首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Phytochemicals such as phenolics and flavonoids, which are present in rice grains, are associated with reduced risk of developing chronic diseases such as cardiovascular disease, type 2 diabetes, and some cancers. The phenolic and flavonoid compounds in rice grain also contribute to the antioxidant activity. Biofortification of rice grain by conventional breeding is a way to improve nutritional quality so as to combat nutritional deficiency. Since wet chemistry measurement of phenolic and flavonoid contents and antioxidant activity are time-consuming and expensive, a rapid and nondestructive predictive method based on near-infrared spectroscopy (NIRS) would be valuable to measure these nutritional quality parameters. In the present study, calibration models for measurement of phenolic and flavonoid contents and antioxidant capacity were developed using principal component analysis (PCA), partial least-squares regression (PLS), and modified partial least-squares regression (mPLS) methods with the spectra of the dehulled grain (brown rice). The results showed that NIRS could effectively predict the total phenolic contents and antioxidant capacity by PLS and mPLS methods. The standard errors of prediction (SEP) were 47.1 and 45.9 mg gallic acid equivalent (GAE) for phenolic content, and the coefficients of determination ( r (2)) were 0.849 and 0.864 by PLS and mPLS methods, respectively. Both PLS and mPLS methods gave similarly accurate performance for prediction of antioxidant capacity with SEP of 0.28 mM Trolox equivalent antioxidant capacity (TEAC) and r (2) of 0.82. However, the NIRS models were not successful for flavonoid content with the three methods ( r (2) < 0.4). The models reported here are usable for routine screening of a large number of samples in early generation screening in breeding programs.  相似文献   

2.
《Cereal Chemistry》2017,94(5):811-819
This study systematically examined hydrothermal effects of antioxidant substances, such as total phenolic (TPC), flavonoid (TFC), and proanthocyanidin (TPAC) contents, cyanidin‐3‐O‐glucoside (C3G), peonidin‐3‐O‐glucoside (P3G), α‐, γ‐, and δ‐tocopherols, and α‐, γ‐, and δ‐tocotrienols, as well as antioxidant activities, color parameters, and soluble sugar compositions in red and black rice. It showed that color differences (ΔE ) of black rice were higher than those of red rice caused by boiling. The processed red and black rice exhibited significantly (P < 0.05) lower TPC, TFC, TPAC, C3G, P3G, and antioxidant activities compared with the raw rice except bound TPC and bound antioxidant activity. Interestingly, soluble free p‐coumaric and ferulic acids had higher contents in cooked red rice, and soluble free protocatechuic, vanillic, and sinapic acids had higher contents in cooked black rice. Boiling caused significant decreases of soluble conjugated phenolic acids and significant increases of insoluble bound phenolic acids in both red and black rice. Increases of total free tocol, glucose, and fructose contents were observed in most red and black rice. To increase the contents of some soluble free and insoluble bound phenolic acids, free vitamin E, and monosaccharides in red and black rice, boiled rice might be a good choice.  相似文献   

3.
Spinach leaves harvested at three maturity stages from eight commercial cultivars (CC) and eight advanced breeding lines (ABL) were evaluated for oxygen radical absorbing capacity (ORAC), total phenolics, and flavonoid composition and content. ABL had higher levels of total phenolics, total flavonoids, and ORAC than CC. Midmaturity spinach leaves had higher levels of total phenolics, total flavonoids, and antioxidant capacity than immature and mature leaves. The contents of individual flavonoids varied in response to maturation, with the predominant glucuronated flavones decreasing and patuletin and spinacetin derivatives increasing. Both total phenolics and total flavonoids correlated well with ORAC (r(xy)() = 0.78 and 0.81, respectively) demonstrating that flavonoids were major contributors to antioxidant capacity. Our results indicate that spinach genotypes should be harvested at the midmaturity stage for consumers to benefit from elevated levels of health promoting flavonoids present in the leaves. Additionally, plant breeders can select for increased phenolic content to increase antioxidant capacity of spinach genotypes.  相似文献   

