首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
盐度对暗纹东方鲀胚胎发育的影响   总被引:2,自引:0,他引:2  
杨州  华洁  陈晰 《齐鲁渔业》2004,21(9):3-5
研究了不同盐度对暗纹东方鲀胚胎发育的影响,盐度为4和8的试验组中受精卵的发育历期、孵化率及初孵仔鱼24小时的存活能力和淡水相比均无显著差异。在盐度12及以上,绝大部分受精卵死亡,仅有极少数个体孵化出膜,且全为畸形并都在24小时内死亡;发育速度随着盐度的升高而变慢。因此,暗纹东方鲀胚胎正常发育所能耐受的盐度范围是0~8。  相似文献   

2.
High larval mortalities during rearing of gilthead bream, Sparus auratus L., led to experiments on the influence of salinity and temperature on eggs and yolk-sac larvae. Test salinities ranged from 5 to 70 ppt for eggs and from 15 to 45 ppt for larvae; experimental temperatures were 18–20°C for eggs and 18, 23 and 26°C for larvae. Spawning conditions were 18–20°C and 33–35 ppt salinity; the yolk-sac larvae were chosen from hatches obtained under similar conditions (18°C and 35 ppt salinity). For eggs the optimum survival range was found to be 30–50 ppt at 18°C and 15–60 ppt at 23°C, while that for yolk-sac larvae was 15–25 ppt at all three temperatures. Choosing normal development (no dorsal curvature) as the decisive criterion, the optimum salinity range for egg incubation was reduced to 30–40 ppt at 18°C and to 35–45 ppt at 23°C, while that for the yolk-sac stage remained 15–25 ppt at all test temperatures. Egg incubation was most successful at salinity-temperature combinations close to those during spawning, whereas salinity had to be reduced by at least 10 ppt for yolk-sac larvae.  相似文献   

3.
The goal is to determine the requirements allowing cultured Salvelinus alpinus to thrive in seawater, as they do in the wild. In late-June, eight families of individually identified 1+ year-old charr (mean wt: 427 g) of a domesticated strain derived from the Fraser River population were directly transferred from freshwater (9 °C) to salinities of either 0, 10, 20 and 30 ppt at 10 °C, then on-grown in tanks until December. Cumulative mortality was 16% in 30 ppt salinity, and < 4% in the lower salinities. Repeated measures analysis revealed somatic growth was inhibited by both elevated salinity and sexual maturation. Among immature fish, final mean weight and condition factor in 30 ppt salinity was 490 g and 1.2, compared to nearly 1 kg and > 1.7 in 0 and 10 ppt. In 20 ppt salinity, growth was initially similar to that in ≤ 10 ppt salinity but deteriorated from September onwards. Sexually maturing fish in ≤ 10 ppt salinity attained a final mean weight about 35% less than immatures. Plasma osmolality was only slightly elevated in the 30 ppt salinity, remaining < 340 mOsm kg− 1. Food intake and conversion were affected by the interaction between salinity and time, being optimum in 0 and 10 ppt treatments. Family effects on final body size were large, but the effect of salinity on growth was independent of family. In conclusion, despite their large body size, direct transfer of this strain from freshwater to seawater does not appear viable for commercial aquaculture.  相似文献   

4.
Persian sturgeon eggs were fertilized with different levels of salinities (0.5, 2, 4, 6, 8, 10, 12?ppt), and then each group was incubated in the same salinity until hatch. The fertility (%), hatching rate as well as larvae cumulative mortality rate and abnormality (%) were measured. Our Results revealed that Persian surgeon eggs could be fertilized in the different salinity concentrations but not more than 4?ppt. Moreover, hatching rate decreased with increase in salinities more than 2 and 4?ppt, respectively, and no larvae hatched in 6?ppt salinity. According to these results, the salinity tolerance threshold for Persian sturgeon larvae hatching in brackish water is less than 4?ppt.  相似文献   

