首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
紫色土坡耕地硝态氮的迁移流失规律及其数值模拟   总被引:1,自引:0,他引:1  
为探究紫色土坡耕地硝态氮迁移流失过程,通过室内模拟试验,并结合数学模型,研究在不同雨强(0.4,1.0,1.8 mm/min)和坡度(5?,15?,20?)下硝态氮分别随地表径流和壤中流迁移而流失的特征。结果表明:随地表径流和壤中流迁移的硝态氮流失浓度随时间分别呈现指数下降和线性上升趋势;随壤中流流失的浓度是地表径流携带的19~72倍,在小雨强下壤中流携带流失负荷大于随地表径流流失负荷,但随雨强增大,硝态氮流失负荷通过地表径流流失的比例由17.3%增大至66.0%,大雨强下硝态氮主要通过地表径流流失;与实测数据比较分析,有效混合深度模型在随地表径流流失的硝态氮模拟中精度评价指标Nash-Suttcliffe系数ENS和决定系数R2达到0.590和0.826 7,而对流弥散方程在壤中流携带硝氮流失的过程模拟中ENS和R2达到0.792和0.842 6,取得较好的模拟结果。该研究为紫色土坡耕地硝态氮迁移流失机理研究提供依据和参考。  相似文献   

2.
水稻灌区水量转化模型及其模拟效率分析   总被引:6,自引:4,他引:2       下载免费PDF全文
为更合理地定量描述和研究分析南方丘陵水稻灌区水量及其转化关系,在已构建的水稻灌区分布式水量平衡模型(改进SWAT模型)的基础上进一步从模型模拟结构、稻田水量平衡要素(蒸发、降雨、渗漏和灌排)模拟和渠系渗漏影响等方面对模型予以改进完善,以期能合理体现灌区特征,充分描述灌区水文过程,提高模拟精度,为灌区水量转化和节水潜力分析研究提供有效手段。文中将完善相关改进的模型应用于漳河灌区典型流域,并将其模拟结果与原SWAT模型模拟结果比较分析。结果表明:改进SWAT模型径流模拟总量与实测值基本一致,相对误差在±10.0%之内;Nash-Suttclife效率系数达到0.57~0.76;评价系数均在0.85以上。原SWAT模型径流模拟总量仅占实测值的30%~40%;Nash-Suttclife效率系数均低于0.50,甚至出现负值;评价系数在0.76~0.91之间。改进SWAT模型水稻蒸发蒸腾量模拟值与试验值相对误差仅为-4.76%,评价系数为0.93,Nash-Suttclife效率系数高达0.85;而原SWAT模型模拟值与试验值相对误差高达-38.49%,评价系数为0.73,Nash-Suttclife效率系数为负值。可见,改进SWAT模型因全面考虑水稻灌区水文特征,其模拟效率明显优于原SWAT模型,更适合于南方丘陵区水稻灌区的水文循环模拟。  相似文献   

3.
选择粤北连江流域为研究区域,以分布式水文模型SWAT作为模拟工具,对流域内的水文过程进行模拟。利用流域内高道、凤凰山和黄麖塘3个水文站2001—2010年的实测月平均径流量进行敏感性分析和参数率定。以2001—2005年作为校准期,2006—2010年作为验证期,以相对误差(Re)、决定系数(R2)以及Nash-Suttcliffe效率系数(Ens)作为模型适用性的评价指标。校准期3个水文站的月径流量模拟值的相对误差分别是2.72%,5.91%,1.63%,决定系数均大于0.9,Nash-Suttcliffe系数分别为0.97,0.89,0.70,而验证期相对误差分别是2.62%,5.36%,9.32%,决定系数均大于0.9,Nash-Suttcliffe系数分别为0.90,0.69,0.69。各项评价指标均符合精度要求,说明SWAT模型可以用于连江流域的径流模拟。  相似文献   

