首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
不同干旱胁迫方式对小麦水分关系和光合作用的影响   总被引:4,自引:1,他引:4  
离体气干使小麦叶片很快遭受水分胁迫,叶片不产生渗透调节作用,水势和膨压降低较快,从而使叶片净光合率(Pn)、气孔导度(Gs)和叶肉CO_2导度(G’m)迅速降低;土壤干旱下,叶片水势降低较缓慢,并产生不同程度的渗透调节作用,使膨压得到部分维持,Pn、Gs和Gm’降低幅度减小.两种方式干旱胁迫下,陕合六号叶片持水力和渗透调节大于郑引一号,Pn、Gs和G’m都明显高于郑引一号.因此,陕合六号小麦有较强的耐旱性.  相似文献   

2.
两个抗旱性不同的高粱品种“3197B”和“三尺三”,在水分胁迫条件下,抗旱品种3197B渗透势降低,渗透调节能力较强.正常灌水时,两品种的气孔导度和蒸腾速率均随光照增强而增加,品种间差异不大;水分胁迫条件下,上午3197B气孔导度和蒸腾速率高于三尺三,午后水分胁迫严重时又低于三尺三,但其叶水势和膨压比三尺三高.  相似文献   

3.
以陇东(耐旱)、公农1号(耐旱性中等)、BL-02-329(不耐旱)3种抗旱性强弱差异较大的紫花苜蓿为试验材料,对干旱胁迫下其叶片水分代谢与两种渗透调节物质的变化进行研究,结果表明:干旱胁迫下苜蓿叶片水势、叶片相对含水量降低,水分饱和亏缺增加,总体上3种紫花苜蓿叶片抗旱性强的材料其叶片水势降低的幅度较大,水分饱和亏缺上升幅度及叶片相对含水量下降幅度较低.干旱胁迫下,可溶性糖及脯氨酸含量上升,2种渗透物质对3种紫花苜蓿均有渗透调节作用.脯氨酸是三种紫花苜蓿主要渗透调节物质,脯氮酸含量的多少及增加的幅度能反映苜蓿的耐旱性.  相似文献   

4.
外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响   总被引:18,自引:0,他引:18  
王玮  张枫  李德全 《作物学报》2002,28(1):121-126
用ABA处理不同抗旱性的两个玉米品种幼苗根系, 测定了根系的水势、渗透势、渗透调节能力及4种渗透调节物质的变化, 结果表明: 渗透胁迫条件下, ABA能提高根系的水势、降低渗透势、增加渗透调节能力, 且对抗旱性强的鲁玉14号的作用大于抗旱性弱的掖单13号. 正常供水条件下, ABA处理对根系水势的提高有一定的作用, 但对渗透势及  相似文献   

5.
土壤水分胁迫下小麦叶片渗透调节与光合作用   总被引:20,自引:2,他引:18  
武玉叶  李德全 《作物学报》1999,25(6):752-758
在土壤水分胁迫过程中,抗旱性强的小麦品种昌乐5号、北农2号与抗旱性弱的品种济南13,鲁麦5号相比,渗透调节能力高0.41Mpa~0.604Mpa;相对含水量少降7%~8%;叶片水势少降0.40Mpa~0.41MPa。水分胁迫使叶片光合能力下降,抗早性强的品种与抗早性弱的品种相比,其下降的平均百分数为;光合速率前者比后者少降17%~22%;气孔导度  相似文献   

6.
土壤水分胁迫下 ,抗旱性强的小麦品种昌乐 5号、北农 2号与抗旱性弱的济南 13、鲁麦 5号相比 ,渗透调节能力高 0 4 1~ 0 60MPa ,相对含水量少降 6 39~ 10 74个百分点 ,叶水势少降 0 19~ 0 63MPa。水分胁迫使小麦叶片光合能力下降 ,水分胁迫全过程下降平均百分数 ,抗旱性强的品种比抗旱性弱的品种光合速率少降 17 7%~ 2 2 5% ;气孔导度少降 2 1 0 6%~2 3 75%。小麦叶肉细胞叶绿体的超微结构发生变化且随水分胁迫的加重而加剧 ,但变化程度与小麦的抗旱性及渗透调节能力成负相关。胁迫导致叶绿体外形变圆 ,类囊体肿胀 ,片层间距加大 ,基质片层模糊 ,最终叶绿体解体  相似文献   