5.
Although a stenohaline freshwater fish, the stinging catfish Heteropneustes fossilis, is also available in the freshwater fringes of the coastal areas of Bangladesh, the tolerance of this species to variable environmental salinity has not been thoroughly investigated. Based on median lethal salinity (MLS‐50 96 h), three sublethal salinity levels (3 ppt, 6 ppt and 9 ppt) and a control (0 ppt), each with three replications were selected to observe the effects of mildly brackish conditions on the fish for a period of 90‐day exposure. Better growth and survival were found up to 6 ppt compared with control. Salinity more than 6 ppt appeared unsuitable for H. fossilis fingerling due to increased mortality and reduced growth. To determine biochemical alterations, a few important physiological parameters were observed after 90 days of exposure. Glycogen level of liver and muscle in the fish reared at 9 ppt salinity decreased significantly (P < 0.05) as compared to the control. Glucose level in blood and liver was also found to be increased in fish with increase in salinity. ALP and ATPase activities were reduced significantly in both muscle and liver tissues at higher salinity, indicating the stress mitigation effect. However, all the biochemical parameters were found in normal condition up to 6 ppt compared with control. This evidence suggests that H. fossilis can sustain and grow well below 6 ppt and can be a potential candidate for culture in coastal areas after heavy downpour when the salinities level falls to 6 ppt or lower.  相似文献   

6.
The aim of this study was to evaluate the growth and survival of pacu, Piaractus mesopotamicus, larvae reared in different salinities and to determine the Artemia nauplii life span in freshwater and in saline water. First feeding 5‐d‐old pacu larvae were reared in freshwater or at 2, 4, 6, 8, 10, 12, and 14 ppt salinities. The larvae were reared in 1.5‐L aquaria at a density of 10 larvae/L with three replicates per treatment. After 10 d of rearing, significant differences (P < 0.05) were observed for growth and survival. Larval growth was higher at 2 and 4 ppt, and survival at 2 ppt was 100%. In freshwater and at 4, 6 and 8 ppt, the survival was 91.1, 93.3, 73.3, and 39.9%, respectively. At higher salinities, there was 100% mortality after 2 h (12 and 14 ppt) and 8 h (10 ppt) of exposure. The slightly saline water of at least 2 ppt increased the Artemia nauplii life span compared to the life span in freshwater. Later, in a second trial, 5‐d‐old pacu larvae were reared in freshwater and at 2 and 4 ppt salinities during the first 5 or 10 d of active feeding, and then the fish were transferred to freshwater. At the end of 15 d, larval growth was lower in freshwater (42 mg) than in treatments 2 and 4 ppt (59–63 mg). The abrupt transfer of fish from freshwater to slightly saline water and the return to freshwater did not affect the survival rates (89–97%). The larvae were able to adapt to these saline environments and handle abrupt changes in salt concentration. We concluded that salinity concentration of 2 ppt can be used for pacu larval rearing, allowing the Artemia nauplii lifetime to last longer and cause faster fish growth.  相似文献   

7.
Abstract – Body length, age, egg size, embryo salinity tolerance and length at hatching of the freshwater (salinity <0.1 ppt, Lake Peipsi) and brackish-water (salinity 2–6 ppt, Pärnu and Matsalu Bay) ruffe, Gymnocephalus cernuus (L.), were examined to reveal their reproductive success in moderate salinity. Eggs of females originating from brackish water were significantly larger than eggs of freshwater females. No correlation between egg size and female size and age was found in brackish-water populations. In the freshwater population there was a small negative correlation between egg size and female size, but no correlation with female age. Fertilisation by sperm of males of different origin (brackish water or freshwater) produced no significant differences at any critical developmental stage (fertilisation, gastrulation, hatching) in the development of eggs from brackish-water or freshwater females at 3.3, 5.5, 7.7 and 9.9 ppt salinity. Survival rates in different salinity depended only on female origin; embryonic salinity tolerance was higher in ruffe inhabiting brackish water. Obviously, embryo salinity tolerance in ruffe is determined by egg qualities.  相似文献   

8.
Abstract

Effects of salinity on embryonic development and growth of African catfish, Clarias gariepinus, eggs and larvae were studied. Eggs were incubated at 27-29°C in 2,4,6,8, and 10 ppt sodium chloride. Rate of embryonic development was delayed in all salt solutions by 15, 15,28 and 30 minutes, in 2,4,6, and 8 ppt sodium chloride, respectively, when compared with the control group (0% salt); total mortality occurred at 12 hours after gastrula stage in the 10 ppt concentration. Percentage hatching was 45.1,47.7, 59.5,49.2, and 26.6% while percentage deformity was 10.4, 16.1, 52.0, 28.6, and 71.6% in 0, 2, 4, 6, 8, and 10 ppt salt treatments, respectively. There were significant differences (P <0.05) in the hatching percentage and in deformity percentage between 4, 6, and 8 ppt. Rate of yolk absorption was significantly faster in the control and 2 ppt salt treatments, but slower in 4, 6, and 8 ppt. Rate of increase in length was slower with increasing salinity. The optimum salinity for African catfish eggs and was between 0-2 ppt and acceptable up to 6 ppt. The results suggest that increasing salinity delayed hatching and development of African catfish eggs and larvae, respectively, as well as increased the deformity of the larvae.  相似文献   