4.
基于自然降雨条件下夏季作物生长期的野外田间试验,探讨施肥和追肥对作物产量和不同形态氮素径流流失的影响。结果表明,当季不施肥对玉米产量的影响较小,分别明显减少了19.7%和30.4%的玉米总氮径流浓度和流失量;不施肥减少了棉花的产量及径流硝态氮、可溶性氮与总氮的浓度和硝态氮流失量。增加追肥对玉米和棉花的作物产量影响都不明显,却增加了两者的径流硝态氮、可溶性氮和总氮的浓度。与施底肥相比,增加追肥分别提高了69.9%,88.9%和46.2%的玉米硝态氮、可溶性氮和总氮浓度,棉花的相应氮素浓度则分别提高了25.5%,31.8%和37.1%。故在淮北地区土壤和气候条件下,玉米和棉花不追肥及适当减少玉米施肥量既不会使作物减产,又能减少农业土壤氮素随地表径流的流失。  相似文献   

5.
空间数据对分布式水文模型SWAT流域水文模拟精度的影响   总被引:2,自引:0,他引:2  
分布式水文模型的模拟精度受空间参数精度的影响.提升空间参数精度能较为精准描述流域空间特征,也会使空间数据量冗增,甚至影响模型运行效率.以分布式水文模型SWAT为例,分析DEM、子流域划分、土地利用、土壤、降水站点等空间数据精度对模型模拟精度的影响.结果表明:1)对不同对象(流量、泥沙、营养元素等)进行模拟时,大多数空间数据分辨率阈值不同,分辨率超出阈值可能降低模型模拟的精度;2)DEM分辨率降低,泥沙和总磷(TP)模拟结果的相对误差明显增加,而流量和硝态氮(NO3-N)模拟结果变化极小;3)DEM分辨率达到一定精度后,进一步提高并不会使地表径流模拟精度得到改善,低分辨率DEM获得的坡度较小,这会降低模型对流量的模拟,模拟的洪峰径流产生滞后现象;4)子流域划分对流域产流模拟影响较小,而对产沙模拟影响较大.子流域和水文响应单元的划分数量对流域上游产沙量影响较大,而对流域出口处泥沙荷载影响较小;5)土地利用和土壤图精度主要通过影响模型中HRU生成的数量而影响模拟结果;6)地表径流模拟上,能够体现对地表径流贡献较大的局地降水事件的分布式的降水数据要比利用气象站点获得的降水数据模拟结果的精度要高.研究结果可以为今后模型开发、利用、改进提供参考,提高模型模拟的精度.  相似文献   

6.
基于改进SWAT模型的南方多水源灌区灌溉用水量模拟分析   总被引:5,自引:4,他引:1  
为提出一种合理有效的南方多水源灌区灌溉用水量模拟统计方法,该文针对南方多水源灌区水循环及灌溉取水特点对SWAT模型进行改进,尤其添加了多水源自动灌溉模块用于模拟作物不同水源类型的灌水量,并统计推求灌区灌溉用水量。以浙江省浦江县通济桥水库灌区为例,应用改进SWAT构建灌区水循环模型,利用灌区出口实测月径流数据及4条干渠渠首监测的灌水量数据校正及验证模型,其中月径流在验证期的Nash-Suttclife效率系数为0.89,干渠灌溉用水量模拟值与观测值相对误差的绝对值最大不超过20%,表明改进SWAT模型具有良好的模拟效果。利用所建模型模拟分析通济桥水库灌区长系列灌溉用水量,结果显示灌区灌溉用水量呈现丰水年小、干旱年大的变化规律;除监测的骨干水源通济桥水库及浦阳江取水以外,灌溉用水量的41.40%来源于灌区内部的河道、塘堰及小型水库,说明只监测干渠渠首灌水量无法统计整个灌区灌溉用水量;随着灌区节水改造投入,灌区灌溉水利用系数提高,其灌溉用水量减少。基于改进SWAT模型进行多水源灌区灌溉用水量模拟为灌区灌溉用水量统计分析提供了一种有效的方法。  相似文献   

7.
以东辽河吉林省境内河段为研究对象,采用SWAT分布式水文模型对东辽河泉太水文站进行径流模拟,模型采用2006—2008年实测的逐月径流资料进行参数的率定,并以2009—2010年为模型的验证期,分析对水文过程影响较大的因素、模型的模拟精度及对研究区的适用性。结果表明:泉太水文站率定期与验证期径流的模拟值与实测值总体上拟合较好,率定期与验证期径流模拟的相关系数(R2)均大于0.6,Nash-Suttclife效率系数(Ens)均大于0.75,相对误差(R)均小于30%。验证期的月径流模拟相对误差较率定期小,且相关系数R2、效率系数均大于0.9,降雨是径流的重要影响因素,月径流模拟值与年内的降雨过程存在较好的正相关性,且率定期相关性较验证期相关性大。应用率定后的参数在SWAT模型中进行径流模拟的结果较好,精度较高。将SWAT模型应用于东辽河吉林省段的径流过程模拟,具有较强的适用性。  相似文献   

