首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
《Soil biology & biochemistry》2001,33(12-13):1599-1611
Aggregate dynamics and their relationship to the microbial community have been suggested as key factors controlling SOM dynamics. Dry–wet (DW) cycles are thought to enhance aggregate turnover and decomposition of soil organic matter (SOM), particularly in tilled soils. The objective of this study was to evaluate the effects of DW cycles on aggregate stability, SOM dynamics, and fungal and bacterial populations in a Weld silt loam soil (Aridic Paleustoll). Samples, taken from 250 μm sieved air-dried soil (i.e. free of macroaggregates > 250 μm), were incubated with 13C-labeled wheat residue. In one set of soil samples, fungal growth was suppressed using a fungicide (Captan) in order to discern the effect of dry–wet cycles on fungal and bacterial populations. Aggregate formation was followed during the first 14 d of incubation. After this period, one set of soil samples was subjected to four DW cycles, whereas another set, as a control, was kept at field capacity (FC). Over 74 d, total and wheat-derived respiration, size distribution of water stable aggregates and fungal and bacterial biomass were measured. We determined native and labeled C dynamics of three particulate organic matter (POM) fractions related to soil structure: the free light fraction (LF), and the coarse (250–2000 μm) and fine (53–250 μm) intra-aggregate POM fraction (iPOM). In the fungicide treated soil samples, fungal growth was significantly reduced and no large macroaggregates (> 2 mm) were formed, whereas without addition of fungicide, fungi represented the largest part of the microbial biomass (66%) and 30% of the soil dry weight was composed of large macroaggregates. During macroaggregate formation, labeled free LF-C significantly decreased whereas labeled coarse iPOM-C increased, indicating that macroggregates are formed around fresh wheat residue (free LF), which is consequently incorporated and becomes coarse iPOM. The first drying and wetting event reduced the amount of large macroaggregates from 30 to 21% of the total soil weight. However, macroaggregates became slake-resistant after two dry-wet cycles. Fine iPOM-C was significantly lower in soil after two dry–wet cycles compared to soil kept at FC. We conclude that more coarse iPOM is decomposed into fine iPOM in macroaggregates not exposed to DW cycles due to a slower macroaggregate turnover. In addition, when macroaggregates, subjected to dry–wet cycles, became slake-resistant (d 44) and consequently macroaggregate turnover decreased, fine iPOM accumulated. In conclusion, differences in fine iPOM accumulation in DW vs. control macroaggregates are attributed to differences in macroaggregate turnover.  相似文献   

2.
We investigated the effect of plant residue decomposability and fungal biomass on the dynamics of macroaggregate (250–2000 μm) formation in a three months' incubation experiment and determined the distribution of residue-derived C and N in the microbial biomass and in aggregate size fractions (250–2000 μm, 53–250 μm and <53 μm) using 13C and 15N data. A silty loam soil (sieved <250 μm) was incubated with and without addition of 15N labelled maize leaves (C/N = 27.4) and roots (C/N = 86.4). Each treatment was carried out with and without fungicide application. The addition of maize residues enhanced soil respiration and microbial biomass C and N and resulted in increased macroaggregate formation with a higher and more rapid maximum macroaggregation in the soil amended with maize leaves than in that with addition of roots. Fungicide application led to a significant decline of microbial biomass C and mineralization of the added residues compared to untreated soils, which demonstrates a successful suppression of part of the active microbial biomass by the fungicide. However, this was not confirmed by a generally lower ergosterol concentration. Consequently, ergosterol was no reliable fungal biomarker in periods of rapid decline of the fungal biomass. A single addition of fungicide was insufficient for continued inhibition of the fungal biomass. Yet, a significant delay (28–42 days) in macroaggregation in fungicide treated compared to untreated samples highlighted the importance of the fungal biomass in macroaggregate formation. Macroaggregates were enriched in maize-derived 13C and 15N compared to microaggregates or the fraction < 53 μm. They turned over rapidly with decreasing substrate availability, which entailed a transfer of maize-derived C and N stored within macroaggregates during the first weeks of incubation to microaggregates with proceeding incubation time. Our results indicate that this transfer happened within macroaggregates, because no considerable amount of free particulate organic matter (POM) was released upon macroaggregate breakdown. We conclude that substrate decomposability and fungal activity are key factors determining extent and dynamics of macroaggregation during decomposition processes. Macroaggregate formation implied rapid incorporation and thereby short-term protection of maize-derived C and N. Moreover, macroaggregates allowed a transfer of maize-derived organic matter into microaggregates within macroaggregates, which prevented the release of significant amounts of free POM upon macroaggregate breakdown. Consequently, macroaggregates constitute to the transfer of recently added C into more stable soil organic matter fractions.  相似文献   

