、TC 和TN 含量表现为阔叶林跃竹林跃针叶林。毛竹林土壤TP(0.37±0.05g/kg)、AP(17.2±0.05 mg/kg)、TK(6.15±0.02 g/kg)和AK(80.31±0.05 mg/kg)都处于较高水平,杉木林土壤TK(7.18±0.05 g/kg)最高,但其他养分含量均较低,常绿阔叶林TK(1.73±0.05 g/kg)含量最低,其他养分含量均处于中上等水平。(2)不同植被类型土壤微生物碳、土壤微生物氮和土壤微生物磷含量的变化范围分别为249.0~780.1、59.27~190.1、30.95~107.1 mg/kg,在不同植被类型中差异均显著。(3)不同植被类型土壤酶含量差异显著,常绿阔叶林的脲酶(0.98±0.01 mg/g·d)、蛋白酶(0.22±0.02 mg/g·d)、磷酸酶(30.01±1.02 mg/g·d)和蔗糖酶 (22.14±1.03 mg/g·d)含量均最高。  相似文献   

10.
  目的  研究园林绿化废弃物堆肥对土壤有机碳组分影响,为精准提升土壤肥力质量提供一定理论基础。  方法  以北京市副中心林地土壤为研究对象,设置4种施肥方案,即不施肥(NF)、氮磷钾单施(MF)、园林绿化废弃物堆肥单施(GF)、氮磷钾和园林绿化废弃物堆肥混施(MF+GF),每种施肥方案氮磷钾施入量均为N 10 g/kg、P2O5 1.5 g/kg、K2O 5 g/kg,分别在施肥后1、3、6、9、12个月采集土壤样品,进行土壤有机碳组分研究。  结果  不同施肥方案下,土壤富里酸碳、胡敏素碳和球囊霉素碳含量均呈现先增高后降低的趋势,在施肥后1个月达到最高,分别为0.98、5.03 g/kg和215.48 mg/kg。施肥1年后,土壤富里酸碳、胡敏酸碳、可溶性碳、碳水化合物和球囊霉素碳含量均表现为在GF和MF+GF方案下最高,而土壤胡敏素碳含量则表现出在MF方案下最高。施肥对球囊霉素碳的敏感性显著高于其他有机碳组分,敏感性指数4.80% ~ 229.03%。MF方案对土壤有机碳组分最不敏感,GF方案显著提高了土壤胡敏酸碳,胡敏素碳和球囊霉素碳敏感系数,MF+GF方案提高了土壤可溶性碳,富里酸碳和碳水化合物敏感系数。土壤球囊霉素碳与全氮和有效磷含量线性相关系数最高,分别为0.703 8和0.867 6。土壤碳水化合物与硝态氮和速效钾线性相关性系数最高,分别为0.524 6和0.586 9。  结论  不同施肥方案对土壤碳组分均有影响,球囊霉素是有机碳组分最敏感指标,且与土壤全氮、有效磷含量线性相关性较强,可作为苗木施肥管理过程中衡量土壤肥力的指标。   相似文献   

11.
  目的  探究光伏电站环境内不同植被恢复措施下0~40 cm土壤有机碳质量分数和储量的变化特征,为干旱区光伏电站生态治理模式优化配置提供理论依据。  方法  在光伏电站内选取3种人工建植植被样地:樟子松 Pinus sylvestris var. mongolica、黄芪Astragalus membranaceus var. mongholicus、苜蓿Medicago sativa,以未受电站建设干扰的天然植被样地作为对照。  结果  重新建植植被后,樟子松、黄芪和苜蓿样地的土壤有机碳质量分数和储量仍然显著低于对照(P<0.05),但在这3种植被中,樟子松样地的土壤有机碳质量分数相对于另外2种样地显著增加了4.99和6.80 g·kg?1,而有机碳储量则显著提高了14.52和19.37 t·hm?2 (P<0.05)。研究区土壤有机碳质量分数和储量整体上随土壤深度增加而显著降低(P<0.05)。植被类型和土壤深度及其交互作用显著影响研究区的土壤有机碳质量分数。此外,土壤pH和电导率也是影响土壤有机碳质量分数和储量的重要指标。  结论  随着电站内环境治理工作的推进,相比于草本植被,光伏电站内可以通过人工种植樟子松来提高土壤固碳作用,并尽量减少后期的人为干扰。图2表3参39  相似文献   