7.
研究了苗期大豆在干旱胁迫下叶片渗透调节能力与大豆抗旱性的关系.结果表明:随着干旱胁迫的加强,渗透调节物质中可溶性糖(WSS)、游离脯氨酸(Pro)含量累积显著增加,质膜透性也不断增大.且耐旱性强的品种可溶性糖(WSS)和游离脯氨酸(Pro)含量增加的幅度大于耐旱性弱的品种,而MDA含量和相对电导率则是耐旱性强的品种增幅小于耐旱性弱的品种.  相似文献   

8.
将玉米种子萌发期、苗期及整个生育期相结合,研究了玉米种子耐旱指数(GSI)、不同生理性状和抗旱指数(DRI)及其相互关系。结果发现:正常条件下叶片水势值较高、胁迫后降低幅度较大以及渗透势较高、胁迫后降低幅度较小的品种,抗旱指数较大;正常条件下水势低、胁迫后降低幅度中等以及胁迫前后渗透势降低幅度较大的品种抗旱指数较低;正常条件下植株POD活性较低、而胁迫后酶活升高幅度较大的品种,抗旱指数较大,而本身酶活较高,胁迫后升高幅度较小的品种,抗旱指数较低;胁迫下升高幅度较小、而本身脯氨酸含量较高的品种,抗旱指数较大;胁迫下升高幅度较大且本身脯氨酸含量较低的品种,抗旱指数一般较小;正常条件下丙二醛(MDA)含量较低的品种,抗旱指数也较大。种子耐旱指数低的品种,抗旱指数也低。综合认为,萌发期种子耐旱指数、苗期叶片水势、渗透势、POD活性与抗旱指数的一致性较高,脯氨酸和丙二醛含量次之,从机理上解释了玉米抗旱性差异。  相似文献   

9.
冬小麦抗旱生理特性的研究   总被引:42,自引:3,他引:42  
李德全  郭清福 《作物学报》1993,19(2):125-132
试验结果表明,干旱胁迫下抗旱性不同的冬小麦品种的抗旱系数为:昌乐5号>秦麦3号>山农587>济南13>鲁麦5号>烟农15。五个生育期的叶片渗透调节能力为抗旱性强的品种大于抗旱性弱的品种,抗旱系数和渗透调节能力是反映冬小麦抗旱特性的两个最好指标。拔节、孕穗和开花期抗旱性强的品种气孔阻力比抗旱性弱的品种大,灌浆和  相似文献   

10.
在水分胁迫条件下、马铃薯叶片游离脯氨酸含量、叶片的水势与品种抗旱性关系的研究表明:青薯5号和青薯168抗旱性最强,下寨65的抗旱系数次之,青薯3号、青薯4号抗旱性最弱.马铃薯叶片游离脯氨酸含量相对值、叶片水势相对值与相应品种的抗旱性有极显著的相关性,马铃薯叶片游离脯氨酸含量相对值、叶片水势相对值均可以作为马铃薯品种抗旱性评价的生理指标.马铃薯叶片游离脯氨酸含量相对值、叶片水势相对值表现为:时间越晚游离脯氨酸相对值越高.  相似文献   

11.
土壤干旱对小麦叶片渗透调节和光合作用的影响   总被引:8,自引:1,他引:8  
本文研究了土壤干旱对小麦叶片渗透调节和光合作用的影响.小麦叶片水势、相对含水量、饱和渗透势、光合速率、蒸腾速率和气孔导度随土壤干旱程度加剧呈现出先缓降后陡降的趋势,其变化的土壤相对含水量阈值相同.小麦旗叶的渗透调节能力约为0.5MPa,不同叶位叶片渗透调节能力不同,其强弱顺序为旗叶>倒二叶>倒三叶.干旱使叶片膨压丧失时的渗透势从正常水分处理的-1.61MPa降到-2.33MPa,弹性模量从5.74MPa增加到6.35MPa.干旱条件下的光合速率、气孔导度、气孔限制值和叶片光合放氧能力都下降,而细胞间隙CO_2含量增加,说明光合速率的降低是非气孔因素即叶肉细胞光合活性限制的结果.  相似文献   

