首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
温室滴灌施肥条件下土壤硝态氮的运移及分布特征   总被引:1,自引:0,他引:1  
为了揭示不同滴灌施肥方式对日光温室土壤硝态氮运移及分布的影响,以番茄为供试作物,选择漫灌为对照(CK),研究在3种施肥处理和4种灌水量条件下硝态氮的运移及在各土层的分布情况。结果表明,土壤硝态氮量随灌水量和施肥量的增加而增加,随土层深度的增加而逐渐减少。土壤硝态氮主要分布在0~40 cm土层,占试验土层总量的82%~92%。与大水高肥(W_1F_3)处理相比,节水节肥(W_4F_1)处理下土壤剖面硝态氮累积量减少了36.65%。与CK相比,节水节肥(W_4F_1)处理下40~60 cm土层硝态氮累积量减少了53.42%;与大水高肥(W_1F_3)处理相比,W_4F_1处理下40~60 cm土层硝态氮累积量减少了62.18%。在本试验条件下,较习惯施肥量减30%、灌水量减50%的处理是可行的,能够有效地提高氮肥利用率和产投比、降低土壤硝态氮的深层累积。  相似文献   

2.
新型液体保水剂对冬小麦生长及产量的影响   总被引:1,自引:1,他引:0  
【目的】阐明新型液体保水剂对冬小麦生长及产量的影响。【方法】采用大田完全随机试验设计方法,设置添加固体保水剂(K1)和新型液体保水剂(K2)处理,以不施用保水剂(CK)为对照,研究了不同用量保水剂(C1:30 kg/hm~2、C2:60 kg/hm~2、C3:90 kg/hm~2)对冬小麦株高、叶面积指数及产量的影响。【结果】(1)保水剂不但提高了各生育期的土壤含水率,还促进了冬小麦的生长,拔节期K2处理冬小麦株高均值分别比CK和K1处理高13.6%和2.6%。(2)冬小麦生育期前195 d,K1C1和K1C2处理叶面积指数显著高于K1C3处理,K2处理叶面积指数随施用量的增加而增加;200 d后,K2C1和K2C2处理叶面积指数显著高于其他处理。(3)K2处理成穗数分别比CK和K1处理高8.7%和14.6%,K2处理产量均值为11 973.2 kg/hm~2,分别比CK和K1处理高22.3%和13.6%,并且当K2处理施用量为60 kg/hm~2时,产量达到最大值12 818.2 kg/hm~2。【结论】K2处理对冬小麦生长和增产的效果明显,且用量为60 kg/hm~2时效果最佳。  相似文献   

3.
以牛粪和玉米秸秆为堆肥原料,采用条垛式堆肥方式进行堆肥,研究了接种微生物菌剂WSC和SS对堆肥发酵过程中的温度、全氮(T-N)、氨态氮(NH4+-N)、硝态氮(NO3--N)及堆肥产品品质的影响。结果表明:添加微生物菌剂WSC和SS的堆肥处理,分别在堆肥6天和12天达到45℃,维持时间均为25天,而对照仅维持17天。堆肥结束时,与CK相比,接种菌剂WSC和SS处理的全氮含量分别提高11.3%与6.6%,硝态氮含量分别提高56.4%与43.6%,氨态氮含量分别降低76.7%与15.1%。接种菌剂WSC和SS处理的堆体温度均比对照上升速度快,高温维持时间长,接菌可以增加堆肥的N,P,K养分含量,改善堆肥产品质量。  相似文献   

4.
为了揭示不同滴灌施肥方式对日光温室土壤硝态氮运移及分布的影响,以番茄为供试作物,选择漫灌为对照(CK),研究在3种施肥处理和4种灌水量条件下硝态氮的运移及在各土层的分布情况。结果表明,土壤硝态氮量随灌水量和施肥量的增加而增加,随土层深度的增加而逐渐减少。土壤硝态氮主要分布在0~40 cm土层,占试验土层总量的 82%~92%。与大水高肥(W1F3)处理相比,节水节肥(W4F1)处理下土壤剖面硝态氮累积量减少了36.65%。与 CK 相比,节水节肥(W4F1)处理下40~60 cm土层硝态氮累积量减少了53.42%;与大水高肥(W1F3)处理相比,W4F1处理下40~60 cm土层硝态氮累积量减少了62.18%。在本试验条件下,较习惯施肥量减30%、灌水量减50%的处理是可行的,能够有效地提高氮肥利用率和产投比、降低土壤硝态氮的深层累积。  相似文献   