8.
为研究流域硝态氮来源、输出特征及驱动因素,应用SWAT模型对三峡库区梅溪河和大宁河流域径流和硝态氮负荷进行模拟,进而解析流域水文过程及硝态氮来源,并基于随机森林模型量化了不同影响因素(气候、土地利用、土壤类型、地形)对径流和硝态氮负荷的影响程度。结果表明:(1)不同土地利用类型间硝态氮负荷差异显著,年负荷强度表现为园地(20.41 kg/hm2)>旱地(12.51 kg/hm2)>水田(10.31 kg/hm2)>建设用地(7.09 kg/hm2)>林地(0.62 kg/hm2)>草地(0.46 kg/hm2),旱地是梅溪河(80%)和大宁河流域(67%)硝态氮输出的主要来源;(2)梅溪河和大宁河流域基流系数分别为67%和62%,基流是硝态氮主要运移途径,分别贡献68%和60%的硝态氮输出;(3)径流分配和硝态氮输出具有明显季节变异性,旱季基流对2个流域径流和硝态氮的贡献均在70%以上,雨季地表径流输出的硝态氮分别占36%和42%;(4)降雨量是影响总径流的主要因素,土壤类型是影响地表径流和基流的主要因素;土地利用是影响不同径流途径硝态氮的主要因素,其次是土壤类型,二者相对重要性之和大于70%。综上,环境土地利用冲突是造成硝态氮流失的根本原因,源头控制仍是三峡库区面源污染防控的关键环节;在地表径流控制的基础上亟待纳入旱地和园地基流途径控制策略。  相似文献   

9.
为了方便有效地预测坡地土壤养分流失,以硝态氮流失为研究对象,根据大量国内外文献资料中的试验数据,通过修正通用土壤流失方程,研究分析硝态氮地表径流流失的特征和影响因素,初步建立了坡地土壤硝态氮地表径流流失预测经验公式。结果表明:硝态氮流失量与五大影响因子之间均呈幂函数正相关关系。利用相关资料对经验公式预测准确性进行检验得出,硝态氮流失量预测值与实测值之间的相对误差为30.28%,模型确定性系数为0.772,模型计算结果与实测结果较为接近。因此,通过分析影响因子与硝态氮流失量之间的定量关系,所建立的硝态氮地表径流流失预测经验公式,可用于不同条件下的坡地地表径流硝态氮流失量预测,为坡地土壤硝态氮流失量预测分析和控制措施优化提供有效手段。  相似文献   

10.
不同种植方式对烟田氮素径流损失的影响   总被引:8,自引:0,他引:8  
氮素流失引起的肥料氮利用率低问题长期困扰着广东等南方多雨烟区烤烟种植业的可持续发展。通过在广东南雄烟区的大田小区试验,探讨了不同种植方式对植烟土壤氮素径流损失的影响。结果表明:(1)地膜覆盖处理(T2)平均单次径流量和产流系数分别为44.11mm和48.90%,分别相当于裸地种植处理的109.6%和113%,覆膜明显提高了烟田径流量和产流系数;(2)烤烟生长期间,与不施氮的裸地种植处理比(T0),施氮的裸地种植处理(T1)极显著地提高了烟田氮素流失量(P0.01),供氮起到了加剧烟田氮素流失的明显作用。相同施氮量条件下,覆膜处理(T2)硝态氮径流损失量(28.14kg/hm2)比裸地种植处理低40%(P0.05),显著减少了烟田氮素的径流损失;(3)烤烟集中供基、追氮的中前期,烟田径流硝态氮浓度波动较大,径流硝态氮损失累计量呈近线性上升变化,覆膜处理有显著降低硝态氮径流损失的明显作用(P0.01);烤烟后期径流硝态氮呈持续下降的变化趋势,盖膜处理对降低烟田氮素流失的作用明显减弱。(4)与相同施氮量的裸地种植处理比较,盖膜处理对减少烟田氮素径流损失的作用,起到促进土壤硝态氮积累、提高烤烟氮肥表观利用率的作用效果(P0.05)。  相似文献   