4.
Fourteen red rice varieties were planted in two locations during summer (Hangzhou) and winter (Hainan) to study the effect of genotype and environment on the phytochemicals and antioxidant capacities of rice grain. B‐type proanthocyanidins in red rice were detected by LC‐MS/MS and quantified by using the vanillin assay. Analysis of variance showed that total phenolic content (TPC), total flavonoid content (TFC) and 2,2′‐azino‐bis‐(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) radical scavenging capacity were mainly affected by environmental factors, which accounted for more than 60% of the total variance. However, total proanthocyanidin content (TPAC) and 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical scavenging capacity were equally affected by both genotype and environment. The genotype × environment effects were significant for all traits. The pairwise correlations among TPC, TFC, TPAC, ABTS, and DPPH were also significant (r > 0.900, P < 0.001). Principal component analysis identified the genotypes that had higher contents of antioxidants and more stability across environments. This study showed that indirect selection of a simple trait (i.e., TPC) is an effective way to select rice high in antioxidant capacity in breeding programs. This study also suggests that rice should be produced specifically in a certain environment for the end user to minimize the variation in the functional properties and maximize their contents.  相似文献   

5.
Dent, flint, and specialty genotypes of Indian yellow maize were evaluated for phytochemical content and their hydrophilic antioxidant capacity. Solid‐phase extraction coupled with solid–liquid extraction was used to obtain free phenolics and flavonoids from maize samples, reducing the use of excessive solvents and handling time. Bound phenolics were extracted with enhanced acidic hydrolysis to improve extractability. The phenolic contents in Indian maize genotypes ranged from 46 to 79 μmol of ferulic acid equivalents per gram of sample on a dry basis (db). Carotenoids in Indian maize genotypes were found to be equivalent to Chinese yellow maize and ranged from 13 to 24 μg/g of sample (db), whereas tocol content varied greatly in the range of 607–1,238 μg of α‐tocopherol equivalents/g of sample (db). Dent and flint corn did not exhibit differences (P > 0.05) in their phenolic contents, whereas among the specialty genotypes sweet corn contained the highest phenolics but least carotenoids (P < 0.05). Bound extracts appeared to contribute largely to 2,2′‐diphenyl‐1‐picrylhydrazyl free radical scavenging, hydrogen peroxide scavenging, and ferric reducing antioxidant power of maize genotypes. Sweet corn exhibited higher antioxidant capacity (P < 0.05) among all the genotypes. The antioxidant capacities correlated well with the total phenolic contents of the maize genotypes.  相似文献   

6.
《Cereal Chemistry》2017,94(3):464-470
The effect of extruded brown rice flour (EBR) contents (0–50%) on antioxidant activity, phenolics, in vitro digestibility, color, and cooking quality of noodles containing mixtures of wheat and EBR was investigated. The antioxidant activity and phenolic content increased, especially ferulic and coumaric acids in bound forms, whereas the in vitro glycemic index, optimal cooking time, water absorption, hardness, and color were diminished in noodles with the addition of EBR; cooking loss increased as a function of the EBR percentage. The partial replacement of wheat flour with EBR can be favorably used in the wheat noodle formulation. The results provide the basis for the development of staple foods with nutritional characteristics for today's functional food markets.  相似文献   

7.
《Cereal Chemistry》2017,94(2):291-297
Edible beans are among the most important grain legumes consumed by humans. To provide new information on the antioxidant phenolics of edible beans, the antioxidant capacity, total phenolic content (TPC), and total flavonoid content (TFC) in both soluble and bound fractions of 42 edible beans from China were systematically evaluated, with main phenolic compounds identified and quantified in 10 beans possessing the highest TPC. Edible beans contained a wide range of total antioxidant capacity and TPC generally comparable with common grains, fruits, and vegetables, and their bound fractions had significant antioxidant capacity, TPC, and TFC. Red sword bean was found for the first time to show extremely high total antioxidant capacity (ferrous[II] at 235 ± 13.2 μmol/g and Trolox at 164 ± 10.5 μmol/g) and TPC (1767 ± 58.3 mg of GAE/100 g). Phenolic compounds such as catechin, ferulic acid, gallic acid, p‐coumaric acid, and protocatechuic acid were widely detected in selected beans. A positive correlation was found between antioxidant capacity (ferric‐reducing antioxidant power [FRAP] and Trolox equivalent antioxidant capacity [TEAC] values) and TPC, with correlation coefficient r = 0.974 (FRAP value versus TPC) and r = 0.914 (TEAC value versus TPC). Therefore, beans with high antioxidant capacity and phenolic content can be valuable sources of dietary natural antioxidants for the prevention of oxidative stress‐related chronic diseases.  相似文献   

