首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
针对温室植保机器人作业过程中,UWB节点之间频繁出现的非视距通信现象导致UWB系统定位精度低和稳定性差的问题,提出了一种基于UWB测距值修正的融合定位方法。首先,设计了基于测距残差的UWB节点间通信类型识别方法;其次,分析了视距和非视距通信下UWB测距误差产生原因并建立了两种通信条件下的测距值修正模型;最后,基于扩展卡尔曼滤波器设计了UWB测距修正值和IMU数据融合方法,实现了温室机器人作业过程中的可靠定位。在温室环境下的实际验证结果表明:非视距通信条件下,经过UWB测距修正的融合定位方法的定位误差为11.95 cm,相较于未进行UWB测距值修正的融合定位方法,定位误差降低83.11%,可为温室植保机器人提供稳定的高精度定位信息。  相似文献   

2.
针对目前农村饮用水水源地水质监测存在实时性差、监测区域小、多点同步连续感知手段缺失等问题,对水源地水质在线监测传感器节点和GPRS网关节点进行了设计。传感器节点负责对监测区域水质参数进行采集,通过无线传感器网络将数据发送至网关节点,并由网关节点通过GPRS模块远程传输数据至监测中心。传感器节点与网关节点在系统休眠时的电流消耗平均为0.026 m A,传感器节点在数据采集、数据发送以及数据接收时的电流消耗分别为32.82、27.35与23.45 m A,网关节点在数据发送、数据接收以及数据上传时的电流消耗分别为34.47、30.12和57.43 m A;节点p H远程采集误差范围为0.63%~1.67%,溶解氧远程采集误差范围为1.10%~2.20%,温度远程采集误差范围为2.23%~2.27%;在43 d的组网测试中,网络平均丢包率为2.08%。测试结果表明,所设计的节点与网关可实现数据采集以及远程、稳定传输,满足农村饮用水水源地水质在线监测需求。  相似文献   

3.
基于无线传感器网络的温室CO2浓度监控系统   总被引:2,自引:0,他引:2       下载免费PDF全文
设计了一种温室二氧化碳(CO_2)浓度监控系统,该系统由传感器节点、CO_2浓度调控节点、无线通信网络和上位机软件平台构成。采用红外CO_2测量模块S300作为传感器节点的核心模块对温室CO_2浓度进行实时测量,并将采集到的CO_2浓度、温湿度、光照等环境信息通过无线网络传输至上位机软件平台,实现了对温室环境的远程监控。上位机软件平台对采集到的环境参数进行处理、信息网络同步,并通过模糊PID算法对温室内CO_2浓度进行智能调节。在通信过程中,传感器节点实时采集接收信号强度(RSSI),在保证数据传输质量的同时有效调整无线发射功率以延长节点寿命。在实验室条件下配备了标准浓度的CO_2气体样品对设计的传感器节点性能进行了标定和表征,结果显示,该传感器对CO_2体积分数的检测下限小于5×10~(-5);对体积分数为3×10~(-4)和6.5×10~(-4)的CO_2气体样品分别进行了10 h的长期测量,相对波动小于2.6%。将该监测系统在吉林省长春市双阳区奢岭镇国信采摘园进行了现场调控试验,试验温室面积为640 m~2,设定温室中CO_2的目标体积分数为8×10~(-4),经调控后温室中CO_2体积分数的波动范围约为(8±0.42)×10~(-4)。该CO_2监测系统具有小型化、高性价比、高测量精度等优势,实现了信息的智能化管理与远程同步,以及温室内CO_2浓度的智能调控。  相似文献   

4.
针对农产品物流环节中农产品配送环境难以得到有效保证这一问题,利用数据采集技术、移动蜂窝通信窄带物联网技术和无线传感器网络技术,设计农产品储运配送测控系统。以传感器模块、继电器模块和无线传感器网络为核心,实现农产品储运配送环境数据的无线采集和设备的无线控制。利用基于移动蜂窝通信的窄带物联网技术使本地的环境数据和设备可以实现远程的监测和控制。测试表明,该系统虽然受到温室大棚和节点安装位置对信号的影响,造成数据在传输过程中的丢包和时延,但系统能够正常使用,实现对农产品储运环境的远程实时监测和设备的控制。  相似文献   

