首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
华北地区采用无机氮测试和植株速测进行夏玉米氮肥推荐   总被引:2,自引:0,他引:2  
A field experiment with a split-plot design was carried out at Dongbeiwang Farm in Beijing Municipality to establish reliable N fertilizer recommendation indices for summer maize (Zea mays L.) in northern China using the soil Nmin(mineral N) test as well as the plant nitrate and SPAD (portable chlorophyll meter readings) tests. The results showed that Nrnin sollwert (NS) 60 kg N ha^-1 at the third leaf stage and N rate of 40 to 120 kg N ha^-1 at the tenth leaf stage could meet the N requirement of summer maize with a target yield of 5.5-6 t ha^-1. Sap nitrate concentrations and SPAD chlorophyll meter readings in the latest expanded maize leaves at the tenth leaf stage were positively correlated with NS levels, indicating that plant nitrate and SPAD tests reflected the N nutritional status of maize well. Considering that winter wheat subsequently utilized N after the summer maize harvest, the 0-90 cm soil Nmin (74 kg N ha^-1) and apparent N loss (12 kg N ha^-1) in the NS60+40 treatment were controlled at environmentally acceptable levels. Therefore NS60+40, giving a total N supply of 100 kg N ha^-1, was considered the optimal N fertilizer input for summer maize under these experimental conditions.  相似文献   

2.
太湖地区稻麦轮作条件下施用包膜尿素的氮素循环和损失   总被引:8,自引:0,他引:8  
A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.  相似文献   

3.
氮施用水平和方式对高粱作物产量和质量的影响   总被引:1,自引:0,他引:1  
A. RASHID  R. U. KHAN  H. ULLAH 《土壤圈》2008,18(2):236-241
A field study was conducted for two years at the Arid Zone Research Institute, Dera Ismail Khan, Pakistan, to determine the optimum level of nitrogen and efficient application method in the production of sorghum (Sorghum bicolor L.). Using four levels of nitrogen, i.e., 0, 60, 90, and 120 kg ha^-1, and two different application methods (soil application and foliar spray), the experiment was laid out in a split-plot design, where the main plots were used to determine the effective method of application and the subplots were used to detect the influence of N levels on the grain yield. The average data obtained after two years of study indicated an increase in the grain yields with an increase in N levels irrespective of the method used of N application. The grain yield increased from 2.92 to 5.61 t ha^-1 in the plots that were treated with 90 kg N ha^-1 compared with the control plots. Quadratic regression analysis showed that the increase in the yield was higher at the lower levels of N compared with the succeeding higher levels. The soil application method, producing an average grain yield of 4.79 t ha^-1, was found to be superior to the foliar spray method with an average grain yield of 4.56 t ha^-1. The protein content of the grain showed a linear increase with N application, attaining the maximum at 120 kg N ha^-1 in both the methods of N application. In addition, compared with the method of soil application, higher crude protein contents were observed using the method of foliar spray at all N levels.  相似文献   

4.
氮肥用量对太湖水稻田间氨挥发和氮素利用率的影响   总被引:28,自引:0,他引:28  
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.  相似文献   

5.
中国西北旱作农田土壤剖面硝态氮累积   总被引:15,自引:0,他引:15  
A long-term fertilizer experiment on dry land of the Loess Plateau, northwest China, has been conducted since 1984 to study the distribution and accumulation of NO3-N down to a depth of 400 cm in the profile of a coarse-textured dark loessial soil after continuous winter wheat cropping. Thirteen fertilizer treatments consisted of four levels of N and P applied alone or in combination. Annual N and P (P205) rates were 0, 45, 90, 135 and 180 kg ha^-1. After 15 successive cropping cycles, the soll samples were taken from each treatment for analysis of NO3-N concentration. The results showed that NO3-N distribution in the soil profile was quite different among the treatments. The application of fertilizer N alone resulted in higher NO3-N concentration in the soil profile than the combined application of N and P, showing that application of P could greatly reduce the NO3-N accumulation. With an annual application of 180 kg N ha^-1 alone, a peakin NO3-N accumulation occurred at 140 cm soil depth, and the maximum NO3-N concentration in the soils was 67.92 mg kg^-1. The amount of NO3-N accumulated in the soil profile decreased as the cumulative N uptake by the winter wheat increased. Application of a large amount of N resulted in lower N recoveries in winter wheat and greater NO3-N accumulation in soil profile. NO3-N did not enter underground water in the study region; therefore, there is no danger of underground water pollution. Amount of NO3-N accumulation can be predicted by an equation according to annual N and P rates based on the results of this experiment.  相似文献   