8.
Barley is considered a healthy food because of its high content of β‐glucan and phenolic antioxidants. In the current study, 28 black, blue, and yellow barleys were investigated in terms of their composition of free and bound phenolic acids and 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging capacity. Free phenolics were based on aqueous methanol extraction, whereas bound phenolics were extracted following alkaline hydrolysis. Phenolics were then separated and quantified by liquid chromatography and the Folin–Ciocalteu method. Significant differences were observed between the three barley color groups, and within each color group a wide range of phenolics concentrations existed. Ferulic acid was the predominant phenolic acid in free and bound extracts, followed by p‐coumaric acid in all the barleys investigated. Total phenols content and individual phenolic acids strongly correlated with free radical scavenging capacity of barley. Black and blue barley were found to be related and distinct from yellow barley. The results showed significant variations in phenolics among barleys, with a potential for the development of barley grains with high content of phenolic compounds as antioxidant potential.  相似文献   

9.
Total phenolic content and antioxidant capacity of two tree spinach species (Cnidoscolus chayamansa McVaugh and C. aconitifolius Miller.) were determined in raw and cooked leaf extracts. Antioxidant capacity was assessed by the oxygen radical absorbance capacity (ORAC) assay, and flavonoid glycoside composition was quantified by HPLC and identified by GC. Total phenolics and antioxidant capacity were higher in raw than in cooked leaf extracts. The ORAC values were strongly correlated with total phenolic content (r = 0.926) in all leaf extracts. The major flavonoids isolated from the leaf extracts were kaempferol-3-O-glycosides and quercetin-3-O-glycosides. C. aconitifolius leaves contained more varieties of the flavonoid glycosides than C. chayamansa. Cooking reduced antioxidant activity and phenolic content and resulted in losses of some kaempferol glycoside and quercetin glycoside residues in leaf extracts. The results of this study indicate that tree spinach leaves are a rich source of natural antioxidants for foods.  相似文献   

10.
11.
In this study, two rice cultivars including a drought tolerant (Q8) and a drought susceptible (Q2) were foliar applied with exogenous vanillic acid (VA) and p-hydroxybenzoic acid (PHBA) to examine their effectiveness on drought-tolerant levels and induction of pigments, antioxidants, phenolics, flavonoids, and phytoalexin momilactones A (MA) and B (MB). Generally, the tolerant level of Q2 was more accelerated than those of Q8. Total contents of phenolics, flavonoids, pigments, and antioxidant activity were positively promoted, although the difference between Q8 and Q2 was negligible. In the quantitative induction of phenolic acids, VA, PHBA, and VA+PHBA showed dose-dependent variable effects, of which Q2 was more influenced than Q8. In all treatments, PHBA appeared to have a more significant role toward drought tolerance than VA. Although MB was found only in non-treated Q8, treatments of VA+PHBA caused formation of both MA and MB, however the induced quantities of MA and MB varied among applied doses and rice cultivars. This research is the first to show that, besides increasing antioxidant activity and total pigments, phenolics, and flavonoids, application of VA and PHBA induced phytoalexins MA and MB to enhance rice drought tolerance, of which MB may play a greater role than MA.  相似文献   