3.
《Soil biology & biochemistry》2001,33(7-8):1095-1101
Biological and chemical components of soil fertility were quantified under three different fallow types and related to soil quality of an Ultisol in southern Cameroon at the end of a 9-month fallow. Soil organic matter (SOM), soil exchangeable Ca2+, Mg2+ and K+ and available P concentrations, effective cation exchange capacity (ECEC) and, soil acidity in the 0–10 and 10–20 cm layers were evaluated under: natural regrowth mainly composed of Chromolaena odorata and the legume cover crops velvet bean (Mucuna pruriens var. utilis) and kudzu (Pueraria phaseoloides). SOM quality was assessed by C mineralisation during a 4-week incubation at 28°C in the laboratory. In addition, particulate organic matter (POM), the most active part of SOM, was fractionated by wet sieving into coarse (4000–2000 μm), medium (2000–250 μm) and fine (250–53 μm) particle size classes and analysed for C and N contents. Under Mucuna, Ca2+, K+ and P concentrations, ECEC and soil pH were higher and C mineralisation was lower than under natural regrowth and Pueraria in 0–10 cm depth. Soil under natural regrowth had a higher C mineralisation in 0–10 cm indicating more labile SOM than in Pueraria and Mucuna fallow. There was no difference in weight of total POM, for any of the fractions between the three fallow types. However, both leguminous fallow species increased POM quality through a higher N content. Compared to natural regrowth, Pueraria increased N content in coarse POM by 36% in the 0–10 cm layer and by 19% (coarse POM) and 35% (medium POM) in the 10–20 cm layer. Mucuna increased N content in the 0–10 cm layer by 12% (coarse POM), and by 19% (fine POM), compared to natural regrowth. According to the differences in nutrient concentrations, soil acidity and the biological stability of SOM, the three fallow types ranked: MucunaPueraria>natural regrowth. However, in terms of POM quality the ranking was: Pueraria>Mucuna>natural regrowth.  相似文献   

4.
Earthworms are important soil animals in grassland ecosystems and are considered to be important to soil quality. The overall impact of earthworms on soil properties and plant diversity, however, depends on earthworm species, functional group and the type of ecosystem. The primary purpose of this study was to document the relationship among earthworms, key soil properties and native and exotic plant diversity in the little studied, Palouse prairie grassland (Idaho, USA). A secondary objective was to determine the effectiveness of three methods commonly used to sample earthworms. A hillslope characterized by Palouse prairie vegetation, well-expressed, hummocky (mounded) topography and known to support both exotic and native earthworm species was selected for study. The hillslope was divided into three zones [annual-dominated (AD), mixed (MX) and perennial-dominated (PD)] based on characteristics of the inter-mound plant communities described in previous research. Total earthworm biomass in the MX zone (53.5 g m−2) was significantly greater than in the PD zone (14.7 g m−2) (P = 0.0384), but did not differ from the AD zone. Earthworm density ranged from 52 to 81.1 individuals m−2 but was not significantly different across zones. Total C and N at 0 to 10 and 30 to 50 cm depths were significantly greater in the AD and PD zones as compared to the same depths in the MX zone. Soil textural class was silt loam within all zones and the soil silt fraction was positively correlated with total exotic earthworm density (R = 0.783, P = 0.0125) and biomass (R = 0.816, P = 0.0072). Native earthworms were only found in the zone with the greatest total and native plant diversity (PD). Total soil C and N were not correlated to earthworm density, but soil total C and N were significantly negatively correlated with exotic plant density, which indicates that invasive plants may be decreasing soil total C (R = −0.800) and N (R = −0.800). Calculated earthworm densities using data from the electroshocker were generally lower than those based on the hand-sorting method. Electroshocking, however, created lower disturbance and was the only method that resulted in the collection of the deep-burrowing, native species Driloleirus americanus.  相似文献   