9.
The present study assessed the effects of different types of feeds and salinity levels on water quality, growth performance, survival rate and body composition of the Pacific white shrimp, Litopenaeus vannamei, juveniles in a biofloc system. Shrimp juveniles (2.56 ± 0.33 g) were cultured for 35 days in 300 L fibreglass tanks (water volume of 180 L) with a density of 1 g/L in six treatments. Three sources of feed (100% formulated feed, mixture of 66.6% formulated diet and 33.3% wet biofloc, and 100% wet biofloc) and two levels of salinity (10 and 32 ppt) were considered in two control groups and four biofloc treatments. Water quality parameters in the biofloc treatments were significantly better than control groups (p < .05). The highest increase in growth performance and survival rate were obtained in salinity of 32 ppt and mixed feed sources. Analysing the proximate composition of body shrimp indicates an increase in lipid and ash levels in biofloc treatments, which was more evident in the salinity of 32 ppt. In addition, the proximate analysis of shrimp body showed significant differences between biofloc treatments and control groups (p < .05). The highest FCR was found in the treatment with salinity level of 10 ppt and fed only with floc. Overall, it was found that the artificial diet supplemented with biofloc at the salinity of 32 showed better performance in the juvenile stage of Pacific white shrimp.  相似文献   

10.
The effect of environmental salinity on hematological parameters of great sturgeon Huso huso juveniles was studied. Five-month-old juveniles (mean body weight 28.3 ± 2.1 g) were subjected to 0, 3, 6, 9, and 12 ppt salinities. The hematological parameters were assessed after a period of 20 days rearing at these salinities. After transfer from fresh water to brackish water, red blood cells, hematocrit, haemoglobin and mean corpuscular haemoglobin decreased, but mean corpuscular volume increased. Mean corpuscular haemoglobin concentration, white blood cells, monocyte counts, and eosinophil counts showed no significant variations with increase in environmental salinity. An increase was found in lymphocyte counts according to the increase of salinity from 0 to 12 ppt, while the fresh water control group maintained basal levels. Decrease in neutrophil counts was observed in great sturgeon with increase in environmental salinity. These data show significant effect of salinity on the blood parameters of great sturgeon.  相似文献   

11.
Along the Atlantic coast black sea bass occur from the Gulf of Maine to Florida and support important commercial and recreational fisheries. Interest in commercial production of black sea bass has increased in recent years due to high demand and limited seasonable availability. Efforts towards large-scale production have been hampered by a high incidence of early larval mortality. Two of the most important environmental variables affecting hatchery production of marine finfish larvae are temperature and salinity. In the wild, larval black sea bass are found in waters with temperatures of 12–24 C and salinity levels of 30–35 ppt. Studies were conducted to define the temperature and salinity ranges that support growth and development of black sea bass during early life stages. Three developmental phases were investigated: 1) fertilization to hatch: 2) hatch through yolk sac absorption: and 3) during the initial exogenous feeding stage (5–14 days post hatch: DPH). Fertilized eggs were obtained by manual spawning of fish following administration of LHRHa. Fertilized eggs were transferred to 300-mL glass Petri dishes or 500-mL beakers to assess the effects of salinity and temperature through hatch and yolk sac absorption, respectively. To determine environmental effects on growth and survival during initial exogenous feeding 400 actively feeding larvae were cultured in green water and fed enriched rotifers for a 9-d period. For investigation of the effect of salinity, sea water (35 ppt) was diluted gradually to 15, 20, 25, and 30 ppt and maintained at 21 C. For examination of the effect of temperature, seawater was adjusted from 21 C to 12, 15, 21, 27, or 30 C at a rate of 3 C/h. No eggs hatched at 12 C or when salinity was maintained at 0 or 5 ppt. Hatching was uniformly high (≥ 85%) at temperatures between 15 and 27 C and at salinities ≥ 15 ppt. Survival through yolk sac absorption was greatest at temperatures between 18 and 27 C and at salinities ≥ 20 ppt. Survival through first feeding stage was highest at temperatures ≥ 18 C and 30 ppt salinity. Larval growth through first feeding was not significantly affected by salinity level but did increase with rearing temperature. The results indicate that survival and development of black sea bass during early life stages are most favorable at temperatures >18 C with salinity levels approaching full strength seawater.  相似文献   