12.
Sheath blight caused by Rhizoctonia solani is a major disease of rice worldwide. Silicon (Si) can enhance rice resistance to sheath blight, but the relation with phenolic metabolism is poorly known. Two rice cultivars with different levels of resistance to R. solani (resistant Teqing and susceptible Ningjing 1) were studied to determine the effects of Si on disease intensity (rated from 0 to 9) and the involvement of phenolic compounds in disease resistance. Variation in the concentrations of phenolics (including total soluble phenolics, flavonoids, and lignin) and in the activities of defense‐related enzymes polyphenoloxidase (PPO) and phenylalanine ammonia‐lyase (PAL) in rice leaf sheaths was investigated. The results show that Si application reduced sheath‐blight disease ratings of Ningjing 1 and Teqing by 2.96 and 0.65, respectively. In uninoculated plants, Si application alone had no significant effects on the concentrations of phenolic compounds or on the activities of PPO and PAL. In inoculated plants, Si application increased phenolics concentrations and PPO and PAL activities only in the susceptible cultivar Ningjing 1. We conclude that Si‐induced enhancement of phenolic metabolism contributed to the improved resistance of rice to sheath blight in the sensitive cultivar.  相似文献   

13.
Antioxidant and antiproliferative activities of raspberries   总被引:16,自引:0,他引:16  
Raspberries are rich in phenolic phytochemicals. To study the health benefits of raspberries, four fresh raspberry varieties (Heritage, Kiwigold, Goldie, and Anne) were evaluated for total antioxidant and antiproliferative activities. The total amount of phenolics and flavonoids for each of the four raspberry varieties was determined. The Heritage raspberry variety had the highest total phenolic content (512.7 +/- 4.7 mg/100 g of raspberry) of the varieties measured followed by Kiwigold (451.1 +/- 4.5 mg/100 g of raspberry), Goldie (427.5 +/- 7.5 mg/100 g of raspberry), and Anne (359.2 +/- 3.4 mg/100 g of raspberry). Similarly, the Heritage raspberry variety contained the highest total flavonoids (103.4 +/- 2.0 mg/100 g of raspberry) of the varieties tested, followed by Kiwigold (87.3 +/- 1.8 mg/100 g of raspberry), Goldie (84.2 +/- 1.8 mg/100 g of raspberry), and Anne (63.5 +/- 0.7 mg/100 g of raspberry). The color of the raspberry juice correlated well to the total phenolic, flavonoid, and anthocyanin contents of the raspberry. Heritage had the highest a/b ratio and the darkest colored juice, and the Anne variety showed the lowest phytochemical content and the palest color. Heritage raspberry variety had the highest total antioxidant activity, followed by Kiwigold and Goldie, and the Anne raspberry variety had the lowest antioxidant activity of the varieties tested. The proliferation of HepG(2) human liver cancer cells was significantly inhibited in a dose-dependent manner after exposure to the raspberry extracts. The extract equivalent to 50 mg of Goldie, Heritage, and Kiwigold fruit inhibited the proliferation of those cells by 89.4 +/- 0.1, 88 +/- 0.2, and 87.6 +/- 1.0%, respectively. Anne had the lowest antiproliferative activity of the varieties measured but still exhibited a significant inhibition of 70.3+/- 1.2% with an extract equivalent to 50 mg of fruit. The antioxidant activity of the raspberry was directly related to the total amount of phenolics and flavonoids found in the raspberry (p < 0.01). No relationship was found between antiproliferative activity and the total amount of phenolics/flavonoids found in the same raspberry (p > 0.05).  相似文献   