5.
《Applied soil ecology》2009,42(3):269-276
Earthworms can be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil, but this might affect their survival and they might accumulate the contaminants. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo(a)pyrene (BaP), added with or without Eisenia fetida, sewage sludge or vermicompost. Survival, growth, cocoon formation and concentrations of PAHs in the earthworms were monitored for 70 days. Addition of sewage sludge to sterilized or unsterilized soil maintained the number of earthworms and their survival was 94%. The addition of sludge significantly increased the weight of earthworms 1.3 times compared to those kept in the unamended soil or in soil amended with vermicompost. The weight of earthworms was significantly lower in sterilized than in unsterilized soil. Cocoons were only detected when sewage sludge was added to unsterilized soil. A maximum concentration of 62.3 μg Phen kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 7 days and 22.3 μg Phen kg−1 when kept in the unamended unsterilized soil after 14 days. Concentrations of Phen in the earthworms decreased thereafter and ≤2 μg kg−1 after 28 days. A maximum Anth concentration of 82.5 μg kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost and 45.8 μg Anth kg−1 when kept in the unamended unsterilized soil after 14 days. A maximum concentration of 316 μg BaP kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 56 days and 311 μg BaP kg−1 when kept in the unsterilized soil amended with vermicompost after 28 days. The amount of BaP in the earthworm was generally largest after 28 days, but after 70 days still 60 μg kg−1 was found in E. fetida when kept in the sterilized soil amended with sewage sludge. It was found that E. fetida survived in PAHs contaminated soil and accumulated only small amounts of the contaminants, but sewage sludge was required as food for its survival and cocoon production.  相似文献   

6.
Building soil structure in agroecosystems is important because it governs soil functions such as air and water movement, soil C stabilization, nutrient availability, and root system development. This study examined, under laboratory conditions, effects of organic amendments comprised of differing proportions of labile and semi-labile C on microbial community structure and macroaggregate formation in three variously textured soils where native structure was destroyed. Three amendment treatments were imposed (in order of increasing C lability): vegetable compost, dairy manure, hairy vetch (Vicia villosa Roth). Formation of water stable macroaggregates and changes in microbial community structure were evaluated over 82 days. Regardless of soil type, formation of large macroaggregates (LMA, >2000 μm diameter) was highest in soils amended with vetch, followed by manure, non-amended control, and compost. Vetch and manure had greater microbially available C and caused an increase in fungal biomarkers in all soils. Regression analysis indicated that LMA formation was most strongly related to the relative abundance of the fungal fatty acid methyl ester (FAME) 18:2ω6c (r = 0.55, p < 0.001), fungal ergosterol (r = 0.58, p < 0.001), and microbial biomass (r = 0.57, p < 0.001). Non-metric multidimensional scaling (NMS) ordination of FAME profiles revealed that vetch and manure drove shifts toward fungal-dominated soil microbial communities and greater LMA formation in these soils. This study demonstrated that, due to their greater amounts of microbially available C, vetch or manure inputs can be used to promote fungal proliferation in order to maintain or improve soil structure.  相似文献   

7.
Earthworms are known to play a role in aggregate formation and soil organic matter (SOM) protection. However, it is still unclear at what scale and how quickly earthworms manage to protect SOM. We investigated the effects of Aporrectodea caliginosa on aggregation and aggregate-associated C pools using 13C-labeled sorghum (Sorghum bicolor (L.) Moench) leaf residue. Two incubations were set up. The first incubation consisted of soil samples crushed <250 μm to break up all macroaggregates with three treatments: (i) control soil; (ii) soil+13C-labeled residue and (iii) soil+13C-labeled residue+earthworms. Earthworms were added after 8 d and 12 d (days) later, aggregate size distribution was measured together with total C and 13C in each aggregate fraction. A second incubation was made to assay protected versus unprotected total C and 13C from 21-d laboratory incubations of intact and crushed large (>2000 μm) and small (250-2000 μm) macroaggregates and microaggregates (53-250 μm). Eight different pools of aggregate-associated C were quantified: (1) and (2) unprotected C pools in large and small macroaggregates, (3) unprotected C pools in microaggregates, (4) and (5) protected C pools in large and small macroaggregates, (6) protected C pool in microaggregates, and (7) and (8) protected C pools in microaggregates within large and small macroaggregates. In the presence of earthworms, a higher proportion of large macroaggregates was newly formed and these aggregates contained more C and 13C compared to bulk soil. There were no significant differences between the samples with or without earthworms in the C pool-sizes protected by macroaggregates, microaggregates or microaggregates within small macroaggregates. However, in the presence of earthworms, the C protected by microaggregates within large macroaggregates was a significant pool and 22% of this C pool was newly added C. In conclusion, these results clearly indicate the direct involvement of earthworms in providing protection of soil C in microaggregates within large macroaggregates leading to a possible long-term stabilization of soil C.  相似文献   