5.
奶牛体温植入式传感器与实时监测系统设计与试验   总被引:2,自引:0,他引:2  
针对接触式奶牛体温检测方法测量精度低、实时性差,且易引起交叉感染等问题,设计了奶牛体温植入式传感器,并开发了相应的体温实时监测系统,利用无线传感网络实现奶牛体温信号的智能化监测。奶牛体温植入式传感器利用PT1000铂电阻作为温度测量探头,综合利用ADS1256模数转换器、MSP430控制芯片,对采集到的电压进行滤波处理,提高了测量精度。结合433M无线信号模块与ZigBee网络设计了项圈节点,作为将奶牛的体温数据从体内传到体外的中继节点,其中从奶牛体内传输到项圈节点使用433M无线信号模块,项圈节点再到远程监控中心使用2.4GHz的ZigBee网络,从而达到稳定、可靠传输的效果,实现了奶牛体温的高精度实时监测。分别对传感器准确性、稳定性、反应速度、传输性能及系统丢包率进行试验,结果表明,传感器温度测量误差在0.05℃以内,12h内温度最大波动为0.02℃,在15s内稳定,植入式传感器射频(RF)信息能有效传输至项圈节点,单个牛场内,整体系统的丢包率不超过1.2%,可高精度、实时检测奶牛的体温变化。  相似文献   

6.
针对分散节点温湿度的检测,设计了一种基于单片机的无线温湿度监测系统。该设计采用C8051F330单片机为核心的控制器,以温湿度传感器HU-10S、无线收发模块nRF24L01和串行通信模块为辅助,完成对温湿度的实时监测。该系统的温度测量范围在-20~115℃,测量精度为0.1℃;湿度测量范围在20%RH~95%RH,测量误差小于±5%RH。经过测试,该系统运行稳定、传输可靠、温湿度测量精度高,在农业种植园、温室栽培等场所将发挥较大的作用。  相似文献   

7.
基于无线传感器网络的稻田信息实时监测系统   总被引:1,自引:0,他引:1  
针对农田环境信息采集过程中监测周期长、环境干扰大等特点,设计了一种基于混合天线无线传感器网络稻田环境信息实时监测系统,采用分簇路由协议进行组网,为不同类型的节点配置不同类型的天线,并使用转台控制汇聚节点定向天线的方向,以扩大网络的覆盖范围和提高系统的稳定性。基于该系统进行长时间稻田组网试验,对网络丢包率和稻田环境参数采集准确性进行测试,试验结果表明,系统运行稳定、测量准确,网络数据平均丢包率为0.44%,稻田空气温度、空气相对湿度和土壤含水率的平均相对误差分别为0.26%、0.64%和0.33%。  相似文献   

8.
徐焕良  张灏  沈毅  任守纲 《农业机械学报》2013,44(6):236-241,252
为了降低现有设施环境监测系统中传感节点的能耗,延长无线传感网络的生存周期,提出了节点动态组包主动传输和多种环境变量加权控制传输2种低功耗机制,减少了大量重复冗余数据的传输,并实现了基于Zigbee的设施花卉环境监测及其低功耗传输系统.提出设施花卉环境下的多变量模糊控制方法,解决了环境变量之间耦合问题,促使温室快速达到花卉适宜环境并保持平衡,实现了对设施花卉环境的综合控制.节点以CC2430芯片为核心,并根据影响花卉生长的环境参数,同时装载SHT10型温湿度、BH1750FVI型光照以及COZIR-ambient型二氧化碳传感器,因此节点可同时采集传输多种环境参数,降低了硬件成本.在南京农业大学园艺试验基地进行组网测试,结果表明,系统比传统周期传输节点(周期1 min)减少能耗85.97%,测量精度在98.5%以上,网络平均丢包率为0.84%,满足了对设施花卉环境的有效监测及低功耗传输的要求.  相似文献   