6.
Field experiments were conducted with five rates (0, 75, 150, 225, and 450 kg P205 ha^-1) of seedbed P fertilizer application to investigate the yield of tomato in response to fertilizer P rate on calcareous soils with widely different levels of Olsen P (13-142 mg kg^-1) at 15 sites in some suburban counties of Beijing in 1999. Under the condition of no P fertilizer application, tomato yield generally increased with an increase in soil test P levels, and the agronomic level for soil testing P measured with Olsen method was 50 or 82 mg kg^-1 soil to achieve 85% or 95% of maximum tomato yield, respectively. With regard to marketable yield, in the fields where Olsen-P levels were 〈 50 mg kg^-1, noticeable responses to applied P were observed. On the basis of a linear plateau regression, the optimum seedbed P application rate in the P-insufflcient fields was 125 kg P205 ha^-1 or about 1.5-2 times the P removal from harvested tomato plants. In contrast, in fields with moderate (50 〈 Olsen P 〈 90 mg kg^-1) or high (Olsen P 〉 90 mg kg^-1) available P, there was no marked effect on tomato fruit yield. Field survey data indicated that in most fields with conventional P management, a P surplus typically occurred. Thus, once the soil test P level reached the optimum for crop yield, it was recommended that P fertilizer application be restricted or eliminated to minimize negative environmental effects.  相似文献   

7.
无机包膜肥料在提高小麦氮素利用率和产量效应的研究   总被引:13,自引:2,他引:13  
A field experiment with winter wheat (Triticum aestivurn L.) was conducted on a silt loam calcaric endorusti-ustic Cambosols derived from the Yellow River alluvial deposits in Henan, China, from 2001 to 2002 to evaluate N recovery and agronomic performance of different mineral coated fertilizers (MiCFs) compared to normal urea used in wheat cropping systems under field conditions. Five treatments, including CK (check, no N fertilizer), urea and three different MiCFs at an equivalent N application rate were established in a randomized complete block design. N release from MiCFs in soil was more synchronous with the N requirement of wheat throughout the growth stages than that from urea, with grain yield of the MiCF treatments significantly higher (P 〈 0.05) than that of the treatment urea. Correspondingly, the N recovery rate was greater for all MiCFs compared to urea, increasing from 32.8% up to 50.1%. Due to its high recovery and low cost, use of the mineral coated N fertilizers was recommended instead of the polymer coated N fertilizers.  相似文献   

8.
太湖地区水稻最适宜施氮量研究   总被引:4,自引:0,他引:4  
To determine the optimal amount of nitrogen(N) fertilizer for achieving a sustainable rice production at the Taihu Lake region of China,two-year on-farm field experiments were performed at four sites using various N application rates.The results showed that 22%-30% of the applied N was recovered in crop and 7%-31% in soils at the rates of 100-350 kg N ha 1.Nitrogen losses increased with N application rates,from 44% of the applied fertilizer N at the rate of 100 kg N ha 1 to 69% of the N applied at 350 kg N ha 1.Ammonia volatilization and apparent denitrification were the main pathways of N losses.The N application rate of 300 kg N ha 1,which is commonly used by local farmers in the study region,was found to lead to a significant reduction in economic and environmental efficiency.Considering the cost for mitigating environmental pollution and the maximum net economic income,an application rate of 100-150 kg N ha 1 would be recommended.This recommended N application rate could greatly reduce N loss from 199 kg N ha 1 occurring at the N application rate of 300 kg N ha 1 to 80-110 kg N ha 1,with the rice grain yield still reaching 7 300-8 300 kg DW ha 1 in the meantime.  相似文献   