8.
Soil organic matter (SOM) status was evaluated using the relationships between two independent soil variables, i.e., C respiration and the weight of particulate organic matter POM (4000–50 μm) under different vegetation covers and ecosystems of central Belgium. A positive relationship was found between the weight of the finest POM fraction, i.e., fine POM fraction (250–50 μm) and C respiration after 1 week (R2 = 0.34, n = 120, p < 0.0001) and 2 weeks (R2 = 0.28, n = 120, p < 0.0001) of incubation. Therefore, we assumed that the C respiration and the weight of fine POM might be used to evaluate the SOM status under different vegetation covers and ecosystems.  相似文献   

9.
Alternative cropping systems have been proposed to enhance sustainability of agriculture, but their mid and long-term effects on soil biodiversity should be studied more carefully. Earthworms, having important agro-ecological functions, are regarded as indicators of soil biological health. Species composition, abundance, and biomasses of earthworms were measured in autumn 2005–2007 (period 1) and 2011–2013 (period 2) in a trial initiated in 1997 near Paris, France. A conventional, an organic and a direct seeded living mulch-based cropping systems were compared. Earthworms were sampled in a wheat crop by combining the application of a chemical expellant and hand-sorting.In period 1, earthworm abundance did not usually differ in the three cropping systems, but sometimes it was higher in the conventional system. Mean total abundance was 122, 121 and 149 individuals m−2 in period 1 and 408, 386 and 216 in period 2 in the organic, living mulch and conventional systems respectively. While earthworm abundance and biomass increased slightly in the conventional system between the two periods, they at least tripled in the other two systems. This was mainly due to the species Aporrectodea caliginosa and Aporrectodea longa in the living mulch cropping system, and to A. caliginosa, Lumbricus castaneus, Lumbricus terrestris and A. longa in the organic system.After at least 14 years, organic and living mulch cropping systems contained between 1.5 and 2.3 times more earthworms than the conventional system. Considering the inter-annual variations in earthworm communities due to climatic conditions and cultural practices, earthworm communities should be assessed over several years before conclusions can be drawn. Moreover, since changes in cultural practices may take a long time to affect earthworm communities, mid and long-term trials are needed to assess the effects of cropping systems on soil biodiversity.  相似文献   