12.
The effects of water stress on physiological attributes of drought‐sensitive (Kalyansona) and drought‐tolerant (C‐306) wheat cultivars were studied in a pot experiment. Water stress was imposed by withholding irrigation at boot and anthesis stages. Leaf water potential, leaf osmotic potential and leaf turgor potential (measured with pressure chamber and osmometer), as well as leaf diffusive resistance, leaf transpiration rate and leaf‐to‐air transpiration gradient (measured with a steady‐state porometer) were measured diurnally. Growth and yield parameters were recorded after harvesting of the crop. Triplicate data were analysed using a completely randomized design and correlations amongst these parameters were computed. Water stress was found to reduce diurnal leaf water potential and leaf osmotic potential in both the genotypes but leaf osmotic potential was significantly higher in the drought‐tolerant cultivar C‐306 than in the drought‐sensitive cultivar Kalyansona. Positive turgor was recorded in both the genotypes under water stress and non‐stress conditions. Water‐stressed plants showed significantly lower turgor potential than control plants. In diurnal observations, water‐stressed plants exhibited significantly higher leaf diffusive resistance in both genotypes at both stages. The diffusive resistance of C‐306 was predominantly higher than that of Kalyansona. Water stress decreased leaf transpiration rate at both stages but the reduction was higher at the anthesis stage. The leaf‐to‐air temperature gradient was much higher in C‐306 than in Kalyansona at the boot stage but at the anthesis stage genotypic variation was non‐significant. The capacity to maintain cooler foliage was lower at the anthesis stage than at the boot stage in both the cultivars. Shoot dry weight, number of grains, test weight, grain yield, biological yield and harvest index decreased to a greater extent when water stress was imposed at the anthesis stage, while imposition of water stress at the boot stage caused a greater reduction in plant height and number of tillers. Similarly, water stress caused a smaller reduction in growth, yield and yield attributes in C‐306 than in Kalyansona. In general, the correlation coefficient of grain and biological yield with water potential and its components was positive and highly significant. Similarly, turgor potential was also correlated positively and significantly with grain yield at both the stages, but with biological yield it was significant only at the anthesis stage. A negative and significant correlation was obtained for diffusive resistance and leaf‐to‐air temperature gradient with grain yield at the boot and anthesis stages. The rate of transpiration was also positively and significantly correlated to grain and biological yields at both the stages. Amongst the yield attributes, number of leaves and number of tillers were positively correlated at the anthesis stage, whereas leaf area and shoot dry weight were significantly correlated with grain and biological yields at both the stages.  相似文献   

13.
干旱条件下氮营养对小麦不同抗旱品种生长的影响   总被引:19,自引:0,他引:19  
陈建军  陈培元 《作物学报》1996,22(4):483-489
在土壤干旱条件下,3米小麦品种叶片水势、饱和渗透势、相对含水量、净光合速率、叶片导度、干物质积累量和籽粒产量均明显降低,且施氮小麦的下降幅度大于不施氮小麦,干旱削弱了氮素营养对小麦生长和产量的促进作用。土壤愈旱,渗透调节作用愈强,适当的氮素营养可增强渗透调节强度,水地型品种对水分和氮素营养均最敏感,其水分状况、游离脯氮酸含量,光合物质生产的产量的变化均较旱地型品种大;旱地型品种受旱时水分状况较稳定  相似文献   

14.
胚芽鞘长度作为冬小麦抗旱性鉴定指标的研究   总被引:34,自引:0,他引:34  
王玮  邹琦 《作物学报》1997,23(4):459-467
20%PEG-6000(w/v)作渗透介质,室内模拟干旱条件,对7个旱性不同的冬小麦品种(系)萌发期的芽鞘长、芽长、根长进行了测定。结果表明:渗透胁迫下,抗旱性不同的冬小麦品种(系)芽鞘长、芽长、根长差异显著,以芽鞘长与抗旱性符合最好。芽鞘长与渗透调节能力关系密切。根据实验结果,建立了“冬小麦抗旱性鉴定筛选程序”。用此程序对11 3个冬小麦品种(系)进行了抗旱鉴定和系统聚类分析,效果良好。  相似文献   

