首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为建立高粱抗丝黑穗病基因最佳的SRAP-PCR反应体系,进一步筛选与抗病基因相关的SRAP标记。本研究采用单因素与正交设计相结合的方法,对影响高粱SRAP-PCR体系的5个因素Taq酶、Mg2+、模板DNA、d NTPs和引物进行优化,以期筛选出最优的高粱抗丝黑穗病基因SRAP-PCR反应体系。研究表明:在优化得到的20μL的高粱SRAP-PCR体系中,模板DNA的用量为20.0 ng,Taq DNA聚合酶的用量为0.14 U,Mg2+的浓度为3.0 mmol/L,d NTPs浓度为0.3 mmol/L,引物的浓度为0.5μmol/L。各因素对反应体系影响大小依次为:引物浓度DNA用量Taq DNA聚合酶浓度Mg2+浓度=d NTPs浓度。本研究将为高粱抗性基因的定位与功能研究提供基础数据与技术支持。  相似文献   

2.
为建立最佳的宫粉紫荆SRAP-PCR反应体系,采用单因素和L16(45)正交试验设计对反应体系中的模板DNA、Mg2+、引物浓度、d NTPs和Taq聚合酶进行优化。表明宫粉紫荆SRAP-PCR 25μL反应体系的最佳组合为:模板DNA 50 ng、Mg2+2.25 mmol/L、引物0.25μmol/L、d NTPs 0.30 mmol/L、Taq酶1.5 U。并利用优化的SRAP-PCR体系进行验证,表明不同的宫粉紫荆样本均能扩增出清晰且带型基本一致的谱带,表明本试验建立的SRAP-PCR体系稳定,可用于今后开展宫粉紫荆种质资源遗传多样性研究、品种鉴定、优良品种筛选和近缘种杂交育种等研究工作。  相似文献   

3.
本研究采用L_(16)(4~5)正交试验设计方法,对朱顶红SRAP-PCR反应体系中的5种因素(Mg~(2+)浓度,d NTPs浓度,引物浓度,DNA模板量和Taq DNA聚合酶用量)进行优化,结果表明各因素对朱顶红SRAP-PCR扩增反应影响大小依次为:d NTPs浓度引物浓度Mg~(2+)浓度DNA模板量Taq DNA聚合酶用量。优化获得的朱顶红最佳SRAP-PCR反应体系为:1×PCR Buffer、Mg~(2+)浓度2.0 mmol/L、d NTPs浓度0.2 mmol/L、引物浓度0.25μmol/L、20μL体系中DNA模板量80 ng以及Taq DNA聚合酶用量0.5 U。用10个朱顶红品种基因组DNA对所得最优体系进行验证,证明该体系具有较高的稳定性和重复性,能够为朱顶红遗传多样性研究和遗传图谱构建等提供重要技术支持。  相似文献   

4.
为建立成熟可靠的红毛丹SRAP-PCR扩增检测技术体系,本研究首先采用单因素实验设计,对反应体系中的DNA模板、Mg2+、d NTPs、Taq DNA聚合酶和引物浓度等5个主要影响因素,设置不同的水平梯度,筛选出适宜的因子范围;在此基础上,进一步采用L16(45)正交设计,建立了红毛丹SRAP-PCR最佳反应体系:20μL体系中包含DNA模板20 ng、d NTPs 0.25 mmol/L、引物0.6μmol/L、r Taq酶1.0 U、Mg2+2.5 mmol/L。并利用优化的反应体系,从116对SRAP引物组合中筛选出37对扩增条带清晰、产物多态性较好的引物。本研究建立的SRAP-PCR体系及筛选的引物,将为红毛丹从分子水平进行种质资源遗传多样性分析、品种指纹图谱构建等研究提供基础。  相似文献   