10.
Earthworms are important processors of soil organic matter (SOM) and nutrient turnover in terrestrial ecosystems. In agroecosystems, they are often seen as beneficial organisms to crop growth and are actively promoted by farmers and extension agents, yet their contribution to agroecosystem services is uncertain and depends largely on management. The Quesungual slash-and-mulch agroforestry system (QSMAS) of western Honduras has been proposed as a viable alternative to traditional slash-and-burn (SB) practices and has been shown to increase earthworm populations, yet the effect of earthworms on soil fertility and SOM in QSMAS is poorly understood. This study examined the role of Pontoscolex corethrurus in QSMAS by comparing their influence on aggregate-associated SOM and fertilizer dynamics with their effects under SB and secondary forest in a replicated field trial. Both the fertilized QSMAS and SB treatments had plots receiving additions of inorganic 15N and P, as well as plots with no inorganic N additions. Earthworm populations were manipulated in field microcosms at the beginning of the rainy season within each management treatment via additions of P. corethrurus or complete removal of existing earthworm populations. Microcosms were destructively sampled at harvest of Zea mays and soils were wet-sieved (using 53, 250 and 2000 μm mesh sizes) to isolate different aggregate size fractions, which were analyzed for total C, N and 15N. The effects of management system were smaller than expected, likely due to disturbance associated with the microcosm installation. Contrary to our hypothesis that earthworms would stabilize organic matter in soil aggregates, P. corethrurus decreased total soil C by 3% in the surface layer (0-15 cm), predominantly through a decrease in the C concentration of macroaggregates (>250 μm) and a corresponding depletion of C in coarse particulate organic matter occluded within macroaggregates. Earthworms also decreased bulk density by over 4%, but had no effect on aggregate size distribution. Within the two fertilized treatments, the QSMAS appeared to retain slightly more fertilizer derived N in smaller aggregate fractions (<250 μm) than did SB, while earthworms greatly reduced the recovery of fertilizer N (34% decrease) in both systems. Although management system did not appear to influence the impact of P. corethrurus on SOM or nutrient dynamics, we suggest the lack of differences may be due to artificially low inputs of fresh residue C to microcosms within all management treatments. Our findings highlight the potential for P. corethrurus to have deleterious impacts on soil C and fertilizer N dynamics, and emphasize the need to fully consider the activities of soil fauna when evaluating agroecosystem management options.  相似文献   

11.
The potential terrestrial toxicity of three pesticides, azoxystrobin, chlorothalonil, and ethoprophos was evaluated using reproduction ecotoxicological tests with different non-target species: the collembolan Folsomia candida, the earthworm Eisenia andrei, and the enchytraeid Enchytraeus crypticus. All reproduction tests were performed with natural soil from a Mediterranean agricultural area (with no pesticide residues) in order to improve the relevance of laboratory data to field conditions. Controls were performed with natural and standard artificial soil (OECD 10% OM). The fungicide azoxystrobin showed the highest toxicity to earthworms (EC50 = 42.0 mg a.i. kg−1 dw soil). Collembolans were the most sensitive taxa in terms of sublethal effects of chlorothalonil with an EC50 of 31.1 mg a.i. kg−1 dw soil followed by the earthworms with an EC50 of 40.9 mg a.i. kg−1 dw soil. The insecticide ethoprophos was the most toxic to collembolans affecting their reproduction with an EC50 of 0.027 mg a.i. kg−1 dw soil. Enchytraeids were generally the least sensitive of the three species tested for long-term effects. Earthworms were not always the most sensitive species, emphasizing the need to increase the number of mandatory assays with key non-target organisms in the environmental risk assessment of pesticides.  相似文献   

12.
Application of earthworm in soil re-cultivation and re-creation in post-industrial ecosystems make a big challenge for temporal applied zoology. The sediments of the Krakow Soda Works “Solvay” have undergone land reclamation in different ways: older sediments traps were left without any re-cultivation practices; meanwhile the newest ones were reclaimed using standard method (new soil cover planted with combination of grass and leguminous plants). The effect of different treatments on community and population structure of earthworm was estimated during consecutive years 1999–2000. Six localities differing in time of establishment, reclamation processes, vegetation type and soil properties were chosen. Nine species were recorded, among which Aporrectodea caliginosa occurred in all localities, being also the most abundant. Two other species, Lumbricus rubellus and Dendrobaena octaedra, which are epigeic species, become most important in forest assemblages and were characteristic for communities of older succession processes. Abundance of adult forms as well as total biomass were significantly affected by soil depth (r = 0.75, P < 0.05, r = 0.917, P < 0.001, respectively). Species richness however was connected with higher amount of macroelements and average plant height. Shannon diversity index and its evenness negatively correlated only with forestation (r = –0.67, P < 0.05, r = –0.68, P < 0.05, respectively). Niche overlap (α Pianka) for all analysed species extracted two groups differing in environmental requirements. First contained epigeic earthworms, closely related to plant succession (PCA results), the other one grouped endogeic and anecique species correlated significantly with soil depth and plant density. Community structure of earthworms do not reflects succession changes in post-industrial habitats, but is strongly affected by microhabitat factors in local scale (mainly soil depth and plant density).  相似文献   