5.
【目的】探讨华北地区夏玉米-冬小麦轮作体系下氮肥减施与地下水埋深的交互作用。【方法】借助大型地中渗透仪和Logistic作物生长模型,采用二因素完全随机区组设计:地下水埋深(G1:2.0 m、G2:3.0 m、G3:4.0 m),施氮量(N1:减氮20%、N2:常规施氮),以及不施氮不控水作为对照(WN),研究了华北地区地下水埋深和施氮水平组合对夏玉米生长、干物质量积累和硝态氮量的影响。【结果】所有处理夏玉米叶面积指数(LAI)在灌浆期最大,成熟期相同施氮水平,G1处理LAI显著高于G2、G3处理;N2水平下,G1处理玉米株高快速生长时间较G2、G3处理分别增加了3.99%、12.91%,但最大增长速率相对降低了9.69%、14.65%;N1水平下,G1处理籽粒干物质量显著高于G2和G3处理,N2水平下,G3处理籽粒干物质量显著高于G1和G2处理;N2水平下,G1处理硝态氮增量显著高于G2、G3处理,0~20 cm分别高出75.92%、90.03%,20~40 cm分别高出30.56%、130.95%。同一地下水埋深下,成熟期LAI表现为N2处理显著高于N1处理;0~20 cm与20~40 cm土层N2处理下硝态氮增量是N1处理的1.4~5.3倍和2.4~11.2倍;在G1水平下,N2处理株高快速生长期较N1处理增加了7.52%,而N1处理单株籽粒干物质量显著高于N2处理,高出9.13%;Person相关性分析表明,N2水平下,随着地下水埋深变化,0~40 cm土层硝态氮增量与产量显著负相关,R2为0.827~0.883。【结论】高氮与较浅地下水埋深组合促进了玉米营养生长,不利于玉米生殖生长和产量形成;低氮与浅地下水埋深组合有利于产量形成和减氮增效。  相似文献   

6.
【目的】探究冬小麦测墒补灌条件下土壤氮素迁移特征。【方法】基于田间试验,设置4个灌溉处理,灌水上下限分别为田间持水率的60%~70%(W1)、70%~80%(W2)、80%~90%(W3)和不灌溉处理(CK),施氮量均为240 kg/hm2。利用田间试验数据对RZWQM 2模型进行率定、验证,进而模拟水氮调控对土壤硝态氮累积量和氮素利用的影响。【结果】土壤剖面含水率、土壤硝态氮量和产量的标准均方根误差(NRMSE)分别为9.3%~25.0%、0.3%~29.7%、4.03%~11.19%,平均相对误差(MRE)分别为8.0%~24.2%、1.4%~30.4%、5.29%~11.98%,一致性指标(D)均高于0.65;基于验证后的RZWQM 2模型,在W1、W2、W3测墒补灌条件下,设置5个氮素施用水平(180、200、220、240kg/hm2和260kg/hm2),W2、W3处理的土壤硝态氮累积量较W1处理分别增加了30.9%~59.7%、49.6%~79.6%;W2条件下,将施氮量控制在220~240kg/hm  相似文献   

7.
【目的】研究干旱胁迫对冬小麦生长指标的影响。【方法】选用周麦22为试验材料,在拔节期和抽穗期分别设置轻度干旱(土壤含水率控制在田间持水率的60%~70%)、中度干旱(土壤含水率控制在田间持水率的50%~60%)和重度干旱(土壤含水率控制在田间持水率的40%~50%),对比分析了冬小麦根系形态、根系分布、株高及叶面积的变化过程。【结果】干旱胁迫处理根长相比CK均降低,T1、T2、T3处理总根长随干旱程度的加深而增长;经过连续处理的各根系特征在轻旱、中旱条件下均大于单阶段处理,重旱条件下各根系特征则明显降低;但复水后拔节期处理的根系补偿恢复能力高于抽穗期。随着干旱胁迫程度及时间增加,根系向下伸展生长,使各根系指标向深层转移,但根系总体绝对量明显减少,T9处理根干质量相比CK降低64.79%,并且株高、叶面积所受的抑制增大。其中拔节期对株高影响更大,T1、T2、T3处理株高相比CK降低3.78%、7.59%、16.09%;抽穗期对叶面积影响更大,T4、T5、T6处理叶面积相比CK降低8.11%、23.45%、29.43%;而经连续干旱处理后的株高和叶面积都明显低于各单阶段处理;抽穗期经干旱胁迫处理的株高、叶面积在干旱胁迫1周后就表现出较强补偿效应,而拔节期表现则相对迟缓;在经历连续干旱胁迫后均无明显补偿。【结论】在冬小麦实际生产中应避免连续干旱,花前若需控水,应尽量满足拔节期供水,控水在抽穗期保持轻旱水平。  相似文献   