9.
The management of fertilizer application is crucial for agricultural production and environmental safety.The objective of this study was to assess the effciency of different fertilization strategies,applying fertilizers with and without nitrification inhibitors(NIs) in split application,in Greece.The assessment criteria used were based on crop yield,soil nitrogen(N)concentrations and economic effciency.For this purpose two crops(winter wheat and cotton)were seffected in order to explore the optimum fertilization strategy for each crop.Three treatments combining fertilizers with NIs were tested compared with conventional fertilization(CF).Slight differences in the quantity and the combination of fertilizers with NIs applied resulted in variable effects on crop yield,soil N and economic return.Split N application of 102 kg ha-1,with half of the total amount applied at seeding,resulted in higher grain yield of winter wheat,lower NO3--N in soil and higher economic return.This result reveals the importance of N application at seeding in wheat crop.Fertilization strategy with 109.5 kg N ha-1 and split P application resulted in higher cotton yield and higher economic profit.Split P application seemed to increase yield,even though it is not a common practise in the area.  相似文献   

10.
基施磷肥对石灰性土壤上番茄产量的影响   总被引:4,自引:0,他引:4  
A lysimeter experiment with undisturbed soil profiles was carried out to study nitrogen cycling and losses in a paddy soll with applications of coated urea and urea under a rice-wheat rotation system in the Taihu Lake region from 2001 to 2003. Treatments for rice and wheat included urea at conventional, 300 (rice) and 250 (wheat) kg N ha^-1, and reduced levels, 150 (rice) and 125 (wheat) kg N ha^-1, coated urea at two levels, 100 (rice) and 75 (wheat) kg N ha^-1, and 150 (rice) and 125 (wheat) kg N ha^-1, and a control with no nitrogen arranged in a completely randomized design. The results under two rice-wheat rotations showed that N losses through both NH3 volatilization and runoff in the coated urea treatments were much lower than those in the urea treatments. In the urea treatments N runoff losses were significantly (P 〈 0.001) positively correlated (r = 0.851) with applied N. N concentration in surface water increased rapidly to maximum two days after urea application and then decreased quickly. However, if there was no heavy rain within five days of fertilizer application, the likelihood of N loss by runoff was not high. As the treatments showed little difference in N loss via percolation, nitrate N in the groundwater of the paddy fields was not directly related to N leaching. The total yield of the two rice-wheat rotations in the treatment of coated urea at 50% conventional level was higher than that in the treatment of urea at the conventional level. Thus, coated urea was more favorable to rice production and environmental protection than urea.  相似文献   

11.
Long-term influence of N fertilizer, tillage and straw on crop production and soil properties are not well known in central Alberta. Field experiments were established in autumn 1979, on a Black Chernozemic soil and on a Gray Luvisolic soil in north-central Alberta to determine the long-term effect of tillage, straw and N fertilizer on yield and N uptake of barley (Hordeum vulgare L.). Fertilizer N was applied annually at 56 kg ha−1. The 11 year averages of barley yields and N uptake under zero tillage were lower than under conventional tillage. Retention rather than removal of straw tended to reduce barley yield for the initial 6 years and 2 year at Site 1 and Site 2, respectively. A simple mathematical model of average annual plant N uptake and grain yield could account for most of the variation in the data observed at both sites (R2 = 0.907; P < 0.01). Final values of soil N, calculated using a mass balance approach, agree closely with values measured at the end of the eleventh year. Conventional tillage and zero tillage, with addition of fertilizer N and retention of straw, were the only treatments with apparent but small net addition of N to soil at Site 1 (40 kg ha−1 and 117 kg ha−1, respectively). At Site 2, only the zero tillage treatment with addition of fertilizer and retention of straw gained soil N (29 kg ha−1). In conclusion, soil ecosystems functioning in subhumid environments with slight to moderate heat limitations such as those in central Alberta can adapt, within a few years, to zero tillage practices with full retention of straw.  相似文献   