15.
Research has indicated osmotic adjustment as a mechanism by which leaves and roots of cotton plants overcome a drought period. However, the relevance of this mechanism in reproductive tissues of modern cultivars under drought has not been fully investigated. The objectives of this study were to measure osmoregulation and carbohydrate balance in reproductive tissues and their subtending leaves grown under water‐deficit conditions. Two cotton cultivars were grown under controlled environment and field conditions. Plants were exposed to water‐deficit stress at peak flowering, approximately 70 days after planting. Measurements included stomatal conductance, proline concentration, soluble carbohydrates and starch concentration, and water potential components. Stomatal conductance of drought‐stressed plants was significantly lower compared to control, while osmotic adjustment occurred in reproductive tissues and their subtending leaves by different primary mechanisms. Pistils accumulated higher sucrose levels, maintaining cell turgor in plants exposed to drought at similar levels to those in well‐watered plants. However, subtending leaves lowered osmotic potential and maintained cell turgor by accumulating more proline. Soluble carbohydrates and starch concentration in leaves were more affected by drought than those of floral tissues, with corresponding reduction in dry matter, suggesting that flowers are more buffered from water‐deficit conditions than the adjacent leaves.  相似文献   

16.
Plant responses to soil drying and the metabolic basis of drought-induced limitations in stomatal opening are still being discussed. In this study, we investigate the roles of root-born chemical and hydraulic signals on stomatal regulation in wheat genotypes as affected by soil drought and vapour pressure deficit. Twelve consecutive pot experiments were carried out in a glasshouse. Two bread wheat cultivars (Gönen and Basribey) were subjected to drought under high and low vapour pressure deficit (VPD) in a growth chamber. Total dry matter, specific leaf area, xylem ABA content, xylem osmotic potential, xylem pH, root water potential (RWP), stomatal conductance, leaf ABA content and photosynthetic activity were determined daily during 6 days after the onset of treatments (DAT). In the first phase of drought stress, soil drying induced an increase in the xylem ABA with a peak 3 DAT while RWP drastically decreased during the same period. Then the osmotic potential of leaves decreased and leaf ABA content increased 4 DAT. A similar peak was observed for stomatal conductance during the early stress phase, and it became stable and significantly higher than in well-watered conditions especially in high vapour deficit conditions (H-VPD). Furthermore, xylem pH and xylem osmotic potential appeared to be mostly associated with atmospheric moisture content than soil water availability. The results are discussed regarding possible drought adaptation of wheat under different atmospheric humidity.  相似文献   

17.
Growth of pearl millet (Pennisetum glaucum (L.) R. Br.) is affected in areas with limited and erratic rainfall, often combined with nitrogen deficiency. Therefore, effects of severe drought and nitrogen availability on mechanisms of dehydration avoidance were investigated. Five pearl millet genotypes were cultivated in soil differing in nitrogen availability, low (N1), medium (N2) or high (N3) in a climate chamber. Thirty‐five days after sowing, the plants were exposed to drought for 12 days. Drought decreased leaf area and stomatal conductance strongly and caused leaf rolling. In the youngest fully expanded leaves, drought led to an osmotic adjustment from around ?0.5 to ?0.9 MPa, in N1 and N2 substantially achieved by potassium accumulation. Nitrate contributed to the osmotic adjustment in N2 and N3, proline only slightly, increasingly from N1 to N2, whereas the sum of glucose, fructose and sucrose did not play a role. The dehydration independent osmotic force for water uptake (osmotic potential at full turgor) was under drought strongest at N2 and in the landrace Dembi Yellow stronger than in the cultivars Ashana and Ugandi. This contributed to the higher relative water content (RWC) of ‘Dembi Yellow’, whereas due to other factors nitrogen had no effect on the RWC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号