12.
本研究采用不同盐度的海水对(鱼免)状黄姑鱼受精卵的沉浮性、胚胎发育的孵化时间、孵化率、仔鱼的分布状态和成活率的影响进行研究。结果表明:(鱼免)状黄姑鱼受精卵在盐度26.9‰以下的海水呈沉性,在盐度40.7‰以上的海水呈浮性,盐度26.9‰~40.7‰则由沉性向浮性过渡。(鱼免)状黄姑鱼受精卵在盐度13.7‰~53.0‰均可孵化,但孵化适合盐度为26.9‰~40.7‰。从仔鱼的分布状态、活动情况、成活率等几方面综合分析、(鱼免)状黄姑鱼仔鱼的合适盐度为26.9—33.4‰。  相似文献   

13.
The freshwater African catfish Clarias gariepinus is carnivorous and cannibalistic even during the larval and juvenile stages and this behavior causes economic losses in aquaculture. This study examined for the first time the effect of salinity on cannibalism, survival, and growth of African catfish larvae in the hatchery. Larvae (4 days old, median 7.8 mm TL, 2.8 mg BW) of the African catfish were reared for 21 days at nominal salinity 0, 1, 2, 3, 4, 5, 6, and 7 ppt. After 21 days, they grew to 10–39 mm (median 22 mm) and 10–490 mg (median 90 mg), with no significant difference by salinity treatments. Survival ratios were similarly low (24–31%) at 0, 1, 3, and 7 ppt and significantly higher (49–55%) at 2, 4, 5, and 6 ppt. Cannibalism was significantly lower, 15–30% at 4–6 ppt, than the 40–50% at 0–3 and 7 ppt. Size variation was lower at 4–6 ppt and higher at 0–3 and 7 ppt. We recommend hatchery rearing of African catfish at the optimum low salinity of 4–6 ppt rather than in full fresh water at least up to 21 days. This rearing method fosters larval welfare and improves hatchery production.  相似文献   

14.
The southern flounder, Paralichthys lethostigma, is an important commercial and recreational marine flatfish that inhabits estuaries and shelf waters in the south Atlantic, from North Carolina through the Gulf coasts, with the exception of south Florida. Because juvenile and adult fish are highly euryhaline, it is a prime candidate for aquaculture. Methods for captive spawning of southern flounder are well developed; however, information on optimal culture requirements of the early larval stages is required for reliable mass production of juveniles.To determine the optimal photoperiod and salinity conditions for culture from hatching to day 15 post-hatching (d15ph), embryos were stocked into black 15-l tanks (75 l−1) under four photoperiods (24L:0D, 18L:6D, 12L:12D, and 6L:18D) and two salinities (25 and 34 ppt) in a 4×2 factorial design. Temperature was 18 °C, light intensity was 150 lx, and aeration was 50 ml min−1. Significant (P<0.05) effects of photoperiod and salinity on growth (notochord length, wet and dry weights) were obtained. Growth increased with increasing photoperiod and salinity and was significantly greater at 24L and 18L than at 12L or 6L, and at 34 than at 25 ppt. On d11ph and d15ph, significant interactive effects between photoperiod and salinity on growth (wet and dry weights) were also evident. Growth of larvae reared at 25 ppt increased with increasing photoperiod to a maximum at 24L, while growth of larvae at 34 ppt reached a plateau at 18L. While there were no significant photoperiod effects on these parameters, larval survival, body water percentage, and larval osmolality on d15ph were significantly higher at 34 than at 25 ppt (41% vs. 16% survival; 322 vs. 288 mosM kg−1; and 84% vs. 76% water, respectively), suggesting stress and nonadaptation to 25 ppt, a salinity more nearly isoosmotic than full-strength seawater. Since larvae from both salinity treatments were neutrally or positively buoyant at 34 ppt, but negatively buoyant at 25 ppt, larvae reared at 25 ppt probably allocated energy to maintain vertical positioning, compromising growth and survival.The results demonstrate that growth and survival of early-stage southern flounder larvae are maximized under long photoperiods of 18–24L and in full-strength seawater. Longer photoperiods probably extend the time larvae have for feeding, while full-strength seawater salinity optimizes buoyancy and vertical positioning, conserving energy. The results show that early larval stage southern flounder larvae are not entirely euryhaline, which involves not only the ability to osmoregulate, but to conserve energy under reduced buoyancy. This is consistent with suboptimal vs. maximal growth of larvae reared at 25 and 34 ppt, respectively, under 18L (i.e., photoperiod×salinity interaction). This is also consistent with other reports that tolerance to lower salinities in these euryhaline flatfish increases post-metamorphosis when transition from a pelagic to benthic existence alleviates the need to counteract reduced buoyancy.  相似文献   