13.
This study aimed at assessing the potential of near-infrared reflectance spectroscopy (NIRS) for determining the distribution of soil organic matter (SOM) in particle size fractions, which has rarely been attempted. This was done on sandy soils from Burkina Faso (three sites) and Congo-Brazzaville (one site). Over the total sample set, NIRS accurately predicted carbon (C) and nitrogen (N) concentrations (g kg?1 fraction) in the fraction <20 μm. When considering Burkina Faso only, predictions were improved in general; those of C and N amounts (g kg?1 soil) became accurate for the fraction <20 μm but not for the coarser fractions, probably due to heterogeneous SOM repartition. However, most SOM being <20 μm in general, NIRS could be considered promising for determining SOM size distribution.  相似文献   

14.
《Soil biology & biochemistry》2001,33(12-13):1869-1872
Population densities of soil macrofauna were assessed in a field experiment with annually compacted treatments (applied to whole plots) and management treatments to repair initially compacted soil. Earthworms accounted for about half the macrofauna recovered during the experiment. Compaction of wet surface soil (water content>plastic limit) by agricultural machinery generally reduced numbers of macrofauna and earthworms. Annual compaction with a 10 Mg axle load on wet soil reduced mean macrofauna numbers from 70 to 15 m−2 and mean earthworm numbers from 41 to 2 m−2. Annual compaction with 6 Mg on soil drier than the plastic limit to a depth of 0.08 m had no adverse effect on the soil macrofauna. A 3-year pasture ley had more macrofauna (211 m−2) than a control treatment under cropping (29 m−2) but numbers declined when cropping was resumed.  相似文献   

15.
Earthworms play an important role in many soil functions and are affected by soil tillage in agricultural soils. However, effects of tillage on earthworms are often studied without considering species and their interactions with soil properties. Furthermore, many field studies are based on one-time samplings that do not allow for characterisation of temporal variation. The current study monitored the short (up to 53 days) and medium term (up to 4 years) effects of soil tillage on earthworms in conventional and organic farming. Earthworm abundances decreased one and three weeks after mouldboard ploughing in both conventional and organic farming, suggesting direct and indirect mechanisms. However, the medium-term study revealed that earthworm populations in mouldboard ploughing systems recovered by spring. The endogeic species Aporrectodea caliginosa strongly dominated the earthworm community (76%), whereas anecic species remained <1% of all earthworms in all tillage and farming systems over the entire study. In conventional farming, mean total earthworm abundance was not significantly different in reduced tillage (153 m−2) than mouldboard ploughing (MP; 130 m−2). However, reduced tillage in conventional farming significantly increased the epigeic species Lumbricus rubellus from 0.1 m−2 in mouldboard ploughing to 9 m−2 averaged over 4 years. Contrastingly, in organic farming mean total earthworm abundance was 45% lower in reduced tillage (297 m−2) than MP (430 m−2), across all sampling dates over the medium-term study (significant at 3 of 6 sampling dates). Reduced tillage in organic farming decreased A. caliginosa from 304 m−2 in mouldboard ploughing to 169 m−2 averaged over 4 years (significant at all sampling dates). Multivariate analysis revealed clear separation between farming and tillage systems. Earthworm species abundances, soil moisture, and soil organic matter were positively correlated, whereas earthworm abundances and penetration resistance where negatively correlated. Variability demonstrated between sampling dates highlights the importance of multiple samplings in time to ascertain management effects on earthworms. Findings indicate that a reduction in tillage intensity in conventional farming affects earthworms differently than in organic farming. Differing earthworm species or ecological group response to interactions between soil tillage, crop, and organic matter management in conventional and organic farming has implications for management to maximise soil ecosystem functions.  相似文献   