9.
基于两级预测的温室WSN系统数据传输方法   总被引:1,自引:0,他引:1  
为了减少温室WSN系统传感器节点数据传输次数,提出基于两级预测的温室WSN系统数据传输方法。首先,引入莱特准则进行序列异常值检测,研究并提出了便于节点实时计算的序列方差滑动递推计算方法。其次,分别在传感器节点和服务器建立一阶分段线性回归方程并结合自适应加权算法形成两级预测模型,设定传感器节点仅在预测误差超过设定阈值时上传实际采集值,其他时刻服务器自动触发线性回归模型预测填充该部分数据。同时,结合温室环境自动控制的特点,研究了一种基于抛物线的可变误差阈值确定方法。试验表明:分段一阶线性回归模型能够在规定误差阈值内逼近系统原始数据曲线,利用两级预测算法无线传感器节点数据发送次数可减少93%(误差阈值为0.9)。  相似文献   

10.
针对温室管理智能化的需要,提出了一种基于无线数据传输的温室环境参数监控系统。该系统以MSP430F169作为微控制器,通过数字温湿度传感器DHT11、土壤温湿度传感器SHT10P、光强数字转换芯片TSL2561和CO2气体传感器MG811检测温室环境中的空气温湿度、土壤温湿度、光照强度及CO2含量,以n RF24L01+作为射频无线通信模块实现下位机和上位机之间的数据通信,以TC35i作为GSM无线通信模块实现上位机和监控终端之间的数据通信。用户可以通过上位机或监控终端对温室环境参数进行检测和控制,使温室内环境参数控制在所希望的水平上,实现温室环境参数的智能化控制。  相似文献   

11.
在温室高温高湿的工作环境下,传感器易出现故障,会对温室的智能管理造成一定的资源浪费,为保证智能化温室管理系统的有效运行,需要及时准确地对温室内故障传感器做出识别。通过试验对云南地区温室在夏季不同通风状态下室内场域的变化情况进行分析,以云南地区大型玻璃连栋温室作为研究对象,建立夏季不同通风方式下温室的三维稳态CFD模型,并结合试验对模型的有效性进行验证。根据实际的外界条件,对温室内部场域进行分析,预测出传感器节点位置处的环境数值,通过与实际读数进行对比,找出传感器读数异常位置。为进一步提高故障传感器识别的准确性,结合基于中值策略的传感器故障节点检测算法,能够及时准确地识别出温室故障传感器,为温室的智能化管理决策提供了准确的温室内环境数据。   相似文献   

12.
温室环境监测中无线传感器网络节点设计   总被引:1,自引:0,他引:1  
针对传统有线温室测控系统存在成本较高、使用不便、布线复杂、维护困难等问题,给出了一种低能耗无线测控节点的设计方案.温室中各测控节点通过无线传感网络进行通信,各测控节点以ATmega48单片机为控制核心,将各观测点的温度、湿度、光照、二氧化碳等环境参数通过nRF24L01+发送出去.经现场实验证明:该系统具有功耗低、线路简单、易维护等特点,可以对温室内的多种环境参数进行有效的监测,完全满足实际农业生产要求.  相似文献   

13.
针对规模化猪舍人工劳动强度大、重复作业多、疫病传播与防控形势严峻等问题,设计了猪舍消杀巡检机器人系统。该系统融合基于2D激光雷达的即时定位与建图(Simultaneous localization and mapping, SLAM)和超宽带(Ultra wide band, UWB)技术,实现舍内地图构建和系统实时定位;在确定热红外模组安装高度为125cm和安装倾角水平向下夹角5°的基础上,运用Jetson Xavier NX边缘计算单元进行视觉处理与识别算法的部署,完成在线猪只体温巡检;边缘计算单元依据终端指令对消杀模块中超声波雾化单元、紫外线辐射单元等进行决策控制,实现多模式舍内环境消杀;通过传感器技术对舍内环境参数进行实时监测;并搭建人机交互界面,实现监测信息的显示、报警、存储等。测试结果表明,该系统可完成地图构建、自动导航、猪只体温检测,记录异常猪只热红外图像及圈舍所在位置;依据设定的消杀模式,在目标点开启相应消杀功能的准确率为100%;机器人在巡检状态和静止状态下,舍内CO2浓度、温度、相对湿度的相对误差分别为0.04%、3.00%、2.10%。本研究可为疫情形势下猪舍巡检消杀少人化/无人化作业提供技术装备参考。  相似文献   