12.
  目的  土壤有机碳与全氮是土壤质量评价的重要指标,同时与全球碳氮循环和气候变化密切相关。地形,尤其微地形是驱动土壤特征空间异质性的重要因素。本文旨在探究微地形对土壤有机碳和全氮的影响,为无人机数据应用与东北天然林土壤养分管理提供依据。  方法  以云冷杉阔叶混交林为对象,通过无人机激光雷达数据提取4块1 hm2样地中400个10 m × 10 m样方的微地形因子,采用相关性分析和冗余分析研究微地形对土壤有机碳和全氮的影响。  结果  研究区20 ~ 40 cm土层土壤有机碳和全氮均与高程呈极显著正相关(r = 0.26,0.25,P < 0.01),0 ~ 20 cm土壤全氮含量与坡度呈极显著正相关(r = 0.18,P < 0.01),其余相关性皆不显著。各样地的相关性分析结果存在差异。样地Ⅰ土壤有机碳与高程呈负相关(0 ~ 20 cm:r = ?0.37,P < 0.01;20 ~ 40 cm:r = ?0.21,P < 0.05),样地Ⅲ与样地Ⅳ 20 ~ 40 cm土壤有机碳与高程呈负相关(r = ?0.20,?0.21,P < 0.05),样地Ⅲ 0 ~ 20 cm土壤有机碳与坡向呈正相关(r = 0.26,P < 0.05);样地Ⅰ20 ~ 40 cm土层土壤全氮与高程呈负相关(r = ?0.34,P < 0.01),与复合地形因子平面曲率呈负相关(r = ?0.24,P < 0.05)。在冗余分析中,RDA1约束轴的解释率达到88.05%,其中高程与20 ~ 40 cm土壤有机碳向量夹角较小,呈正相关关系,且高程与坡向对土壤有机碳和全氮有较大影响。  结论  对比样地中心法和缓冲区法两种方法提取的无人机激光雷达数据,发现样方中心法选取的地形因子更多,且回归模型R2较大。微地形中的高程、坡度、坡向均对云冷杉阔叶混交林表层土壤有机碳和全氮有一定影响。以研究区4块样地整体和样地个体为尺度,分析微地形因子与土壤有机碳和全氮的相关性时发现,两者存在较大差异,表明云冷杉阔叶混交林土壤有机碳和全氮具有很强的空间异质性,且与简单地形因子的相关性强于复合地形因子。   相似文献   

13.
利用64个样地实测数据,运用SPSS软件,以江西省杉木林、马尾松林、阔叶林、针阔混交林4种主要森林类型为研究对象,比较分析了土壤有机碳分布特征及其与土壤容重的关系。结果表明:江西省4种主要森林类型的土壤有机碳含量在1 m土壤剖面分布均表现为:表层>亚表层>底层,森林土壤有机碳主要分布在土壤表层,在同一土壤层次均表现为阔叶林>针阔混交林>杉木林>马尾松林,不同森林类型和土壤层次有机碳含量差异性明显;4种森林类型在不同土壤层次土壤有机碳含量均与容重呈显著负相关;森林土壤有机碳密度阔叶林(13.2265±1.18197 kg/m2)>针阔混交林(11.1804±1.78677 kg/m2)>杉木林(9.1065±1.18197 kg/m2)>马尾松林(6.2019±0.94853 kg/m2),不同森林类型的土壤有机碳密度差异性显著,江西省主要森林类型的土壤有机碳密度为10.1740±0.6935 kg/m2。  相似文献   