16.
Earthworms are known to be important regulators of soil structure and soil organic matter (SOM) dynamics, however, quantifying their influence on carbon (C) and nitrogen (N) stabilization in agroecosystems remains a pertinent task. We manipulated population densities of the earthworm Aporrectodea rosea in three maize-tomato cropping systems [conventional (i.e., mineral fertilizer), organic (i.e., composted manure and legume cover crop), and an intermediate low-input system (i.e., alternating years of legume cover crop and mineral fertilizer)] to examine their influence on C and N incorporation into soil aggregates. Two treatments, no-earthworm versus the addition of five A. rosea adults, were established in paired microcosms using electro-shocking. A 13C and 15N labeled cover crop was incorporated into the soil of the organic and low-input systems, while 15N mineral fertilizer was applied in the conventional system. Soil samples were collected during the growing season and wet-sieved to obtain three aggregate size classes: macroaggregates (>250 μm), microaggregates (53-250 μm) and silt and clay fraction (<53 μm). Macroaggregates were further separated into coarse particulate organic matter (cPOM), microaggregates and the silt and clay fraction. Total C, 13C, total N and 15N were measured for all fractions and the bulk soil. Significant earthworm influences were restricted to the low-input and conventional systems on the final sampling date. In the low-input system, earthworms increased the incorporation of new C into microaggregates within macroaggregates by 35% (2.8 g m−2 increase; P=0.03), compared to the no-earthworm treatment. Within this same cropping system, earthworms increased new N in the cPOM and the silt and clay fractions within macroaggregates, by 49% (0.21 g m−2; P<0.01) and 38% (0.19 g m−2; P=0.02), respectively. In the conventional system, earthworms appeared to decrease the incorporation of new N into free microaggregates and macroaggregates by 49% (1.38 g m−2; P=0.04) and 41% (0.51 g m−2; P=0.057), respectively. These results indicate that earthworms can play an important role in C and N dynamics and that agroecosystem management greatly influences the magnitude and direction of their effect.  相似文献   

17.
Amynthas agrestis is an exotic, invasive earthworm in North America that has been associated with horticulture settings as well as damage to forest soil. An experiment was conducted to find out whether A. agrestis, an earthworm commonly found in mulches in Vermont, stimulates ligninolytic enzymes in the presence of commercial wood mulches. Mesocosms filled with a sandy loam soil were topped with either spruce, cedar or pine mulch. Half of the mesocosms received juvenile A. agrestis, the other half did not. After 7 weeks soils were analyzed for phenoloxidase and peroxidase activity. Most A. agrestis survived and developed into adults during the incubation period. Significantly greater phenoloxidase activity was detected in soils with A. agrestis than without earthworms. Mean (standard deviation) phenoloxidase activities in the presence of A. agrestis were 0.15 (±0.10), 1.14 (±0.46), 2.71 (±0.98) μmol g−1 h−1 for pine, spruce and cedar respectively, and 0.012 (±0.023), 0.25 (±0.25), 0.78 (±0.45) μmol g−1 h−1 in the absence of A. agrestis. There was significantly greater peroxidase activity for the pine and spruce treatment when earthworms were present. Mean peroxidase activities were 0.47 (±0.21), 0.94 (±0.29), 1.20 (±0.77) μmol h−1 g−1 soil for pine, spruce and cedar, respectively for soils with A. agrestis and 0.15 (±0.10), 0.37 (±0.10), 0.63 (±0.30) μmol h−1 g−1 soil in the absence of earthworms. The increased ligninolytic activity in combination with successful maturation of juveniles into adult A. agrestis suggests that mulch can be habitat for these invasive earthworms. This finding is supported by a survey of master gardeners in Vermont and New Hampshire 20% of whom reported to have seen these earthworms mainly in their gardens and mulched beds.  相似文献   

18.
Earlier research with endogeic and epigeic earthworm species in loamy arable soil has shown that both earthworm groups can increase nitrous oxide (N2O) emissions, provided that crop residue placement matches the feeding strategy of the earthworm ecological group(s). However, it is not yet clear whether these effects also occur in sandy soils which typically contain less soil organic matter and have low soil aggregation levels. Here, we aimed to quantify N2O emissions as affected by endogeic and/or epigeic earthworm species, and to relate changes in N2O emissions to earthworm-induced changes in soil properties in a sandy soil. A 90 day mesocosm study was conducted with sandy soil and 15N-labeled radish (Raphanus sativus cv. Adagio L.) residue applied on top. Treatments included: (i) no earthworm addition, (ii) addition of the endogeic species Aporrectodea caliginosa (Savigny), (iii) addition of the epigeic species Lumbricus rubellus (Hoffmeister), and (iv) both species combined. An additional treatment was included without earthworms and with residue manually incorporated into the soil. L. rubellus significantly increased cumulative N2O emissions from 228 to 859 μg N2O–N kg?1 (F1,12 = 83.12, P < 0.001), whereas A. caliginosa did not affect N2O emissions. In contrast to earlier studies in loamy soil, no positive interaction between both species with regard to N2O emissions was found. This was probably related to high competition for organic resources in the relatively poor soil and a low potential for stable soil aggregate formation (and associated anaerobic microsites) by endogeic worms in sandy soil. 15N isotope analysis revealed that the activity of L. rubellus significantly increased (F1,12 = 6.20, P = 0.028) the recovery of 15N in the 250–8000 μm size fraction, indicating incorporation of crop residues into the mineral soil. When residues were manually incorporated, N2O emissions were significantly (P < 0.008) lower (509 μg N2O–N kg?1) than when incorporated by L. rubellus. The high N2O emissions in the presence of L. rubellus, when compared to manual mixing, suggest a stimulation of microbial activity and/or changes in the microbial community composition. Insights on the earthworm effects on N2O emission from such soils are discussed.  相似文献   