14.
王丽雅 《农业工程》2013,3(4):48-51
针对当前我国农业设施化的发展需求,设计了一种适用于农业温室大棚的监控系统。该系统以STC89C52单片机为核心,以DHT11温湿度传感器为温湿度采集单元,以AH2003为光照强弱采集单元,由温湿度检测、温湿度控制、照度检测、照度控制和上位机系统等组成,实现对棚内环境的监测、调节。测试表明棚内的温度、湿度、光照强度和光照时间均符合植物最佳生长条件。   相似文献   

15.
基于无源RFID传感标签的农田土壤环境监测技术研究   总被引:2,自引:0,他引:2  
邓芳明  吴翔  李兵  汪涛  刘珺 《农业机械学报》2018,49(8):187-193,202
针对现有农田环境无线传感器网络在长期性、环保性和追踪性方面的不足,提出了一种基于无源射频识别(Radio frequency identification,RFID)传感标签的农田土壤环境监测技术。该RFID传感器标签基于超高频RFID通信协议,且工作于无源模式下。提出了一种新的数据融合方式,比传统数据融合方式显著降低了系统工作的功耗以及响应时间。测试了电磁波在农田土壤中传输的损耗情况,确定了标签可正常工作的基本条件。针对埋入深度超过30 cm时传感器标签传输精确度不足的情况,提出在同一测量点布置两个传感器标签,通过天线极化方向的不同以获取更高的数据传输精确度。通过实验对所设计的温湿度传感器标签进行了通信性能及温湿度测量性能测试。实验结果表明,基于该无源RFID传感器标签所测试的温湿度与传统方式的测试结果基本一致,温度测试误差不超过1.5%,湿度测试误差不超过1%。与现有农田土壤环境监测方法相比,具有便利性强、成本低、寿命长、传感数据易于跟踪定位等显著优点。  相似文献   

16.
随着无线传感器网络的快速发展,本文设计了一种基于ZigBee的温湿度测控系统。测控系统由监测计算机、基于CC2430单片机的协调器节点和终端节点以及温、湿度传感器SHT10组成。该系统具有低功耗、高可靠性、易组网及稳定性好等优势,可广泛应用于工业环境温、湿度监测。  相似文献   

17.
魏挺 《农业工程》2018,8(6):51-54
针对当前农业大棚蔬菜种植的信息化和自动化需求,利用物联网技术,提出一种基于无线传感器的大棚蔬菜温湿度采集系统。为实现蔬菜大棚温湿度采集功能,分别从硬件和软件的角度对系统进行构建。在硬件方面,结合蔬菜大棚中传感器节点较多的问题,采用温湿度传感器节点与无线射频模块结合的方式,完成蔬菜大棚中温湿度的自动采集和数据发送;在软件方面,利用IAR集成开发环境对上机位软件进行开发。通过对部分功能的测试,验证开发方案在农业蔬菜大棚中应用的可行性,为现代农业的发展和推广提供了借鉴。   相似文献   

18.
针对传统果蔬农业大棚环境数据感知不强、现场维护工作量大、无线覆盖区域受限、生产管理效率低、成本高的问题,提出一套基于模糊PID控制的NB-IoT果蔬农业物联网系统设计。以STM32L475VET6超低功耗芯片为主控芯片,通过NB-IoT和ZigBee双协议融合组网技术和环形缓冲队列算法组建广域无线网络,设计现场监测终端与远程云监控平台,将局域终端节点采集的环境因子信息接入云服务器进行统计与分析。系统根据采集到的数据自动调控反馈控制设备,达到低功耗模式下的广域覆盖监测并智能反馈调控果蔬大棚环境因子的目的,实现感知层、网络层到平台层和应用层一套完整的果蔬大棚物联网系统设计。将模糊PID控制算法应用于温棚环境调节的仿真测试表明,〖JP3〗系统平均丢包率为0.088%,空气温湿度、土壤温湿度、二氧化碳浓度等环境因子参数平均相对误差保持在0.5%以内,NB-IoT休眠功耗小于9 μA,能实现智能反馈控制并保证系统多节点部署、多参数检测、低功耗工作、广覆盖通信的条件,使系统具有更高的复杂环境适应性和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号