8.
不同施氮方式对向日葵氮肥利用效率的影响   总被引:3,自引:0,他引:3  
传统撒施肥料方式氮素易于挥发,肥料利用效率不高。【目的】提高河套灌区肥料利用效率。【方法】设置了不施肥(CK1)、仅撒施基肥(CK2)、撒施肥(SF)、穴施肥(XF)和沟施肥(GF)共5个田间试验处理,探索不同施肥方式下土壤硝态氮、铵态氮在不同生育期的变化特征以及不同施肥方式对向日葵产量、水肥利用效率的影响。【结果】不同施氮方式下,土壤中硝态氮和铵态氮量均随土壤深度的增加而降低。撒施处理的硝态氮和铵态氮主要集中在0~20 cm土层,而穴施和沟施处理下的硝态氮和铵态氮主要分布在0~40 cm土层。在施肥后20 d内,穴施和沟施处理下硝态氮和铵态氮量峰值早于撒施处理,其中穴施处理硝态氮和铵态氮量分别在施氮后第10 d和第5 d达到最大值(93.85 mg/kg和47.6 mg/kg);沟施处理硝态氮和铵态氮量均于施氮后第10天达到最大值(103.95 mg/kg和48.4mg/kg),而撒施处理硝态氮和铵态氮量则在第20 d和第10 d达到最大值(78.5 mg/kg和36.9 mg/kg)。穴施和沟施处理植株吸氮量、籽粒吸氮量、氮肥利用率和氮收获指数显著高于撒施处理,其中穴施处理氮收获指数较撒施处理高11.5%,比不施肥和仅施基肥氮收获指数高33.2%和27.2%。穴施处理向日葵产量和增产率明显高于撒施处理,同时,穴施处理和沟施处理的水分利用效率较高,与撒施处理差异显著。【结论】综合氮肥利用率、氮收获指数、氮肥偏生产力和氮肥农学效率等指标,在河套地区采用穴施肥处理有利于提高向日葵产量和氮肥利用效率。  相似文献   

9.
不同灌溉施肥时机对稻田肥料分布和水稻生长的影响   总被引:1,自引:0,他引:1  
【目的】探索水肥耦合灌溉方式下最佳的灌溉施肥时机。【方法】设置4个处理,分别为撒施(CK)、灌水0~2 h内灌液体肥(T1)、灌水2~4 h内灌液体肥(T2)和灌水4~6 h内灌液体肥料(T3),研究了不同施肥时机对稻田肥料分布均匀性、水稻农艺性状、产量及水分利用效率的影响。【结果】在相同施肥量与灌水量条件下,T1处理在肥料分布均匀度、分蘖数、产量、水分利用效率方面均高于其他处理(p<0.05);施肥后第3天CK田间氨态氮和硝态氮量达到最高,而其他水肥耦合处理均为第1天氨态氮和硝态氮量最高且在肥料分布均匀度方面较CK高5.63%~21.65%;孕穗期后各处理株高比CK增加6.37%~6.53%;在分蘖数和干物质量方面,T1处理较其他处理分别高11.25%~23.17%和5.75%~8.48%;在产量和水分利用效率方面,T1处理较其他处理分别高13.73%~17.46%和14.15%~17.47%。【结论】从肥料分布均匀度与增产节水效益方面考虑,灌水0~2 h是最佳的施肥时机。  相似文献   

10.
为了探明秸秆量对垄沟二元覆盖下农田土壤温度动态变化及硝态氮分布的影响,对夏玉米进行了田间试验研究。秸秆量设置为2 500(MG1)、5 000(MG2)、7 500(MG3)和10 000(MG4)kg/hm2,以平作无覆盖为对照(CK),共5个处理。试验结果表明,秸秆覆盖可显著调节土壤温度。各处理生育期内0~20 cm土壤温度较CK降低0.5、1.6、2.5和3.0℃,前期降温作用大于后期,且覆盖量越大,降温效果越明显。覆盖处理能平抑极端温度,最大极端温差较CK降低1.59、3.64、4.95和5.18℃。覆盖对土壤温度的影响主要表现在0~10 cm处,其中5 cm处温差最大,该处生育期内土壤温度较CK降低0.54、2.08、3.04和3.51℃。土壤硝态氮含量浅层较对照分别降低5.55%、12.18%、18.71%和19.89%,深层较对照分别增加4.81%、9.58%、13.22%和13.80%,且土壤剖面中硝态氮含量峰值较对照下移20、30、40和40 cm。  相似文献   

