首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
融合光谱混合分解与面向对象的土地利用/覆被分类   总被引:2,自引:2,他引:0  
错综复杂的土地利用模式和破碎的地物斑块制约了土地利用/覆被分类的精度和效率。一方面,混合像元模糊了地物的光谱信息,影响了分类精度。另一方面,如何高效利用地物的光谱、形状和纹理特征是当前土地利用/覆被分类的研究热点。为了提高基于遥感技术的土地利用/覆被分类精度,该研究基于Sentinel-2A遥感影像,开展融合光谱混合分解与面向对象的土地利用/覆被分类研究。首先,基于地物的光谱、形状和纹理特征,在3个分割尺度通过NDWI(Normalized Difference Water Index)、NDVI(Normalized Difference Vegetation Index)、SBL(Soil Background Level)等8个特征参数构建了不同地物信息的提取规则。其次,利用光谱混合分解模型提取研究区基质(SL;岩石和土壤)、植被(GV;光合作用叶片)和暗色物质(DA;阴影和水)3类通用端元。最后,尝试融合3端元光谱特征优化地物信息提取规则。研究结果表明:1)基于构建的光谱、形状和纹理的地物信息提取规则,使用模糊函数、阈值法进行土地利用/覆被分类,获得了较高的分类精度,总体精度为80.83%,Kappa系数为0.76。2)融合3端元的光谱特征的提取规则将分类精度提升至90.00%,Kappa系数提升至0.88。3)具有明确物理意义的3端元的融入增强了像元内各组分信息的差异性,弥补了传统光谱指数对植被与土壤间的亮度信息解析度不足的缺陷。该方法能充分利用影像的光谱信息,是一种由易到难、对不确定因素进行逐层剥离的土地利用/覆被信息提取技术。因此,对中高分辨率的多光谱遥感影像十分友好,在土地利用/覆被的精细化分类中有较大应用潜力。  相似文献   

2.
绿洲景观多季相特征的线性光谱混合分解方法研究   总被引:4,自引:2,他引:2  
因干旱、半干旱区生态环境的脆弱性和社会经济的干扰,区域景观季相间具有显著变异,但该类区域季相景观异质性研究相对薄弱。加上遥感数据空间分辨率的约束,表征荒漠化状态的异质性景观特征以一定程度的混合像元存在,传统的景观信息提取方法具有一定的局限性。以甘肃省民勤县为例,进行了荒漠化异质性季相景观特征的线性光谱混合分解方法研究,包括端元类型确定,多季相代表性端元选择和光谱值优化等关键步骤。结果表明,多季相线性光谱混合分解模型考虑了端元在季相之间的可比性和分解结果的物理意义,可以直接进行物理解译,有效模拟民勤绿洲的景观要素分布,多季相端元丰度可以描述各类端元的季相变异,为土地荒漠化监测评价提供保障。  相似文献   

3.
当前面对紧迫的自然资源管理压力和生态环境监测需求,针对国产遥感卫星大数据应用能力的挖掘将面临很大的挑战。GF-6卫星具有大角度、高频次和新谱段的特点,该文基于GF-6卫星数据,测试新增的红边、黄光和紫光波段响应能力。利用具有物理意义的全约束线性光谱混合分解模型,根据研究区物候特征确定四端元包括植被(GV),裸地和建设用地等基质(SU),山体植被阴影(DA)以及水(WA),通过对比保留红边、黄光波段、紫光波段和去除红边、黄光、紫光波段后的分解结果,对各新增波段和GV端元、SU端元、差均方根(RMSE)进行相关性分析;最后对比光谱混合分解结果和基于专家知识决策树分类结果。通过对比丰度值估计参数和决策树分类结果发现红边波段对植被较为敏感,对光谱混合分解模型的适用性、稳健性以及丰度值估计精度有着很大贡献,黄光波段和紫光波段经过数据降维后对植被和裸地、建设用地有少量贡献。通过相关性分析发现红边2波段、近红外波段与GV端元丰度图有最大的相关性,紫光波段、黄光波段和红边1波段与GV端元反向相关;红边1波段、紫光波段和黄光波段与SU端元丰度图显著相关;红边1波段和黄光波段对丰度值计算误差有主要贡献,是主要的噪音来源,紫光波段次之。通过对比GF-6数据和OLI、Sentinel-2数据丰度值估计结果发现GF-6丰度值估计的均方根误差以及除了WA端元的各端元丰度值估计变异系数均小于OLI和Sentinel-2载荷,体现出CF-6卫星在地表信息识别上较高的精度和稳健性。  相似文献   