5.
本研究以万寿菊雄性不育系2-2基因组DNA为试验材料,采用单因素和L16(45)正交设计对SRAPPCR反应体系的Mg2+、d NTPs、Taq酶、引物和模板DNA浓度进行优化,以得到最佳的SRAP-PCR反应体系。结果表明最佳反应体系为:20μL体系中Mg2+2.0 mmol/L、d NTPs 0.3 mmol/L、Taq酶0.75 U、引物0.2μmol/L、模板DNA 80 ng。应用建立的反应体系对退火温度进行优化,得到两步退火温度分别为35℃和50.2℃。最后用9个万寿菊雄性不育两用系材料组对所得PCR体系进行验证,证明该体系具有较高的稳定性和重复性,可为筛选与万寿菊雄性不育基因连锁的特异性标记奠定基础。  相似文献   

6.
食用向日葵SSR-PCR反应体系的优化   总被引:1,自引:0,他引:1  
为建立食用向日葵分子标记反应体系,以食用向日葵四叶期叶片为DNA模板提取材料,采用单因素试验和正交试验设计,对SSR-PCR反应体系中的6因素(10×PCR Buffer、Mg2+、d NTPs、引物、Taq DNA聚合酶和DNA模板)在5水平上进行正交优化试验,并比较了不同浓度Mg2+、Taq DNA聚合酶、模板DNA对扩增效果的影响,结果表明,各因素水平变化对反应体系的影响为Mg2+Taq DNA聚合酶(引物)DNA模板10×PCR Bufferd NTPs。最终建立食用向日葵SSR-PCR最佳反应体系为:在总体系为20μL的SSR-PCR反应体系中包括10×PCR Buffer 0.2mmol/L、Mg2+2.0 mmol/L、d NTPs 1.8 mmol/L、Taq DNA聚合酶0.2 U、DNA 50 ng、引物1.5 mmol/L。  相似文献   

7.
利用正交设计L_(16)(4~5),对酥瓜ISSR-PCR反应体系的5个影响因素(引物,d NTPs,Taq DNA聚合酶,Mg2+和模板DNA)在4个水平上进行优化试验,并在36℃~56℃范围内摸索退火温度,建立适合酥瓜ISSR-PCR反应体系,结果表明,在20μL反应体系中,含有引物0.2μmol/L、d NTPs 0.3 mmol/L、Taq DNA聚合酶1.2 U、Mg2+1.0 mmol/L、DNA模板70 ng、10×Buffer 2.0μL为最佳反应体系,ISSR-PCR扩增程序中最佳退火温度为52.5℃。该体系为酥瓜种质资源的遗传多样性分析评价提供了帮助。  相似文献   

8.
以枣树嫩叶为材料,采用单因子试验对影响SRAP-PCR反应体系中的各个因素进行优化,建立可靠、稳定的SRAP-PCR体系,为进一步研究新疆枣种质资源遗传多样性、亲缘关系、指纹图谱的构建等提供帮助。结果表明,最佳SRAP-PCR反应体系为:总体积25.0μL,其中模板DNA用量为30 ng,Mg2+浓度为2.5 mmol/L,引物浓度为0.2μmol/L,d NTPs浓度为0.2 mmol/L,Taq DNA聚合酶用量为1.0 U,该体系经验证,能扩增出清晰、稳定、多态性较好的产物,说明经过优化后的PCR体系较好,适合后续的分析研究。  相似文献   

9.
葡萄5BB品种SRAP-PCR反应体系影响因素   总被引:1,自引:1,他引:0  
为建立适合葡萄5BB品种的SRAP-PCR反应体系,利用正交设计对葡萄SRAP-PCR反应体系5种因素(Taq DNA聚合酶,Mg2+,模板DNA,dNTP,引物)4个水平进行优化。结果表明,各因素水平变化对PCR反应的影响从大到小顺序为:Mg2+,引物,dNTP,Taq DNA聚合酶,模板DNA;筛选出各因素的最佳水平,建立了葡萄5BB品种SRAP-PCR反应的最佳体系(20μL)为:Taq DNA聚合酶2U,Mg2+2.0mmol/L,模板DNA60ng,dNTP0.25mmol/L,引物0.10μmol/L。这一优化系统的建立为今后利用SRAP标记技术对葡萄进行相关研究提供了帮助。  相似文献   