15.
Water salinity affects survival, growth and metamorphosis of anuran tadpoles. Hoplobatrachus rugulosus is considered not only as a freshwater amphibian but is also found in brackish wetlands. However, whether salinity change interferes with hatching, survival, body mass and development of H. rugulosus tadpoles is unknown. We found that salinity levels of <4‰ did not affect of survival or hatching of H. rugulosus eggs. At an early larval stage, tadpoles could tolerate up to 9‰ salinity for 96 h; however, body water content decreased when salinity was >5‰. After a 3‐week experiment, body weights of tadpoles exposed to 2‰ and 4‰ salinities were higher but that of the 6‰ group was lower compared with the 0‰ group. More than 90% of tadpoles exposed to 2‰ and 4‰ salinity showed complete metamorphosis. Salinity levels <4‰ promoted survival of tadpoles better than 0‰, whereas none of tadpoles in the 6‰ group became juvenile frogs in 50 days. Time taken to reach metamorphosis was shorter for 2‰ and 4‰ (47.22 ± 0.28 and 47.26 ± 0.33 days, respectively) than for 0‰ (49.31 ± 0.35 days). Juvenile frogs in the 2‰ group had greater body weight than the control. It could be concluded that salinity of <4‰ increased survival and body weight of H. rugulosus tadpoles, and shortened the time taken to reach metamorphosis.  相似文献   

16.
17.
Abstract.— In South Carolina, studies have been conducted to develop rearing techniques for southern flounder Paralichthys lethostigma a candidate for aquaculture development and stock enhancement programs. To help define environmental tolerances, a variety of salinity studies were conducted with the early life stages of this species. Eggs were buoyant at 32 ppt and sank at 29 ppt with salinities of 30–31 ppt providing varying levels of suspension in the water column. Eggs incubated at 0 and 5 ppt all died, whereas 82.5% hatched at 10 ppt but larvae died shortly thereafter. At 63 h post-fertilization, there were no differences in hatch level for eggs incubated at salinities of 15 to 35 ppt (mean hatch level 98.5%). In a 72-h study, fish 3 wk post-metamorphosis (13.7 mm TL, 50-d-old) were acclimated to seven salinities ranging from 0–30 ppt. Fish held at 0 ppt salinity exhibited a statistically (P < 0.05) lower survival (20.0%) than those exposed to 5–30 ppt salinity concentrations. No differences were detected in survival (mean 99.1%) among fish held in the higher salinities. A second study examined the tolerance of older juveniles to lower salinities. Juvenile flounder (95.2 mm TL, 220-d-old) were acclimated to 0, 1,5 and 10 ppt salinities and reared for 2 wk. Results showed that fish could tolerate salinities of 0–10 ppt (100% survival). These data indicate that salinity tolerance of southern flounder increases with age. In addition to the short duration studies, a replicated 11-mo duration tank grow-out study was conducted at mean salinity 5.4 ppt and mean temperahue 22.6 C with an all male population. Flounder grew from a mean length of 100 mm to 213 mm TL and weight from 8.9 to 104.3 g. Growth of the cultured fish approximated that observed among male flounders in the wild.  相似文献   