4.
利用遥感数据进行果园种植时间制图可以高效便捷地获取大区域尺度的果园种植时间信息。为避免混合像元对果园的光谱信息造成影响,实现果园范围的精准识别及果园种植年龄的推测,该研究基于Landsat系列影像,开展融合地表标准地表光谱端元空间的果园范围提取和种植时间制图的研究。首先,将标准地表光谱端元空间融入原始影像中运用随机森林算法进行土地利用/覆被分类,重点提取果园分布范围。其次,构建地表植被端元年际间时间序列曲线,求得果园缓慢增长区间,运用四点法求取果园最大环境承载量。最后,回溯找到果园种植起点进行Logistic增长模型拟合,完成果园种植时间制图。研究结果表明:1)由线性光谱混合分解所得的地表光谱四端元能够很好地表达研究区地表组分信息。融合标准端元空间与随机森林算法提高了地物信息的提取精度。分类总体精度达到88.80%,Kappa系数达到0.86,对果园有较好的解译能力。2)通过植被端元年际时间序列曲线可以很容易地捕捉到土地覆被/利用类型的变化,通过Logistic增长模型可以检测植被生长的状况和最大环境承载量。拟合的果树生长模型具有较高的精度和稳定性,整体拟合度达到0.751,年龄验证误差均值为1.86a,说明该方法可以相对准确地确定苹果树的种植时间和长势。  相似文献   

5.
棉花遥感识别的混合像元分解   总被引:3,自引:3,他引:0  
为了进一步提高棉花遥感识别精度,以新疆玛纳斯县为研究区,运用线性光谱混合模型(LSMM),对TM遥感数据的混合像元分解技术与方法进行了研究。将棉花、玉米、番茄和土壤4类典型的端元组分光谱值代入线性模型,在非约束条件下,用最小二乘法估计混合系数,得到每种地物类型的丰度及RMS误差图,以实地测量的棉花种植面积对模型分解效果进行评估,结果表明:线性光谱混合模型构模简单、计算量小,棉花线性光谱混合像元分解精度达到90%以上,可用于新疆棉花的遥感识别。  相似文献   

6.
综合季相节律和特征光谱的冬小麦种植面积遥感估算   总被引:7,自引:3,他引:4  
及时准确地获取区域和国家尺度的作物种植面积和空间分布具有重要意义。针对目前中低分辨率遥感数据相结合方法的局限,提出一种新的作物类型识别方法。首先基于MODIS NDVI数据的时间优势,提取研究区各类植被的NDVI时间序列曲线,从而分析冬小麦在季相节律上的识别特征,构建冬小麦识别模型。再将MODIS像元分类处理,纯耕地像元利用冬小麦的季相节律特征识别;耕地与其他植被的混合像元利用混合像元分解的思想提取耕地组分的NDVI时间序列,从而进行识别,进一步根据空间关系将识别结果重新定位到中分辨率尺度上;冬小麦与其他作物的混合像元覆盖区则利用TM遥感影像的光谱差异加以区分。在伊洛河流域主要农业区,以冬小麦为识别对象,结果表明识别精度达到96.3%。该方法为作物种植信息的提取提供了新的解决问题的途径,也对其他类型作物的识别也具有重要的参考价值。  相似文献   