10.
利用正交试验优化玫瑰SRAP-PCR反应体系   总被引:2,自引:1,他引:1  
采用L16(45)正交试验对玫瑰SRAP-PCR反应体系进行优化。结果表明,各因素对PCR反应的影响程度从大到小依次为:Taq酶,dNTPs,引物,Mg2+,模板;建立了玫瑰SRAP-PCR反应最佳体系(25μL)为Mg2+2.0mmol/L,dNTPs0.20mmol/L,Taq酶1.5U,引物0.25μmol/L,模板1.0ng/μL;采用不同的模板和引物对体系进行验证,表明该体系适合于玫瑰的SRAP-PCR反应。  相似文献   

11.
为了建立光萼荷属植物(Aechmea) SRAP-PCR反应体系,为今后光萼荷属植物种质资源研究提供技术支持,本研究通过L16(45)正交试验设计,对光萼荷属植物SRAP反应体系中的Mg2+、dNTPs、Taq DNA聚合酶、引物和模板DNA浓度等5个因素进行优化实验,并筛选多态性SRAP引物组合。结果表明,光萼荷属植物的最佳SRAP反应体系为1.50 mmol/L Mg2+、400 μmol/L dNTPs、1.5 U Taq DNA聚合酶、15 μmol/L引物、30 ng模板DNA及1×PCR buffer。各因素对SRAP-PCR扩增反应结果影响的差异较大,依次为模板DNA>Taq DNA聚合酶>dNTPs>引物>Mg2+。从56对SRAP引物组合中筛选出51对扩增条带清晰、多态性丰富的SRAP引物组合,多态性引物比率达90%以上。通过不同光萼荷属植物和不同引物组合对该反应体系进行验证,均获得了多态性丰富、条带清晰的扩增图谱,表明本研究建立的光萼荷属植物SRAP-PCR反应体系稳定可靠。  相似文献   

12.
为建立并优化适用于芒草的ISSR-PCR扩增反应体系,进一步研究野生芒草群体的遗传多样性水平。以吉林省采集的芒草(Miscanthus sinensis)为材料,采用单因子试验的方法研究模板DNA、TaqDNA聚合酶的用量及引物浓度和退火温度对PCR扩增的影响。结果显示:在20 μL反应体系中,含有模板DNA 40 ng,dNTPs 0.4 mmol/L,引物0.6 μmol/L,Taq DNA聚合酶1.5 U。此外,筛选到10 条扩增稳定、条带丰富的候选引物,并确定了各自的最佳退火温度。  相似文献   

13.
克氏原螯虾ISSR体系优化   总被引:1,自引:1,他引:0  
为了获得最佳的克氏原螯虾ISSR-PCR 反应体系,采用单因素实验法将反应体系的Taq 聚合酶、 dNTPs和Mg2+ 3 个主要因素设定5 个梯度,根据每个因素量的变化对扩增结果产生的影响进行了研究,最后确定最佳反应体系为:总体积10 μL,1 μL 10×Taq Buffer、dNTPs 浓度0.6 mmol/L、0.6 U Taq DNA polymerase、MgCl2浓度1.8 mmol/L、20 ng DNA,引物浓度0.8 μmol/L。  相似文献   

14.
油葵SRAP-PCR反应体系的建立与优化   总被引:4,自引:3,他引:1  
为建立油葵SRAP-PCR的反应体系,采用单因素试验法,对Mg2+、dNTPs、引物浓度、Taq DNA聚合酶、模板DNA分别设置5~7个水平梯度,筛选出适宜的用量范围,以此为基础,再通过L16(45)正交试验设计,对影响SRAP-PCR的5个因素进行优化,建立了油葵SRAP-PCR的最佳反应体系:20 μL体系中含10×Buffer 2 μL,Mg2+ 2.75 mmol/L,dNTPs 0.18 mmol/L,Taq DNA聚合酶1.25 U,正反引物各0.3 μmol/L,模板DNA 60 ng,最佳退火温度为52.2℃。用22份油葵材料对该体系进行验证,结果显示扩增条带清晰、多态性高,说明该体系稳定可靠,可有效的用于油葵种质资源的鉴定、遗传图谱构建等研究。  相似文献   