11.
不同产量水平下冬小麦生长发育和耗水特性研究   总被引:1,自引:0,他引:1  
【目的】通过控制施肥量来模拟冬小麦不同产量水平,进而了解不同产量下冬小麦生长状况及耗水特性变化,为田间用水管理、区域农业高效用水发展战略的制定提供理论依据。【方法】试验设置4个产量水平7 500 kg/hm~2(C0),8 250 kg/hm~2(C5),9 000 kg/hm~2(C10),9 750 kg/hm~2(C15),以不施肥(CK)为对照,研究不同产量下冬小麦叶面积指数、干物质积累、耗水特性及水分利用效率差异变化。【结果】随目标产量的增加,冬小麦叶面积指数、花前及花后干物质累积量、生物量逐渐增加,干物质转移量、干物质转移率和转移干物质对籽粒的贡献率逐渐减少,产量结果基本达到预期目标。与CK相比,C15处理冬小麦叶面积指数、花前及花后干物质累积量、生物量分别平均增加52.6%、25.9%、112.6%、51.2%,而干物质转移量平均减少44.7%,说明冬小麦后期干物质的合成对籽粒高产的形成起主要作用。随目标产量的增加,冬小麦耗水量增加,土壤含水量减少,2016—2017年C0、C5、C10、C15处理冬小麦水分利用效率无显著差异,2017—2018年各处理冬小麦水分利用效率均有显著性差异,与CK相比,C15处理冬小麦耗水量和水分利用效率分别平均增加29.7%、28.5%。【结论】冬小麦随产量提升的叶面积指数、干物质累积量和耗水量显著增加,其中后期干物质的合成是产量形成的主要原因,同时高产条件下冬小麦水分利用效率显著提高。  相似文献   

12.
为研究豫北地区喷灌水肥一体化条件下不同种植密度和施氮频次对土壤水分、硝态氮含量及冬小麦产量的影响,开展田间试验.试验设置了2个种植密度(D1:187 kg/hm2、D2:262 kg/hm2)和3个施氮频次(F1:返青后追肥1次、F2:返青后追肥2次、F3:返青后追肥3次).试验结果表明:种植密度和施氮频次均显著影响冬小麦籽粒产量, 且两者间存在明显的互作效应.种植密度增大,冬小麦生育期0~100 cm土层土壤贮水量显著提高.主要生育期的根系生长层土壤含水量显著增加,其中孕穗期在100 cm土层深度的含水量D2较D1分别提高29.42%,3.10%和32.04%,灌浆期在80 cm土层深度的含水量D2较D1分别提高29.69%,27.52%和25.71%.当种植密度为262 kg/hm2,施氮频次为1次时,冬小麦产量较高,深层土层的土壤硝态氮当季残留较少.综合分析表明,该种植密度和施氮频次为当地冬小麦生育期的最优措施.  相似文献   

13.
为探究秸秆还田配施稳定性氮肥对关中地区麦玉轮作体系作物生长及水氮利用的综合影响,并确定合理的高产高效施肥管理措施,设置两种秸秆还田模式(秸秆不还田、秸秆全量还田)和两种施氮措施(常规尿素和减量施用稳定性氮肥),以无秸秆还田且不施肥作为对照,共5个处理,研究分析作物产量、地上部生物量、土壤氨挥发累积量、土壤含水率、土壤硝态氮残留量及水氮利用效率。结果表明:秸秆还田配施氮肥会分别显著提高夏玉米和冬小麦产量28.03%~39.63%和90.10%~112.52%、地上部生物量27.88%~34.00%和78.96%~107.64%;施用稳定性氮肥较施用常规尿素分别降低夏玉米季和冬小麦季全生育期土壤氨挥发累积量50.18%~59.32%和68.21%~73.43%;秸秆还田会显著提高夏玉米季0~10 cm土壤含水率6.29%~21.38%,显著提高冬小麦季0~10 cm土壤含水率6.80%~25.06%;相同施肥措施下,秸秆还田会显著降低夏玉米与冬小麦收获期0~100 cm土壤NO-3-N残留量7.34%~10.78%和6.57%~11.24%,在相...  相似文献   