7.
基于决策树和混合像元分解的江苏省冬小麦种植面积提取   总被引:11,自引:6,他引:5  
归一化植被指数(normalized difference vegetation index,NDVI)时间序列曲线能提供作物生长动态变化信息,将其应用于农作物种植面积提取具有一定优势。该文以江苏省为研究区域,采用2013年1月1日-2014年12月19日46景250 m空间分辨率的MODIS-NDVI时间序列数据、2014年4月23日的MOD09A1反射率影像及Landsat数据,开展冬小麦种植面积的遥感识别,首先利用MODIS数据建立作物的归一化植被指数时间序列曲线,再采用Savitzky-Golay滤波方法对NDVI时间序列数据进行重构,并基于农作物物候历、种植结构和种植模式等信息,提取研究区域典型地物物候生长期的关键值,在分析冬小麦、林地、水稻物候期(生长期开始时间、生长期结束时间、生长期幅度、生长期长度及生长期的NDVI最大值)变化趋势的基础上,综合比较分析不同地物平滑重构后的NDVI时间序列曲线特征,界定作物种类,确定训练规则,利用快速、高效的决策树方法,通过多阈值限定进行分类,初步提取冬小麦的空间分布范围;但是由于存在混合像元,阈值范围的设定会影响冬小麦种植面积的提取精度,针对此类问题,运用地表反射率影像数据提取冬小麦端元波谱曲线,结合线性光谱混合模型进行混合像元分解,进而根据冬小麦丰度比例精确提取冬小麦种植面积;最后利用统计数据和空间分辨率较高的Landsat TM 8影像数据对提取结果进行县域级验证。精度评价结果表明,研究区域的冬小麦种植面积提取精度达到90%,能够较准确地反映研究区域冬小麦的分布情况,表明运用中高分辨率遥感时间序列影像数据可以准确提取作物种植面积,为农作物种植面积信息提取提供参考。  相似文献   

8.
在土地覆被变化动态监测中,经典的土地利用转移矩阵可以反映出一段时期内各地类面积之间的相互转化关系,但无法实现变化信息的定位分析与可视化表达,该文运用地学信息图谱的分析理念,提出了土地覆被变化监测信息的可视化分析方法。首先,通过遥感制图获取了土地覆被变化监测时段内的2期土地覆被分类图,利用GIS空间叠加分析功能,提取了土地覆被类型转移矩阵和土地覆被类型转移信息图谱;然后,在土地覆被类型转移信息图谱的基础上,依据地统计学模型原理,对图谱中的空间数据进行网格处理和Kriging插值分析,获取了研究区土地覆被变化强度信息图谱,用直观的图谱形式展示了土地覆被变化监测信息的空间变化强度规律。该文以黑龙江省哈尔滨市双城区为研究区,利用2002年Landsat7 ETM+和2013年Landsat8 OLI遥感影像,在土地覆被类型遥感制图的基础上,通过GIS叠加分析方法和地统计学模型,获取了2002-2013年时段的土地覆被类型转移图谱和变化强度信息图谱,实现了土地覆被变化监测信息的可视化定位分析,为土地覆被类型变化信息的定位表达及其变化规律的图谱分析提供了一种途径。  相似文献   

9.
为了解决独立成分分析中端元丰度校正结果同实际丰度相差较大的问题,该文提出了一种基于回归分析的独立成分端元丰度校正方法。具体是:首先应用ICA对遥感时序数据进行分解,获取目标地物的ICA分解结果;再抽选一定量的样本,将样本目标地物的真实丰度与ICA分解结果进行回归;最后根据回归关系推算每个像元的目标地物丰度。基于MODIS时序数据,将该文方法和线性拉伸方法应用于江苏兴化地区的水稻面积提取,并将2种方法的提取结果同水稻准真值图像进行对比。分析结果表明,该文方法得到的水稻丰度图像的均方根误差、偏差在不同的空间尺度下均小于线性拉伸方法,而不同空间尺度下的决定系数(R2)均高于线性拉伸方法。与线性拉伸方法相比,该文方法能获得更接近实际情况的端元丰度校正结果,增强了ICA在农作物面积提取中的应用能力,为大尺度农作物识别和面积提取提供了依据。  相似文献   