15.
叶用莴苣TRAP 反应体系的建立   总被引:1,自引:1,他引:0  
以叶用莴苣为试材,采用正交设计和单因素试验2种方法研究叶用莴苣TRAP反应体系中Mg^2+、Taq DNA聚合酶、dNTPs、引物等4个因素的浓度变化对扩增结果的影响,建立最佳反应体系。结果表明:TRAP-PCR反应最优体系是在20μL反应体系中含DNA模板60~100 ng、10×PCR buffer(Mg^2+free)2μL、Mg^2+终浓度2.0 mmol/L、Taq DNA聚合酶含量1.0 U、dNTPs终浓度0.2 mmol/L、引物终浓度0.75μmol/L。该体系对叶用莴苣种质的扩增结果稳定,条带清晰度高且多态性丰富,可用于对叶用莴苣种质资源的遗传多样性分析和亲缘关系鉴定。  相似文献   

16.
能源植物芒的SRAP分子标记体系建立与优化   总被引:2,自引:1,他引:1  
以芒总DNA为材料,利用单因素分析法对影响SRAP反应体系的Mg2+、dNTPs、TaqDNA聚合酶等三个因素进行了优化。研究结果表明:最佳的10μl反应体系为1 μL 10xTaq Buffer、DNA 20 ng、Mg2+ 2 mmol/L、dNTPs 0.5 mmol/L、TaqDNA聚合酶0.6 U、正反向Primer浓度均为0.8μmol/L。SRAP-PCR反应体系的建立和优化,为今后利用SRAP标记技术开展芒的遗传多样性研究和分子标记辅助选择育种研究提供了一个技术支持。  相似文献   

17.
杨梅SRAP-PCR反应体系的建立与优化   总被引:1,自引:0,他引:1  
为了建立适宜杨梅基因组DNA的SRAP-PCR扩增体系。以杨梅基因组DNA为模板,通过正交试验设计,从Mg2+、模板DNA、dNTPs、Tap DNA聚合酶和引物5种因素4个水平对杨梅SRAP-PCR反应体系进行优化。各因素对杨梅SRAP-PCR反应的影响程度从大到小依次为:Mg2+,模板DNA,dNTP,引物和Taq DNA聚合酶;建立的杨梅SRAP-PCR最佳反应体系为25μL反应体系中含2.5 mmol/L Mg2+、50 ng DNA模板、0.25 mmol/L dNTPs、0.15 μmol/L引物和1.5 U Taq DNA聚合酶。这一体系的建立为今后利用SRAP-PCR技术开展杨梅分子遗传学研究打下了基础。  相似文献   

18.
本试验以一般RAPD反应程序为基础,采用单因素递进筛选方法,针对Taq DNA聚合酶、Mg2+、dNTPs、随机引物和DNA模板5个主要影响因素,分别设置5个不同浓度梯度,对芹菜进行RAPD-PCR扩增,建立了芹菜RAPD技术最优体系。结果表明:25 μL反应体系中含Taq DNA聚合酶1.0 U、Mg2+ 3.0 mM、dNTPs 0.2 mM、引物28 ng、模板DNA 70 ng,10×PCR Buffer 2.5 μL;扩增程序为:94℃预变性5 min,94℃变性1 min,36℃退火1 min,72℃延伸1 min,进行42个循环,最后72℃延伸10 min。  相似文献   

19.
番石榴SRAP反应体系的建立与正交优化   总被引:1,自引:1,他引:0  
采用正交设计方法,对影响番石榴SRAP反应体系的Mg2+、dNTPs、引物、Taq DNA聚合酶和模板DNA浓度等进行了优化,建立了适用于番石榴的SRAP反应体系。该优化的20 μL反应体系中包含2.5 mmol/L Mg2+,0.15 mmol/L dNTPs,0.4 μmol/L引物,1.5 U Taq DNA聚合酶和20 ng模板DNA。利用该优化体系通过64对SRAP引物组合对5份番石榴材料进行了SRAP-PCR扩增,结果表明SRAP引物及优化后的反应体系能够有效地用于番石榴种质资源鉴定及遗传多样性分析等研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号