19.
Earthworms are important regulators of soil structure and soil organic matter (SOM) dynamics; however, quantifying their influence on SOM cycling in tropical ecosystems remains little studied. Simulated rainfall was used to disrupt casts produced by Amynthas khami and their surrounding soil (control) into a range of small sized aggregates (50-250, 250-500, 500-2000 and 2000-5000 μm). To gain insight into how earthworms influence SOM biogeochemical composition in the aggregates, we carried out elemental and stable isotope analysis, and analytical pyrolysis (Py GC/MS). We also characterized their lignin component after oxidation with cupric oxide (CuO).The C content of smaller size fractions (<500 μm) in the control soil was higher than in the larger fractions. Our study therefore suggests that the aggregate hierarchy concept, which is used to understand soil aggregates and SOM dynamics in temperate soils, may not be applicable to the tropical Acrisol studied here. Earthworms modified SOM organization in soil aggregates. Although the isotope analyses were useful for highlighting SOM enrichment in the earthworm casts, aggregate fractions could not be classified according to particle size. Molecular analyses were necessary to indicate that SOM in all size fractions of casts consisted of relatively undecomposed material. Protection of the most labile SOM structures occurred in the smallest aggregate size fraction (50-250 μm). Py GC/MS showed that earthworm casts and control aggregates <2000 μm could be clearly distinguished according to the molecular properties of their SOM. Aggregates larger than 2000 μm, however, were most probably composed of all fractions and were not different. As a consequence, our results indicate that studies to determine the impact of earthworms on SOM turnover in soil are spatially dependant on the scale of observation.  相似文献   

20.
In the state of Tabasco, South-eastern, Mexico, land-use changes such as the conversion of natural into agricultural systems, modify soil quality and the abundance of soil macrofauna, including earthworms. The aim of this study was to characterize by near-infrared spectroscopy (NIRS) the earthworms’ fingerprint in soil, in six sites including natural and agricultural ecosystems with low and high earthworm biomass and low and high earthworm diversity, in order to identify specific wavelengths that discriminate the presence/abundance of earthworm species and functional groups. The spectral region of 1860–1870 nm was significantly correlated with total earthworm density, particularly at one of the sites (Cedar polyculture; r = 0.8, p < 0.05). Earthworm biomass had a specific NIRS wavelength according to the earthworm species and feeding category: 1820 and1860–1870 nm wavelengths were significantly correlated with Polypheretima elongata (r2 = 0.7, p < 0.05; mesohumic species) biomass and 2090 nm for biomass of all Lavellodrilus species (polyhumics). Two species had a much wider spectral range: L. bonampakensis and Dichogaster saliens (an epigeic worm; 1690–2300 nm, r2 = 0.7, p < 0.05). Biomasses of Periscolex brachysistis and Diplotrema murchiei were not significantly correlated with any near infrared wavelength spectra analyzed. Combining a maximum of 4 species per wavelength, mesohumic earthworms had a wider wavelength spectrum than polyhumics. Therefore, earthworm species diversity, biomass and abundance are associated with soil quality (as measured by NIR spectra) and this relationship varies with species and ecological category. Sites with lower and higher earthworm diversity have lower and higher soil organic matter quality, respectively, as observed by the wider or narrower spectral range with which earthworm biomasses are correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号