10.
为了获取多时相的土地覆盖基础数据以支持区域土壤侵蚀定量评价,基于线性光谱混合模型分解MODIS多光谱影像,并对分解结果进行了定性、定量评价。结果表明,结合像元年内植被指数变化特征,基于线性混合像元分解,可解译出耕地、林地、草地、裸地、水体、居民地等类型。分类结果与2006年TM分类结果的总体一致性为64.46%,Kappa系数为0.519 9,土地覆盖类型分类结果可靠;各类端元估算误差基本小于20%,且与对应TM分类结果具有相关性,总体精度较好;林地端元能够较好地反映植被盖度信息。基于LSMM分解MODIS影像可为区域环境研究提供可靠的土地覆盖类型图和植被覆盖信息。  相似文献   

11.
基于遥感光谱的干旱区土地退化评价体系构建   总被引:3,自引:3,他引:0  
干旱区土地退化(荒漠化)作为全球面临生态环境挑战之一,对粮食安全、环境质量和区域自然资源管理至关重要。土地退化本质是人与自然因素协同作用下土地利用/覆被类型、数量、结构以及功能的改变而引起的生态服务价值降低,核心是土壤和植被的退化。一方面,人与自然共同作用下的土地利用覆被可以表征土地退化状态,另一方面植被-土壤生境时间序列相互作用过程进一步辅助土地退化过程诊断。因此,该文首先从覆被结构、退化类型和退化程度3个层次建立干旱区土地退化状态评价体系。其次,采用GF-1/WFV时间序列遥感影像,基于多端元光谱混合分解模型建立土地利用/覆被精细分类量化表征下垫面质量属性,并进一步利用植被-生境组分互动特征参数进行功能量化,综合评价民勤2015年退化类型和退化程度。最后,结合地面立地景观照片以及采样点实测数据,对土地退化状态评价结果进行绝对定标和交叉验证。结果表明:遥感评价识别土地退化类型和程度的能力分别为87.5%和78.7%。对于民勤旱地系统,沙化过程、沙-盐化过程是主要的土地退化过程,轻度沙化、中度沙化为主导退化程度。该方法为宽波段遥感国产高分1号卫星在旱地系统土地退化状态信息提取和深入应用提供科学依据和实证研究。  相似文献   

12.
基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取   总被引:3,自引:0,他引:3  
土地利用/覆盖信息是区域气候与环境研究的基础,是土地资源规划与管理、合理开发与保护的信息保障。为此,该文选取长株潭城市群核心区为试验区,以时间序列HJ卫星影像为数据源,首先构建了时间序列归一化植被指数(normalized difference vegetation index,NDVI)、时间序列光谱第一主成分(first principal component,PC1)数据集,通过J-M(Jeffries-Matusita)距离变量可分离性分析结合地表覆盖的物候特征,确定最佳时序HJ组合数据;其次,采用面向对象的随机森林算法对研究区土地利用/覆盖信息进行分类,并对分类结果进行精度评价与比较分析。研究结果表明:采用时间序列HJ组合数据与面向对象的分类方法,提取城市土地利用/覆盖信息的总体精度和Kappa系数分别达到91.55%和0.90,其中水田、水浇地、旱地、林地、建设用地的生产者精度均达到90%及以上;相对于时间序列基于像元分类、单时相面向对象的分类方法,该文提出的土地利用/覆盖信息提取方法的总体分类精度和Kappa系数分别提高了2.26%、0.02和6.82%、0.08,有效提高了区域土地利用/覆盖信息提取的精度,为大范围土地利用/覆盖精细化分类提供了有效的途径。  相似文献   

13.
针对现有土地覆被遥感产品及融合方法存在的不足,该文提出了一种新的分类体系转换方法,实现了证据理论(Dempster-Shafer)框架下多源产品的集成,并以GEOWIKI、林业调查数据为参考,通过绝对及交叉验证方法对融合结果精度进行了评价。研究结果表明:无论总体精度还是类别精度,融合结果与原始数据相比均有一定提高,说明在融合过程中,吸收了多源数据的类别分布特征,做到了多源数据间的互补。通过融合结果的不确定性分析,总体上融合结果的不确定性较小,但在景观异质性较强区域,融合结果的不确定性显著,不确定性值集中于0.4~0.7之间,这说明如何提高景观异质性区域的土地覆被类别精度,实现该区域数据重构是未来亟需解决的问题。该文所得成果为未来全球或区域尺度土地覆被遥感产品的研制及产品精度验证提供了参考。  相似文献   