14.
小麦生育期内的水氮供应情况直接影响小麦的生长,为了研究小麦种植的合理水氮配比,本试验通过对大田和盆栽控制灌水量和施氮量两个因素对冬小麦的株高、叶绿素含量以及地上部的干物质累积量进行研究,得出各个不同水氮配比处理之间植株生长的差异。结果表明,株高随着灌水量的增加而增加,土壤总氮量在超过0.87g/kg时株高会随着施氮量的增加而下降。而对于叶绿素含量而言,各处理之间的差异不显著,对于同一处理的不同生育期,叶绿素呈现先增大后减小的趋势。干物质的累积量在生育期内的增长速度呈现"慢-快-慢"的趋势,且高水、高氮处理的干物质累积量大于低水、低氮处理。基于综合因素以及经济性考虑,大田中选择120kg/hm2的施氮量,在盆栽中选用0.2g/kg的施氮量较佳。  相似文献   

15.
黄河三角洲盐碱农田具有"盐、板、瘦"的特点,以NaCl为主要成分的盐渍危害直接影响着滨海土壤质量。生物炭添加可改善土壤性质,促进作物生长。【目的】明晰炭添加对盐渍土盐分离子和冬小麦幼苗生长的影响。【方法】研究依托田间试验探究了低剂量(0~4 g/kg)的芦苇炭添加对盐渍土盐离子、麦苗体内钾钠比、钾素利用率及幼苗生物量的影响。【结果】施用生物炭可降低土壤溶液中的盐离子、增加冬小麦幼苗体内钾钠比和麦苗钾素利用率,有助于提升幼苗生物量;以4 g/kg炭添加量下的降盐、增量效果最为明显。土壤溶液中的Na+较CK降低了9.43%,幼苗K/Na和钾素利用率分别提升了56.80%和25.48%,麦苗生物量增加了15.72%。【结论】炭添加可通过固持土壤溶液中的Na+、提升麦苗K/Na和钾素利用率来促进其生物量的增加。研究可为生物炭用于盐渍土改良的降盐培肥和增效增产的过程机理提供理论依据,为生物炭用于盐渍化土壤改良的可行性提供初步指导。  相似文献   

16.
【目的】提高微咸水灌溉效率并降低土壤盐渍化风险。【方法】以冬小麦为研究对象,设计避雨条件下不同微咸水-生物炭处理(CK,淡水;B0,5 g/L微咸水;B15,5 g/L微咸水及15 t/hm2生物炭;B30,5 g/L微咸水及30 t/hm2生物炭;B45,5 g/L微咸水及45 t/hm2生物炭)的田间试验,探讨了微咸水灌溉下生物炭添加量对土壤特性和冬小麦花后干物质积累及转运的影响机制。【结果】生物炭添加后土壤表层(0~20 cm)体积质量降低了2.27%~8.33%,总孔隙度增加了4.52%~13.47%,有机质量增加了30.02%~111.12%,土壤表层(0~20 cm)及主根区(0~40 cm)钠吸附比降低了23.88%~33.27%和22.34%~30.80%;15 t/hm2能够促进盐分淋洗,降低了微咸水灌溉下土壤含盐量,然而高剂量时将加剧盐分累积。单独微咸水灌溉下冬小麦生长受抑,最终产量下降了12.04%。生物炭能够缓解盐胁迫下叶片早衰,促进光合作用能力,并增加花前干物质转运量及花后干物质积累量,进而获取了更高的籽粒质量和收获指数。B15、B30、B45处理的最终产量较B0处理分别增加9.18%、7.73%、2.74%。【结论】15 t/hm2添加量的生物炭效果最佳,可促进微咸水资源的农业利用。  相似文献   

17.
为了寻找减少氮磷流失的最优控水方式,采用田间试验研究不同地下水位控制对冬小麦地氮磷流失的影响.研究结果表明,不同控水方式对冬小麦地排水中氮磷浓度影响明显.经地下水位控制,冬小麦各生育期地下排水中的氨态氮(NH+4-N)质量浓度降低,而硝态氮(NO-3-N)质量浓度则有所增加;拔节孕穗期保持水位100 mm处理排水总磷(TP)质量浓度增加,抽穗开花期排水TP质量浓度降低;拔节孕穗期保持水位-200 mm处理TP质量浓度降低,抽穗开花期则有所增加.冬小麦地土壤速效氮质量比在拔节孕穗期有所减少,抽穗开花期保持高水位有利于速效氮质量比降低,拔节孕穗期土壤中的速效磷质量比都有一定幅度的降低,抽穗开花期保持高水位有利于速效磷质量比降低,在水位较低的情况下,控水时间越长,速效磷质量比越大.  相似文献   