14.
利用64个样地实测数据,运用SPSS软件,以江西省杉木林、马尾松林、阔叶林、针阔混交林4种主要森林类型为研究对象,比较分析了土壤有机碳分布特征及其与土壤容重的关系。结果表明:江西省4种主要森林类型的土壤有机碳含量在1 m土壤剖面分布均表现为:表层>亚表层>底层,森林土壤有机碳主要分布在土壤表层,在同一土壤层次均表现为阔叶林>针阔混交林>杉木林>马尾松林,不同森林类型和土壤层次有机碳含量差异性明显;4种森林类型在不同土壤层次土壤有机碳含量均与容重呈显著负相关;森林土壤有机碳密度阔叶林(13.2265±1.18197 kg/m2)>针阔混交林(11.1804±1.78677 kg/m2)>杉木林(9.1065±1.18197 kg/m2)>马尾松林(6.2019±0.94853 kg/m2),不同森林类型的土壤有机碳密度差异性显著,江西省主要森林类型的土壤有机碳密度为10.1740±0.6935 kg/m2。  相似文献   

15.
【目的】研究不同土地利用方式下土壤有机碳与其他土壤理化指标的关系,旨在为低山丘陵区土壤改良提供参考。【方法】2012-07-09,在内蒙古赤峰市低山丘陵区,通过野外调查和室内分析,运用灰色关联分析和逐步回归分析,对敖汉旗黄花甸子小流域山杏(Prunus sibirica)林、柠条(Caragana microphylla)林、小叶杨(Populussimonii)林、白榆(Ulmus pumila)林、天然草地、油松×山杏(Pinus tableulaeformis×P.sibirica)混交林、天然次生灌木林及农业用地8种土地利用方式下,土壤有机碳、全氮、有效磷、速效钾、微生物生物量碳含量及pH值进行了测定,并对土壤有机碳与其他土壤理化指标的关系进行了分析。【结果】山杏林、柠条林、小叶杨林、白榆林、天然草地、油松×山杏混交林、天然次生灌木林及农业用地0~100cm土层有机碳含量平均值差异明显,分别为7.72,5.23,7.40,6.11,3.14,10.26,17.51和5.33g/kg。不同土地利用方式下土壤有机碳与全氮、pH值、微生物生物量碳、速效钾及有效磷的关联系数分别为0.70,0.66,0.63,0.57及0.55。在灰色关联分析的基础上,最终建立了土壤有机碳与其他土壤理化指标的最优回归方程。【结论】不同土地利用方式的土壤有机碳含量差异较大,土壤有机碳与其他土壤理化指标的关联系数由大到小排序为:全氮>pH值>微生物生物量碳>速效钾>有效磷;建立的土壤有机碳(Y)与全氮(X2)、pH值(X5)最优回归方程为:Y=-6.269 8+19.383 2 X2-0.010 2 X5,R2=0.85。  相似文献   