14.
Raw, germinated, popped, and cooked huauzontle (Chenopodium berlandieri spp. nuttalliae) seeds were analyzed for the contents of phenolics extracted with water (WE), methanol, 1:1 (v/v) methanol/water (MWE), and 1.2M HCl in 1:1 (v/v) methanol/water (HMWE); radical scavenging capacity measured by the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) (ABTS) methods was studied. The effect of the system solvents used for the accurate quantification of antioxidant content and capacity showed that for raw, germinated, and cooked extracts, water gave the highest yield of total phenolic content, and MWE could recover the highest yield in popped extracts. Thermal treatments increased the flavonoid content more in all extracts than did the germinating process, with values ranging from 10 to 620 μg/g db of quercetin equivalents. However, all treatments significantly decreased (P < 0.05) the total phenolics (from 3,010 μg of gallic acid equivalents/g db in raw seeds WE to 710 μg/g db in germinated seeds MWE). HMWE in all treatments showed the highest values (up to 95.41%) by the DPPH method. With the ABTS method, germinated and popped MWE showed the highest values (up to 2,740mM Trolox/kg db). Based on these results, huauzontle seeds represent a useful potential ingredient for consumer health, because it has been shown to be a good source of total phenolic content having high antioxidant activity; moreover, for further studies, water appears to be effective as an extraction solvent of phenolic compounds.  相似文献   

15.
Physical characteristics, amino acids composition, protein profiling, pasting characteristics, and phenolic compounds of brown rice (BR) and germinated brown rice (GBR) from different paddy cultivars (PB1, PS44, PB1509, PB1121, and PS5) were investigated. L* (lightness) decreased, but a* (redness and greenness) and b* (yellowness and blueness) increased with germination. Protein and ash content increased, whereas fat and amylose contents decreased with germination. GBR showed lower hardness and gumminess than BR. Foam stability and water absorption capacity from GBR flour were higher compared with BR flour. Accumulation of γ‐aminobutyric acid, histidine, arginine, proline, methionine, and acidic amino acids increased significantly with germination, and increase was related to change in accumulation of glutelin and prolamins. The accumulation of prolamins and glutelin acidic and basic subunits decreased with germination. GBR flour showed lower pasting viscosities compared with BR flour. Ferulic acid, p‐coumaric acid, and quercetin were present in both fractions of the bound form. GBR showed improved nutritional quality that varied in different cultivars. PB1121 was observed to be the best for producing GBR owing to greater changes brought in protein content, essential amino acids, catechin, chlorogenic acid, protocatechuic acid, vanillic acid, and foam stability.  相似文献   

16.
The antioxidant capacity of newly developed and highly popular pigmented rice cultivars (black rice, Galsaekchalmi, Jeoktomi, Hongchalmi, and Nogwonmi) in South Korea was analyzed. The rice grains were ground into powder, extracted with 70% ethanol, filtered, and concentrated with a rotary evaporator. The samples were analyzed for phenolic, flavonoid, and phytic acid contents, free radical scavenging activity, reducing power, ferrous ion chelating ability, lipid peroxidation inhibition, and superoxide dismutase‐like activity. The ethanolic extracts from pigmented rice cultivars showed greater antioxidant activity than that of the normal white rice. The black rice exhibited the highest free radical scavenging activity, ferrous chelating ability, and total phenolic and flavonoid contents. The reducing power and phytic acid content were found to be highest in Hongchalmi cultivar. The inhibition of lipid peroxidation was markedly higher in Jeoktomi compared with the other rice samples. The Nogwonmi rice showed the lowest antioxidant activity among the pigmented varieties analyzed. These findings provide valuable information on the antioxidant potential of newly developed pigmented rice varieties and may assist plant breeders in the selection of cultivars for the development of new lines of rice with enhanced functional quality.  相似文献   

17.
The protective effects of whole grain cereals against heart disease and certain cancers may be due, at least partly, to the antioxidant effects of phenolics concentrated in the bran. However, it is unclear to what extent these phenolics are absorbed, and whether these phenolics exert significant physiological antioxidant effects. Thus, this study aimed to compare total phenolics (TP) and antioxidant potential (AOP) in the plasma and urine of humans following consumption of a single meal of unprocessed wheat bran or a refined cereal (ground white rice). Using a randomized cross‐over design, 17 adults consumed ≈93 g of wheat bran or ground rice after an overnight fast. Baseline and postmeal plasma and urine samples were analyzed for TP (Folin‐Ciocalteu method) and AOP (FRAP method). Compared with ground rice, wheat bran gave significantly (P < 0.05) higher plasma TP at 1 hr, and significantly (P < 0.001) higher plasma AOP from 0.5 to 3 hr. Furthermore, compared with ground rice, wheat bran led to consistently higher TP and AOP in urine, and these differences were significant (P < 0.05) at 2 hr. Comparisons with data from a range of other phenolic‐rich foods indicated that wheat bran phenolics are relatively well absorbed and may enhance antioxidant status.  相似文献   