18.
为了解土壤含盐量对滴灌春小麦土壤水盐运动以及其光合生理指标的影响,并为滴灌春小麦在盐碱地种植提供理论依据和技术支撑,通过桶栽试验,研究了土壤含盐量分别为0.15%(CK),0.80%,1.10%,1.40%,1.70%,2.00%,2.30%,2.60%条件下,春小麦土壤水盐运动规律以及其光合特性变化状态.结果表明,在春小麦整个生育期内,土壤含水率总体变化呈现递减趋势;随着土层深度的增加,土壤水分和盐分质量分数均表现出增加的趋势,土壤含盐量越高其平均含水率越高;各处理0~40 cm土层盐分质量分数在小麦生育期末与播种时相比均有不同程度的下降,处于脱盐状态;土壤盐分初始质量分数为0.15%,0.80%以及1.10%的春小麦叶片水分利用效率最高,同时也具有较高的净光合速率.  相似文献   

19.
针对宁夏扬黄灌区降水少、春季低温不利于玉米出苗和生长,而作物生育中后期高温胁迫导致玉米生产力低下等问题,在滴灌条件下设置秸秆全量还田(9 000 kg/hm2)配施3个不同纯氮用量:150,300,450 kg/hm2(即处理N1,N2,N3),并以秸秆还田不施氮肥为对照处理(CK),研究不同施氮量对土壤水分、土壤温度、土壤碳氮(土壤有机碳和全氮含量及碳氮比C/N)、玉米产量及水分生产率的影响.结果表明,N3处理对提高0~40 cm层土壤有机碳、全氮含量效果最佳,分别较CK处理显著提高41.5%和41.7%,而N2处理对调控土壤C/N效果最显著,较CK处理显著增加5.2%.秸秆还田配施氮肥均可提高玉米苗期(播后20 d)0~25 cm土层土壤的温度,且对玉米生育期内0~100 cm土层土壤具有很好的保水作用,以N2处理对土壤调温保水效果最佳.处理N1和N2能显著影响玉米的产量构成,较CK处理可显著增产46.2%~63.7%.同时,N2处理可显著提高玉米水分生产率,与CK处理相比,N2处理可显著促进玉米水分生产率提高36.1%.可见,秸秆配施300 kg/hm2氮肥还田在宁夏扬黄灌区对调控土壤水热环境和土壤碳氮比、促进玉米产量和水分生产率增加方面,效果最佳.  相似文献   

20.
为解析春限一水条件下盐碱地改良措施对小麦耗水和产量调控作用,于2015—2018年连续3个冬小麦生长季,设置耕层掺黄河泥沙(SS)、配施生物有机肥(FF)和掺黄河泥沙配施生物有机肥(SF) 3个处理,以不作处理为对照(CK),研究不同处理下农田土壤水分变化和冬小麦干物质积累规律。结果表明:连续3年产量水平为3 317. 77~5 449. 52 kg/hm~2,各处理间以SF处理的籽粒产量最高,该处理与CK相比,籽粒产量提高35%~51%;总耗水量变幅为352. 85~394. 89 mm,不同处理间总耗水量均以CK最低,以SF处理最高(361. 81~394. 89 mm);农田水分利用效率变幅为9. 01~13. 96 kg/(hm~2·mm),以SF处理最高(12. 02~13. 96 kg/(hm~2·mm)),比CK高33%~48%,其次为FF处理和SS处理,分别比CK高9%~32%、9%~18%。SS或FF处理可增加冬小麦拔节前0~200 cm土层贮水量,增大拔节至成熟阶段的耗水量及其占总耗水量的比例,促进冬小麦对土壤贮水和深层土壤水分的利用,最终提高冬小麦的生物量和籽粒产量。冬小麦籽粒产量与干物质积累量、总穗粒数呈显著正相关;水分利用效率与冬小麦耗水量、产量呈二次曲线关系。在本研究条件下,随着籽粒产量提高,水分利用效率快速增加;而随耗水量增加,各处理间水分利用效率增减表现不同。综合考虑产量、收获指数和水分利用效率,确定掺黄河泥沙配施生物有机肥处理(SF)是本研究条件下的最佳处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号