16.
黄土高原高寒区不同人工林土壤养分及生态化学计量特征   总被引:1,自引:1,他引:0  
  目的  通过分析黄土高寒区不同人工林和不同土层的土壤养分和生态化学计量变化,旨在阐明不同人工林土壤养分和化学计量特征,揭示土壤养分和化学计量随土层深度的变化规律。  方法  以青海黄土高寒区退耕的人工林地(包括青海云杉、华北落叶松、青杨、白桦)为研究对象,以自然退耕的草地和农田为对照,测定了6种植被类型在0 ~ 20 cm、20 ~ 40 cm和40 ~ 60 cm土壤层的C、N、P含量及生态化学计量比。  结果  (1)黄土高寒区不同人工林的土壤C、N含量差异显著(P < 0.05),P含量部分差异显著;人工林地各土层的C、N含量显著高于草地和农田,且青杨林在0 ~ 20 cm表土层的有机碳、全氮含量最高,分别为25.82、2.17 g/kg。(2)黄土高寒区不同人工林的土壤生态化学计量有显著差异(P < 0.05);0 ~ 60 cm土层中人工林地的C∶N显著低于农田,C∶P和N∶P高于草地和农田(P < 0.05);青杨在0 ~ 20 cm表土层的生态化学计量比其他人工林类型高,C∶N、C∶P和N∶P分别为11.99、43.27和3.64。(3)相关性分析表明,研究区土壤的有机碳与全氮相关性最紧密(P < 0.01),全氮与土壤C∶N和N∶P相关性最紧密(P < 0.01),有机碳与土壤C∶P相关性最紧密(P < 0.01)。说明研究区土壤C、N对不同人工林的响应具有一致性,土壤的C∶N和N∶P主要受全氮的影响,C∶P主要受有机碳的影响。(4)在0 ~ 60 cm土层中,黄土高寒区不同植被类型的土壤C、N、P含量均随土壤深度的增加而降低。研究区土壤的生态化学计量除青杨随土壤深度的增加而下降外,其他退耕植被无显著变化趋势。说明人工林对表层土壤养分的改良效果最好。  结论  不同人工林的土壤养分及生态化学计量有显著差异,且青杨林表层土壤的养分含量和化学计量最高;土壤养分随土壤深度的增加而降低,土壤生态化学计量随土壤深度变化不显著。   相似文献   

17.
  目的  通过分析土壤质量和有机碳稳定性随林龄的变化特征,为合理评估森林生态系统功能的恢复进程提供理论支撑。  方法  选取山西太岳山区域4种林龄(20年、40年、80年和110年生)的油松林,分析其表层土壤的有机碳及其组分、黏粒含量、根系生物量和土壤酶活性等理化指标,以有机碳与黏粒含量的比例表征土壤的物理质量,以惰性有机碳与活性有机碳含量的比值表征土壤有机碳的稳定性。  结果  土壤的水分含量、土壤酶活性、铁铝氧化物含量都随着林龄的增长呈现增大趋势;土壤质量和有机碳稳定性都随着林龄的增长而增大,在0 ~ 10 cm土层,以40年生林地的土壤质量最低,为0.12,110年生林地的最高,为0.40,有机碳稳定也是在40年生林地最低,为2.69,110年生林地最高,为6.72,土壤质量与有机碳稳定性间存在极显著正相关关系。  结论  络合态铁、铝氧化物含量对土壤有机碳稳定性的提高发挥了积极的促进作用,而土壤水分、根系生物量和土壤酶活性则对土壤质量的改善发挥的作用更强一些。   相似文献   

18.
百花山典型林分土壤有机碳储量及垂直分布特征   总被引:3,自引:0,他引:3  
针对百花山落叶阔叶混交林、华北落叶松林、桦木林3种典型林分土壤有机碳储量及垂直分布特征进行研究。结果表明,不同林分类型下的土壤有机碳含量存在明显差异,桦木林最高(33.87g/kg±2.82g/kg),华北落叶松林次之(27.42g/kg±2.21g/kg),落叶阔叶混交林最低(26.24g/kg±1.91g/kg),桦木林土壤有机碳的密度为(26.06±1.88)kg/m2,落叶阔叶混交林为(19.81±1.70)kg/m2,华北落叶松林为(18.94±1.50)kg/m2,土层间有机碳密度为(1.57~7.22)kg/m2,且随着土层深度的增加呈现减少的趋势;不同林分中0~20cm土层有机碳储量占整个剖面有机碳总储量的百分比均达到50%以上,0~20cm土层有机碳含量变化总趋势为下坡位>中坡位>上坡位。  相似文献   