12.
Six different vegetable crop residues were incorporated in the field and N mineralization from the residues and from an unamended plot was followed over 4 months by periodically monitoring mineral N contents of the soil. The crop residues were also fractionated according to a modified Stevenson chemical fractionation. Nitrogen mineralization parameters of the first order kinetic model N(t)=NA(1−ekt) were derived from the chemical fractionation data. The first order model was used in combination with a model describing the temperature dependence of N mineralization and a simple leaching model to predict N mineralization rates and nitrate redistribution after crop residue incorporation under field conditions. Comparison of predicted and measured mineral N contents in the upper soil layer (0–30 cm) before the start of leaching showed that the model was able to predict N mineralization from both soil organic matter and crop residues under field conditions. From the onset of leaching, mineral N contents were slightly overestimated in the upper layer and underestimated in the lower soil layers. Although the Burns leaching model underestimated the leaching rate, the general pattern of nitrate movement was simulated satisfactorily. Statistical analysis using the variance ratio test yielded small but significant F values, indicating that the model can still be improved. The modelling efficiency was rather high and the coefficient of residual mass very close to zero. Linear regression between measured and simulated nitrate contents over the whole profile (0–120 cm) for all samplings yielded Y=9.6+0.876X (r=0.94***) with all deviations smaller than 25 kg N ha−1. Total N mineralization ranged from 48 kg N ha−1 for the control plot to 136 kg N ha−1 for the plots with cauliflower residues and cumulative leaching losses from 26–66 kg N ha−1, with most of the mineral N left in the 60–120 cm layer. These results show that N losses by leaching in winter can be high when vegetable crop residues are incorporated, even when there is little mineral N in the soil at the time of incorporation.  相似文献   

13.
In irrigated grain-growing soils on Canada's prairies, straw management can affect nitrogen (N) fertility and long-term soil organic matter reserves. We conducted a 2-year field experiment in southern Alberta, on a Dark Brown Chernozemic Lethbridge loam (Typic Boroll), to determine the effects of straw removal, tillage, and fertilizer timing on crop uptake of soil and fertilizer N. During the study (1991 and 1992), the crop was oat (Avena sativa L.) and wheat (Triticum aestivum L.), respectively, in an experiment that had been in a wheat-wheat-oat-wheat rotation since 1986. Five straw-tillage treatments were: straw-fall plow, straw-pring plow, no straw-fall plow, no straw-spring plow and no straw-direct seeding. Fertilizer N was applied in fall or spring. Ammonium nitrate (5 at.% 15N) was added at 100 kg N ha−1 in fall 1990 or spring 1991. For oat (1991), plant N derived from soil was higher under fall plow than under spring plow, higher with tillage than direct seeding, and unaffected by straw removal. The plant N derived from fertilizer was not affected by straw removal in fall plow treatments, but under spring plow, it was higher with straw removal. The plant N derived from fertilizer showed a significant straw-tillage × fertilizer timing interaction; with fall incorporated straw, plant N derived from fertilizer was 44.0 kg N ha−1 for spring-applied, and 30.6 kg N ha−1 for fall-applied N, but in other straw-tillage treatments there was no effect of fertilizer timing. Cumulative fertilizer N recovery (plant + soil) over the 2 years averaged 64.2%, and was unaffected by straw-tillage treatment. Fertilizer N recovery, however, was less with fall-applied N (61.3%) than spring applied N (66.8%). At mid-season, fall plow treatments had higher soil inorganic N and inorganic N derived from fertilizer than spring plow treatments, apparently because of less immobilization. The fall plow treatments also retained higher inorganic N after harvest. Straw removal and fertilizer timing did not influence soil inorganic N and soil inorganic N derived from fertilizer. N removal in straw (16 kg N ha−1 yr−1) could deplete soil N in the long-term. Long-term effects of tillage timing on soil N will depend on the relative amount of N lost by leaching with fall plowing and that lost by denitrification under spring plowing. With direct seeding, crop yield and uptake of soil N was less, and N losses by denitrification could be greater. Application of N in spring, rather than fall, should enhance crop N uptake, reducing N losses and enhancing long-term soil organic N.  相似文献   