14.
沙地土壤风蚀动力因子分析   总被引:13,自引:1,他引:12  
地表粗糙度反映地表对风速减弱的作用以及对风沙流的影响 ,其值大小取决于地形、植被覆盖及作物的播种方向 ,粗糙度越大风蚀强度越小。吉林省西部流动沙丘的起沙风速为 1 0 3m/s,风蚀耕地的起沙风速为 6 3~ 7.9m/s。春季侵蚀性风能为 1 72 1 8(v·u)。该区风蚀性气候因子和侵蚀性风能自东向西递增 ,西北部的通榆为最大  相似文献   

15.
基于遥感的黄土高原植被物候监测及其对气候变化的响应   总被引:9,自引:0,他引:9  
为了分析黄土高原地区植被物候特征,该文基于AVHRR传感器获取的陆地长期数据记录(land long term data record,LTDR)V4 NDVI数据,对黄土高原1982-2011年间植被物候的时空变化进行分析,并借助偏相关分析方法对物候与气温和降雨的关系进行量化分析。结果表明:黄土高原近30 a间春季物候提前显著(0.54 d/a,P0.001),主要集中在北部草地和灌木植被;秋季物候推迟显著(0.74 d/a,P0.001),主要分布在甘肃、陕北、内蒙古和山西北部等地。不同植被的春秋物候稍有差异,稀疏灌木林春季物候提前趋势最多(1.31 d/a),常绿针叶林最小(0.19 d/a);秋季物候推迟最多的为乔木园地(1.18 d/a),最少的是水田(0.17 d/a)。黄土高原植被物候主要受气温影响,降雨的变化也会对物候产生一定影响。冬季和前年秋季气温上升是春季物候提前的主要驱动因子;夏季和秋季降雨则对秋季物候休眠期延迟起着重要作用。该研究可为黄土高原生态环境评价及气候变化预测模型提供一定依据。  相似文献   

16.
基于HJ-CCD数据和决策树法的干旱半干旱灌区土地利用分类   总被引:2,自引:5,他引:2  
为了实现干旱半干旱灌区地表信息低成本、高效率的动态监测,利用HJ-CCD数据的多时相和多光谱信息,探讨了平罗县土地利用遥感分类方法。首先建立研究区内典型地物的NDVI时间序列曲线,提取反映该区物候模式的时序特征参数;然后对土壤信息丰富的3月份多光谱影像进行主成分变换,选取第1主成分(PC1)作为光谱特征参数,最后基于分类回归树(classification and regression tree,CART)算法进行决策树监督分类。总体分类精度达到92.26%,Kappa系数为0.91,比最大似然法分类结果精度提高了2.58%。研究表明:构建的NDVI时间序列曲线对研究区内的地类具有较强的代表性,提取的时间维和光谱维的分类参数对各地类均有很好地区分性,CART决策树算法分类结果清晰准确且精度较高。该方法为HJ小卫星在干旱半干旱区等区域的深入应用提供科学依据和实证基础。  相似文献   

17.
甘肃省民勤县土地荒漠化动态监测研究   总被引:19,自引:0,他引:19  
甘肃省民勤县1994年和1998年两期TM影像解译的结果表明:在民勤县,荒漠化局部治理与荒漠化大面积剧烈发展同时并存。民勤绿洲外围荒漠化治理成效显著,4年中灌木林地明显增加,但绿洲外围的低盖度草地沙化也进一步加剧,流沙的面积明显增加,沙质低盖度草地和盐渍低盖度草地减少的幅度分别达13.8%和11.5%,而流沙则增加了0.3%。水资源不合理利用、绿洲边缘随意开荒和草场过度放牧及过度樵采是该县荒漠化的主要动因。位于巴丹吉林沙漠危害民勤绿洲风沙前沿地带的民勤西沙窝,几十年来的风沙危害治理,使该区的荒漠化基本得到了逆转。4年中耕地、林地等都稳步增加,但由于地下水位下降,植被衰退导致的再沙化将是今后荒漠化的主要表现。文中也提出了民勤县荒漠化综合防治的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号