18.
Phenolics are phytochemicals extensively distributed among plants that have been receiving great deal of attention for their functionality. Rice bran is a good source of phenolics, especially hydroxycinnamates. Although chemicals are commonly employed to isolate phenolics, the use of physical treatments such as sonication is still limited. This study was conducted to optimize a procedure to isolate phenolics from rice bran using sonication as a preextraction treatment. Sonication was optimized by varying output, time, and temperature. Extraction was optimized by varying solvent, extraction time, temperature, and sample-to-solvent ratio. After an optimum procedure was established, HPLC analyses were conducted to identify and quantify the major individual phenolic acids extracted. The optimum conditions for extracting phenolics from rice bran were sonication with water (1:100 sample-to-solvent ratio) for 1 min; output intensity of 10; holding at ambient temperature; and autoclave treatment for 20 min at 121°C. This procedure extracted 8.85 ± 0.18 mg of phenolics/g of dried rice bran. Benzoic, p-coumaric, and trans-ferulic acids were the major phenolics identified in the extract. The proposed procedure will be valuable in obtaining phenolics for increasing product functionality such as lipid oxidation inhibitors in food systems.  相似文献   

19.
《Cereal Chemistry》2017,94(3):417-423
The present study aimed to broaden the concept of nutraceutical products by increasing the nutritional and functional properties of rice pudding, locally known as kheer, with improved physicochemical and sensory traits. Three germinated legumes—namely, lentils (Lens culinaris ), green gram (Vigna radiata ), and black gram (V. mungo )—were added at 5, 15, and 25% levels (based on total milk weight) in rice puddings, and rice pudding without legumes was considered the control. Results showed that germinated legumes compared with their nongerminated counterparts were rich in dietary antioxidants and phenolic content of the puddings. Rice pudding incorporating 5% nongerminated and germinated lentil, 5% nongerminated green gram, 5–25% germinated green gram, and 5% nongerminated and germinated black gram showed peak viscosity similar to that of the control, suggesting that the legumes could be incorporated into pudding without bringing any significant changes in peak viscosity of rice pudding. Moreover, it was also observed that control rice pudding and rice puddings containing 5–15% nongerminated and germinated lentils, 5% nongerminated green gram, and 5% nongerminated and germinated black gram were insignificantly different from each other in overall acceptability, as judged by sensory panelists. For this reason, addition of germinated legumes to rice pudding is a unique way to enhance the phenolic content of this dessert without affecting its appetizing flavor.  相似文献   

20.
《Cereal Chemistry》2017,94(1):74-81
In Brazil, rice (Oryza sativa L.) and beans (Phaseolus vulgaris L.) are the basis of the population's diet, and their consumption together is a good strategy to improve protein biological value. The aim of this study was to produce extruded products with whole red bean (WRBF) and polished rice (PRF) flours and to evaluate the effects of extrusion temperature (T) and feed moisture content (FM) on technological properties and total phenolic compounds content. The extrudates were elaborated in a twin‐screw extruder following a 22 central composite rotatable design with FM (15–23%) and T (120–160°C) as independent variables. WRBF and PRF were used at a 1:3 ratio. Amino acid content and profile were evaluated in the optimum extrudate (produced at FM = 19% and T = 140°C). The total phenolic content identified in extruded products was provided by the red bean seed coat, and its quantification suggested the release of bound phenolics with the extrusion process (not temperature dependent). The extrusion of PRF and WRBF, in combination, produced extruded products of high protein quality, being complete in essential amino acids for the diets of people at least 48 months old. The results indicate that legume flours such as WRBF incorporated into rice flour can cause a positive impact on technological, nutritional, and functional quality of extrudates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号