14.
Field studies were conducted for three seasons (1978–1979, 1979–1980 and 1981–1982) on a Palouse silt loam near Pullman, Washington, to compare the effects of broadcast and deep banding of nitrogen (N) fertilizer beneath winter wheat (Triticum aestivum L.) seed on N uptake and dry matter production of downy brome (Bromus tectorum L.) and jointed goatgrass (Aegilops cylindrica Host.), and on N uptake, dry matter production and grain yields of winter wheat. Three tillage systems were used: conventional tillage; shallow roto-tilling, or no-tillage prior to planting. Rates of N were 0, 65, 130 and 190 kg N ha−1 as ammonium nitrate. Additional plots were maintained free of weeds at the 130 kg N ha−1 rate. In 1983–1984, deep banding of the fertilizer between rows in a paired-row configuration was compared to surface-broadcast N fertilizer using N rates of 0, 45, 90 and 135 kg N ha−1. There were no significant differences between broadcast and deep-band application of N on grass weed N uptake or dry matter production with mold-board plowed or no-tillage, but there was greater weed growth with surface-broadcast N with shallow roto-tilling. Wheat N uptake, growth and grain yields were consistently higher with band-applied N compared to broadcast N. The yield response to banding N was the same with or without the presence of grass weeds.  相似文献   

15.
Coarse-textured soils are puddled to reduce high percolation losses of irrigation water under rice (Oryza sativa L.). This practice, however, reduces yield of succeeding wheat (Triticum aestivum L.) owing to deterioration in soil physical conditions. The 6 year field study reported in this paper evaluated the effects of puddling level and integrated N management on the development of subsurface compaction and growth and yield of rice and the following spring wheat grown in 1 year sequence on a sandy loam soil. Treatments were combinations of three puddling levels: low (one discing and one planking), medium (two discings and one planking), and high (four discings and one planking), and three nitrogen sources: (1) 120 kg N ha−1 from urea, (2) 60 kg N ha−1 from urea plus sesbania (Sesbania aculeata Pers.) green manure, and (3) 60 kg N ha−1 from urea plus 20 Mg ha−1 farmyard manure. Percolation rate decreased from 14 mm day−1 with low puddling to 10 mm day−1 with high puddling, with a corresponding reduction in irrigation water requirement of rice of about 20%. Bulk density profiles in the 0–30 cm soil layer showed the formation of a compact layer at 15–20 cm depth, and bulk density increased with puddling level and cropping season. The impact of organic amendments in reducing bulk density was immediate, but the rate of increase in bulk density with time was the same in all the nitrogen sources. Organic amendments did not affect percolation rate and irrigation requirement of rice. Rice yields were not significantly affected by puddling and N source treatments throughout the study period. Residual effects of treatments on wheat yield were observed from the second season onwards. Interactive effects of puddling and N source on yields of rice and succeeding wheat were not significant. Yield differences in wheat between high and low puddling were 8% and 11% during the second and the fifth cropping season, respectively. This study indicates that medium puddling was optimum, as it reduced percolation without decreasing yield of succeeding wheat.  相似文献   