19.
辽宁仙人洞典型林分森林土壤碳氮分布特征   总被引:1,自引:0,他引:1  
以辽宁省仙人洞自然保护区内阔叶混交林、红松林、日本落叶松林、针阔混交林、赤松林以及栎类林6种典型林分为研究对象,分析了不同林分类型下土壤有机碳的含量、有机碳储量、全氮含量、碳氮比(C/N)及有机碳含量与全氮、速效磷、速效钾的相关关系。结果表明:随着土壤剖面深度的增加,不同林分的土壤有机碳、全氮含量逐渐降低,且不同土壤层次间呈现出显著性差异;不同林分土壤有机碳含量平均值为15.11~47.07 g/kg;不同林分土壤全氮含量为2.83~11.17 g/kg;不同林分的C/N为9.27~28.23,平均值大小为栎类林红松林赤松林日本落叶松阔叶混交林针阔混交林;不同林分0~50 cm土层的土壤有机碳储量大小为针阔混交林(230.64 t/hm~2)日本落叶松(210.46 t/hm~2)阔叶混交林(136.26 t/hm~2)赤松林(122.84 t/hm~2)红松林(97.84 t/hm~2)栎类林(68.55 t/hm~2);在0~10 cm土层,各个林分土壤有机碳含量与土壤全氮、速效磷、速效钾呈显著正相关(P0.05),在10~20 cm土层,各个林分土壤有机碳含量与土壤全氮、速效磷呈显著正相关(P0.05),土壤有机碳与速效钾不存在显著相关性。  相似文献   

20.
【目的】测定色季拉山林线附近3种典型植被下土壤有机碳(SOC)及其组分含量,并分析其相关性以及与土壤理化性质的关系,探讨色季拉山典型植被类型下土壤有机碳及其组分特征,为该区域森林经营和管理提供参考。【方法】以西藏色季拉山林线3种典型植被类型(草甸、灌丛和乔木林)下0~20 cm土层土壤为研究对象,选择9个取样点采集0~10和10~20 cm土层土壤样品,测定土壤样品有机碳(SOC)及其组分(轻组有机碳(LFOC)、重组有机碳(HFOC)、可溶性有机碳(DOC)、微生物量碳(MBC)、颗粒有机碳(POC)和易氧化有机碳(EOC))的含量,并对土壤有机碳及其组分与土壤理化性质的相关性进行分析。【结果】草甸、灌丛和乔木林3种植被下,土壤SOC、MBC和HFOC含量表现为灌丛>乔木林>草甸,在灌木、乔木林和草甸土壤的0~10 cm土层,其SOC含量分别是96.34,95.85和66.15 g/kg,MBC含量分别为1 540.96,611.02和511.40 mg/kg,HFOC含量分别为61.75,58.65和41.02 g/kg;而在10~20 cm土层,其SOC含量分别为65.76,57.43和30.97 g/kg,MBC含量分别为289.90,184.02和84.15 mg/kg,HFOC含量分别为40.77,31.26和19.57 g/kg,且均以0~10 cm土层高于10~20 cm土层。土壤EOC、POC和LFOC含量表现为乔木林>灌丛>草甸,且均随着土层的加深而降低,在乔木林、灌丛和草甸土壤的0~10 cm土层,EOC含量分别为23.97,21.84和14.26 mg/kg,POC含量分别为30.11,24.94和12.96 g/kg,LFOC含量分别为12.55,1.93和1.21 g/kg;而在10~20 cm土层,EOC含量分别为11.83,10.62和4.68 mg/kg,POC含量分别为9.79,6.29和5.32 g/kg,LFOC含量分别为5.50,0.77和0.43 g/kg。草甸、灌丛和乔木林土壤的有机碳组分中,SOC与EOC、HFOC,EOC与POC和HFOC,以及POC与LFOC之间均呈显著正相关关系(P<0.05),且在乔木林土壤中,SOC与MBC、土壤含水率呈正相关关系,但其在灌丛林和草甸中相关性不明显。【结论】草甸、灌丛和乔木林土壤的有机碳及其组分之间存在差异性,说明色季拉山林线附近典型植被下土壤的有机碳及其组分受到植被类型的影响,且其分布具有表聚性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号