11.
SWAT模型在黄土丘陵区燕沟流域的应用研究   总被引:1,自引:1,他引:0  
SWAT是基于物理机制的分布式水文模型,能够准确地模拟及预测不同下垫面的径流量。应用SWAT模型对黄土丘陵区燕沟流域2002—2008年逐月径流量进行了模拟。结果表明,模拟率定期和验证期的Nash—Sutticliffe效率系数分别为0.76和0.81,相关系数r2分别为0.79和0.80。模型模拟精度高于评价标准(模拟效率Ens>0.5,r2>0.6),说明SWAT模型适用于黄土丘陵区小流域,模拟效果很好,可以用来监测预报黄土丘陵区的汛情,具有很强的实用性。  相似文献   

12.
不同种植模式和坡度对片麻岩山坡地氮素流失的影响   总被引:1,自引:1,他引:0  
通过室外人工模拟降雨的方法,研究了在不同坡度(5°,15°,25°,35°)与不同欧李种植模式(1,2,3行)下对片麻岩山坡地土壤坡面氮素流失和产流的影响。结果表明:(1)产流时间随着坡度增大而提前,平均产流时间从种植模式3行到1行推迟了59.23%,2行到1行推迟了32.28%;不同种植模式下产流强度及波动幅度均为1行>2行>3行;(2)降雨过程中,不同种植模式下氮素流失量和流失浓度表现为1行>2行>3行,不同坡度下,氮素流失量和流失浓度为5°<15°<25°>35°,临界坡度为25°;(3)相同坡度,种植模式由2行到3行时硝态氮流失量减幅最大,5°,15°,25°,35°分别减少了16.78%,44.71%,41.33%,41.89%;(4)氮素流失过程中硝态氮流失量占比40.35%,铵态氮流失量占比10.13%,流失形式以硝态氮为主;(5)相同种植模式,2种氮素流失量和流失浓度与坡度存在二次函数关系,相同坡度,与种植模式存在线性关系,相关系数(R^2)范围分别为0.531~0.999,0.102~0.999;(6)种植模式与硝态氮流失量和铵态氮流失量均呈线性负相关关系,是影响氮素流失的主要因子。在片麻岩山坡地,利用多行交错方式种植欧李可显著降低氮素流失。  相似文献   

13.
随着点源污染的控制与处理技术日趋完善,非点源污染成为重要的水污染源。武强溪作为流入千岛湖的第二大支流,量化武强溪流域非点源污染负荷,解析非点源污染时空分布特征,提出适合削减武强溪流域污染物的最佳管理措施(best management practices,BMPs)对千岛湖水污染高效治理至关重要。该研究基于土壤水分评估工具(Soil and Water Assessment Tool,SWAT)分析了武强溪流域径流量、总氮输出负荷量的时空分布特征,探究了不同管理措施及组合的削减效果,提出了武强溪流域非点源污染针对性的治理措施。结果表明:1)SWAT模型对于武强溪流域径流量和总氮输出负荷量的模拟具有较好的适用性,径流量校准期和验证期的决定系数(coefficient of determination,R2)分别为0.86、0.97,纳什系数(nash-sutcliffe coefficient,NSE)分别为0.83、0.96,百分比偏差(percent bias,PBIAS)分别为15.8%、?6.3%,总氮校准期和验证期的决定系数分别为0.87、0.74,纳什系数分别为0.63、0.66,百分比偏差分别为31.6%、21.2%;2)该流域径流量和总氮负荷主要集中在3—7月,分别占全年输出量的71.67%和75.76%。综合考虑氮的来源和流失途径,将耕地和林地面积占比大、坡度陡的子流域设置为总氮的关键污染源区。考虑调整化肥施用量/配方、改变耕作方式和设置植被缓冲带等削减非点源污染的手段,进行总氮输出负荷削减效率的情景模拟,表明10 m植被缓冲带是减少总氮输出负荷的最佳单一控制策略,总氮削减率可达到69.90%;实施综合管理措施对总氮的污染削减效果更佳,10 m植被缓冲带与施肥量减少20%可使总氮削减率达到74.79%。研究结果可为千岛湖水质管理与控制提供理论基础。  相似文献   