16.
Soil compaction has been recognized as a problem limiting crop production, especially in the Southern Coastal Plain of the USA. Development of tillage and residue management systems is needed to alleviate soil compaction problems in these soils. Fertilizer nitrogen (N) management is also an important factor in these management systems. In 1988, a study was initiated with a wide-frame (6.3 m) vehicle to determine the interactive effects of traffic, deep tillage, and surface residue management on the fate of fertilizer N applied to corn (Zea mays L.) grown on a Norfork loamy sand (fine-loamy, siliceous, Thermic, Typic Kandiudults). Corn was planted into a winter cover crop of ‘Tibbee’ crimson clover (Trifolium incarnatum L.). Treatments included: traffic (conventional equipment or no traffic); deep tillage (no deep tillage, annual in-row subsoiling, or one-time only complete disruption); residue management (no surface tillage or disk and field cultivation). The one-time only complete disruption was accomplished by subsoiling at a depth of 43 cm on 25 cm centers in spring 1988. In 1990–1991, fertilizer applications were made as 15N-depleted NH4NO3 to microplots inside each treatment plot. The 1990 and 1991 data are reported here. In 1990 an extreme drought resulted in an average grain yield of 1.8 Mg grain ha−1, whereas abundant rainfall in 1991 resulted in 9.4 Mg grain ha−1. Deep tillage increased corn dry matter production in both years. In 1991, grain yields indicated that corn was susceptible to recompaction of soil owing to traffic when residues were incorporated with surface tillage. In the dry year, plant N uptake was increased 27% with deep tillage and decreased 10% with traffic. In the wet year, a surface tillage × deep tillage × traffic interaction was observed for total N uptake, fertilizer N uptake, and total fertilizer N recovery in the plant-soil system. When combined with traffic, plant N uptake was reduced with the highest intensity tillage treatment (135 kg N ha−1) because of rootrestricting soil compaction, and with the lowest intensity tillage treatment (129 kg N ha−1) because of increased N losses. In these soils, leaving residues on the soil surface can reduce the detrimental effect of traffic on corn production, but if no surface tillage is performed, deep tillage is needed.  相似文献   

17.
不同氮水平下粳稻的氮素累积和转运特征   总被引:4,自引:0,他引:4  
Developing high-yielding rice (Oryza sativa L.) cultivars depends on having a better understanding of nitrogen (N) accumulation and translocation to the ear during the reproductive stage. Field experiments were carried out to evaluate the genetic variation for N accumulation and translocation in different Japonica rice cultivars at different N rates and to identify any relationship to grain yield in southeast China. Four Japonica cultivars with similar agronomic characteristics were grown at two experimental sites in 2004 with three N rates of 0, 60, and 180 kg N ha^-1. Dry weights and N contents of rice plants were measured at tillering, initiation, anthesis, and maturity. Grain yields exhibited significant differences (P 〈 0.05) among the cultivars and N application rates. Increasing N rates improved N uptake at anthesis and maturity in all four cultivars (P 〈 0.05). N translocation from vegetative organs to the grains increased with enhanced N rates (P 〈 0.05). N translocation to the grains ranged from 9 to 64 kg N ha^-1 and N-translocation efficiency from 33% to 68%. Grain yield was linear to N uptake at anthesis (r^2 = 0.78^**) and N translocation (r^2 = 0.67^**). Thus, cultivars with a high N uptake at anthesis, low residual N in the straw at maturity, and appropriate low N fertilizer supply in southeast China should efficiently increase N-recovery rate while maintaining grain yield and soil fertility.  相似文献   

18.
A field experiment was conducted on a Typic Cryoboroll (Site 1) and a Typic Cryoboralf (Site 2) in north-central Alberta, Canada, to determine the influence of simulated erosion (artificial topsoil removal) on loss in yield of hard-red spring wheat (Triticum aestivum L. cv. ‘Roblin'), and to determine to which extent fertilizers N and P will restore the lost crop productivity of two artificially-eroded soils. There were three depths of topsoil removal (0, 10, and 20 cm) as main plot treatments, and a factorial combination of four levels of N (0, 50, 100, and 150 kg N ha−1) and three levels of P (0, 9, and 18 kg P ha−1) as sub-plot treatments. Wheat yields at both sites were markedly reduced by increasing depth of topsoil removal. The erosion effects were more pronounced at Site 2 where average yield on the 20 cm cut decreased to less than half of that obtained under non-eroded conditions. At both sites, additions of fertilizer N and P to eroded soil increased wheat yield, but the yields did not match those obtained in non-eroded soil under the same fertilizer treatment. Plants growing on eroded soil responded differently to application of fertilizers N and P, not only in terms of yield but also in N and P concentration and uptake. The implication of these findings is that fertilization programs for fields with varying degree of erosion would require optimization of rates so as to restore yield and, at the same time, minimize nutrient losses (e.g., N leaching) and improve soil tilth.  相似文献   