18.
The objective of this study was to investigate the influence of size on salinity tolerance in 1 year old juvenile white sturgeon. Two sizes of sturgeon (10 and 30 g) from the same spawning event (thus reducing confounding effects of genetic make-up and size) and reared in the same environment were exposed to a salinity of 0, 8, 16, 24, or 32 ppt for up to 120 h. Both 10 and 30 g fish exhibited > 93% mortality within 24 h after transfer to 24 or 32 ppt, regardless of whether they were transferred directly from freshwater (FW) or following a 48 h pre-treatment period at 16 ppt. Direct transfer from FW to 16 ppt was associated with 25 to 30% mortality, indicating that these fish have some ability to tolerate large changes in salinity for up to 5 days at this stage. Following exposure to 8 and 16 ppt, an elevation in plasma osmolarity, [Na+], and [Cl?] was observed between 24 and 72 h in both 10 and 30 g sturgeon, but plasma ions and osmolarity in surviving fish at 120 h were not significantly different between groups held at 0, 8, and 16 ppt. Despite being unprepared for either direct or stepwise transfer to salinities of 24 ppt or greater, size confers some ionoregulatory advantage, as mortality occurred more slowly and the degree of ionoregulatory perturbation was less in 30 g than 10 g fish over the course of the exposures. It is not known whether the apparent advantage of size is related to a size-dependent development of ionoregulatory capacity or due to social status which can also influence ionoregulatory capacity, but age and genetic differences did not likely contribute to this size effect.  相似文献   

19.

We evaluated whether bearing tetrodotoxin (TTX) affects salinity stress in the juvenile tiger puffer Takifugu rubripes. Juveniles of hatchery-reared non-toxic T. rubripes [body weight (BW): 1.7?±?0.2 g, n?=?120] were divided into six tanks and acclimatized to salinity (8.5 ppt) that is equivalent to blood osmolality. Fish in three tanks were fed non-toxic diet, and those in the other three tanks were fed a TTX-containing diet (356 ng/g diet) three times a day until satiation. In each diet treatment, salinity of one tank was kept at 8.5 ppt, and the other two tanks were adjusted to either 1.7 or 34.0 ppt, and fish were reared for another 33 days. Then, we compared survival, growth, TTX accumulation, plasma osmolality, plasma cortisol, and glucose levels among treatments. We detected TTX only in the fish in the TTX-diet groups. Survival was highest at 8.5 ppt (70%) and lowest at 1.7 ppt in the TTX-diet group (20%). The BW was greater at 8.5 ppt, and plasma osmolality was significantly higher at 34.0 ppt than at any other salinities. Plasma cortisol level was significantly higher but glucose level was lower at 1.7 ppt. Possessing TTX at a low salinity may be lethal to tiger puffer juveniles.

  相似文献   

20.
Abstract.— Tko experiments were conducted to determine the effects of salinity on growth and survival of mulloway Argyrosomus japonicus larvae and juveniles. First, 6-d-old larvae were stocked into different salinities (5, 12.5, 20, 27.5 and 35 ppt) for 14 d. Larvae grew at all salinities, but based on results for growth and survival, the optimum range of salinity for 6-d-old to 20-d-old larvae is 5–12.5 ppt. During this experiment larvae held in all experimental salinities were infested by a dinoflagellate ectoparasite, Amyloodinium sp. Degree of infestation was affected by salinity. There were very low infestation rates at 5 ppt (0.2 parasites/larva). Infestation increased with salinity to 20 ppt (33.1 parasites/larva), then declined with salinity to 35 ppt (1.5 parasites/larva). For the second experiment, juveniles (6.1 ± 0.1 g/fish) were stocked into different salinities (0.6, 5, 10, 20 and 35 ppt) for 28 d. Juveniles were removed from freshwater 3 d after transfer as they did not feed, several fish died and many fish had lost equilibrium. However, when transferred directly to 5 ppt. these stressed fish recovered and behaved normally. Trends in final mean weight and food conversion ratio of juvenile mulloway suggest that fish performed best at 5 ppt. Although salinity (5 to 35 ppt) had no significant ( P > 0.05) effect on growth, survival, or food conversion ratio of juveniles, statistical power of the experiment was low (0.22). Based on these results we recommend that mulloway larvae older than 6 d be cultured at 5 to 12.5 ppt. Optimum growth of juveniles may also be achieved at low salinities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号