14.
基于SWAT模型的小流域非点源氮磷迁移规律研究   总被引:11,自引:6,他引:5  
非点源污染是影响农业水土环境的重要因素。在GIS平台的支持下,运用SWAT模型,以长江下游岔河小流域为研究对象,分析了氮磷流失时空分布规律,并模拟不同灌溉方式下非点源氮磷流失变化。结果表明:率定后的模型适用于小流域非点源污染的模拟;降雨量与径流及有机氮磷流失具有明显的相关关系,汛期(6-9月)的径流量占全年径流量的56.40%,有机氮磷流失量分别占到64.89%和59.70%;在空间尺度上,有机氮与有机磷负荷空间分布相似,呈现出随地表径流向岔河主河道逐渐汇聚的分布特征,大豆和水稻田是非点源污染的主要贡献地区;通过情景模拟发现,不同灌溉方式对小流域氮磷流失影响显著,对水稻田实行优化灌溉,采取浅灌高蓄的控制方法,可以有效改善小流域农业水土环境。  相似文献   

15.
苕溪流域茶园不同种植模式下地表径流氮磷流失特征   总被引:9,自引:3,他引:6  
为探讨苕溪流域不同种植模式下茶园地表径流氮磷养分流失特征,于2010年5-10月对等高种植和顺坡种植2种种植模式下茶园地表径流水样进行取样测定,分析径流水样中的氮磷元素各指标的含量、形态特征及其随时间的变化规律。结果表明:无论是顺坡种植还是等高种植,茶园径流中氮素各指标含量的峰值均出现在6月底或7月初,茶园径流中磷素各指标含量的峰值出现在6月底、7月初或9月初。在整个监测时期内,等高种植茶园径流中总氮、硝氮、铵氮含量分别比顺坡种植茶园低8.54%~43.01%,4.05%~46.70%,5.92%~33.19%,但2种种植模式间不存在显著差异;等高种植茶园径流水中总磷、可溶态总磷、颗粒态磷的含量分别比顺坡种植低8.51%~31.07%,0.39%~17.91%,8.45%~36.86%,2种种植模式之间径流水中总磷、颗粒态磷含量存在极显著差异,可溶态磷含量不存在显著差异。无论是顺坡种植还是等高种植,硝态氮均为茶园氮素地表径流流失的主要形态,颗粒态磷则是茶园磷素地表径流流失的主要形态。总的来说,等高种植模式能有效地截留茶园氮磷营养元素,防止其随地表径流流失。  相似文献   

16.
耕作方式与土壤盐渍化是影响河套灌区氮素流失及作物产量的重要因素.明确不同耕作方式与盐渍化水平下硝态氮运移量及作物产量的变化,可为制定合理的灌区耕作措施及盐渍化治理方案提供理论依据,对于揭示灌区氮素流失控制及不同作物增产潜力具有重要意义.该研究基于验证后的SWAT(Soil and Water Assessment To...  相似文献   

17.
江汉平原棉田地表径流氮磷养分流失规律   总被引:6,自引:0,他引:6  
2008年和2009年连续2年设置田间试验,采用径流池收集对照与农民习惯施肥2种处理的地表径流,研究江汉平原区棉花种植模式下地表径流产生规律,氮、磷流失规律,肥料氮、磷流失系数及其影响因素。结果表明,江汉平原地区地表径流主要发生在3-8月降雨比较集中的时期,径流产生量随产流时段降雨量的增加而增加,年降雨产流系数平均为26.0%。2008年和2009年农民习惯施肥处理的氮流失量分别是36.14,89.52kg/hm2,磷流失量分别是0.42,10.07kg/hm2,氮、磷流失量的年际间差异较大。氮流失的主要形态是硝态氮,其2008年和2009年的流失量分别占氮流失量的92.8%和64.2%,其次是颗粒态氮,以铵态氮形式流失的只是极小一部分;磷主要以颗粒态磷形式流失,其次是可溶性磷,尤其在产流时段降雨量大的年份,颗粒态磷的流失量占到总磷的90%以上。综合2008-2009年的结果,肥料氮、磷的流失率分别为5.4%和3.1%。氮、磷的流失量主要受施肥、产流时段降雨量和作物覆盖率影响,施肥导致氮、磷养分流失量增加,产流时段降雨量越大,作物覆盖率越低,则氮、磷养分流失量越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号