19.
Reduced tillage management is being adopted at an accelerated rate on the Canadian prairies. This may influence soil quality and productivity. A study conducted on a clay soil (Udic Haplustert) in southwestern Saskatchewan, Canada, to determine the effects of fallow frequency [fallow-wheat (F-W) vs. continuous wheat (Cont W)] and tillage [no-tillage (NT) vs. conventional (CT) or minimum tillage (MT)] on yields of spring wheat (Triticum aestivum L.), was sampled after 3, 7 and 11 years to assess changes in selected soil quality attributes. Tillage had no effect on amount of crop residues returned to the land, but the tilled systems had significantly (P<0.05) lower total organic C and N in the 0–7.5 cm soil depth, though not in the 7.5–15 cm depth. Further, these differences were observed after only 3 years and persisted for the entire 11 years of the study. For example, in the 0–7.5 cm depth, organic C in F-W (MT) after 3 years was 10 480 kg ha−1 and in F-W (NT) 13 380 kg ha−1, while in Cont W (CT) and Cont W (NT) corresponding values were 11 310 and 13 400 kg ha−1, respectively. After 11 years, values for F-W (MT) and F-W (NT) were 11 440 and 14 960 kg ha−1, respectively, and for Cont W (CT) and Cont W (NT), 12 970 and 16 140 kg ha−1, respectively. In contrast to total organic matter, two of the more labile soil quality attributes [i.e., C mineralization (Cmin) and N mineralization (Nmin)] did not respond to fallow frequency until after 7 years and only in the 0–7.5 cm depth. Microbial biomass (MB) and the ratio of Cmin to MB [specific respiratory activity (SRA)], two attributes also regarded as labile, were not influenced by the treatments even after 11 years. After 11 years, only Cmin and Nmin among the labile soil quality attributes responded to the treatments. Surprisingly, the labile attributes were no more sensitive to the treatments than was total organic C or N. More research is required to determine why responses in this soil differed from those reported elsewhere.  相似文献   

20.
Soil N mineralization was quantified in two long-term experiments in northern France, in which no-till (NT) and conventional tillage (CT) had been differentiated for 33 years (Site 1) and 12 years (Site 2). Both sites had the same soil type but differed in crop rotation. N mineralization kinetics were assessed in situ in bare soil in both systems for 254 days (Site 1) and 555 days (Site 2) by taking frequent measurements of water and nitrate contents from soil layers and using the LIXIM calculation model. The N mineralization potential was also determined in soil samples incubated under controlled laboratory conditions. Small or non-significant differences in water and nitrate contents between NT and CT were apparent within the soil profiles on both sites. Net mineralization did not differ significantly between sites or tillage treatments. The amount of N mineralized from August 2003 to April 2004 was 67 ± 10 kg N ha−1 on Site 1 and 74 ± 5 kg N ha−1 on Site 2, and 161 ± 6 kg N ha−1 from August 2003 to February 2005 on Site 2. The kinetics of N mineralization versus normalized time (equivalent time at constant temperature of 15 °C and water content at field capacity) were linear during the shorter period (254 days corresponding to 120 normalized days). The slope (N mineralization rate) did not differ significantly between treatments and sites, and the average rate was 0.57 ± 0.05 kg N ha−1 nd−1. The kinetics were non-linear on Site 2 over the longer period (555 days corresponding to 350 normalized days). They could be fitted to an exponential model with a slope at the origin of 0.62 kg N ha−1 nd−1. The N mineralization kinetics obtained in laboratory incubations for 120–150 normalized days were also almost linear with no significant differences between treatments. Assuming that mineralization took place in the ploughed layer (in CT) or over the same soil mass (in NT) they were in good agreement with the kinetics determined in situ on both sites. The calculated water drainage below the sampled profile was slightly greater in NT due to lower evaporation. The calculated leached N was slightly higher in NT than CT on Site 1, but did not differ between treatments on Site 2. It is concluded that N mineralization and leaching in NT and CT were similar, despite large differences in N distribution within the soil profile and a slight difference in organic N stock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号