首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Between the elevations of 1000 and 2000 m in the mid‐hills of Nepal, over 12 million people subsist on land‐holdings of less than 0·5 ha. These farmers have limited access to commercial inputs such as fertilisers and are reliant on organic manures for soil fertility maintenance. Participatory research was conducted with farmers on bari land (upper slope rain‐fed crop terraces) in the hill community of Landruk (bench terraces 0–5° slope, 3000–3500 mm annual rainfall, which aimed to develop soil and water management interventions that controlled erosion without resulting in high leaching, and so were effective in minimising total nutrient losses. Interventions tested were the control of water movement through diversion of run‐on and planting fodder grasses on terrace risers on bench terraces. The interventions were effective in reducing soil loss from the bari land in comparison with existing farmer practices, but no effect was observed on nutrient losses in solution form through runoff and leaching. Losses of NO3‐N in leachate ranged from 17·3 to 99·7 kg ha−1 yr−1, but only 0·7 to 5·6 kg ha−1 yr−1 in runoff. The overall nutrient balance suggests that the system is not sustainable. Fertility is heavily dependent on livestock inputs and if the current trends of declining livestock numbers due to labour constraints continue, further losses in productivity can be expected. However, farmers are interested in interventions that tie ecosystem services with productivity enhancement and farmers' priorities should be used as entry points for promoting interventions that are system compatible and harness niche opportunities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In areas susceptible to erosion, there is the need for a comprehensive soil conservation programme so as to be able to prevent catastrophic soil erosion problems. The absence of such a programme in central eastern Nigeria, that has a total land area of 20 000 km2, necessitated the drawing up of a soil conservation strategy for the area. The aim was to provide information for better land-use planning and proper environmental and soil management. To achieve this, topographic, soil and landform maps of the area at the scale of 1:50 000 were used to delineate into slope land units, viz: 0–4 per cent, <4 per cent, drainage basins and headwaters. These slope units and estimated soil erosion hazard units using the revised universal soil loss equation (RUSLE) were employed to form a general purpose land classification based on the USDA land capability classification and FAO framework on land evaluation.The soil loss tolerance of the area falls between 1·16 and 1·30 Mg ha−1 yr−1, while the erosion hazard units are considered generally suitable for the various land utilization types, with a number of limitations the main ones being erosion and waterlogging. The soil conservation measures proposed involved the application of bioenvironmental processes in the area and appropriate watershed management. The techniques proposed are those based on low input technology, affordable by rural farmers. It is concluded that these soil conservation measures will be adequate for sustainable agricultural production in the area. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Increase in atmospheric concentration of CO2 from 285 parts per million by volume (ppmv) in 1850 to 370 ppm in 2000 is attributed to emissions of 270 ± 30 Pg carbon (C) from fossil fuel combustion and 136 ± 55 Pg C by land‐use change. Present levels of anthropogenic emissions involve 6·3 Pg C by fossil fuel emissions and 1·8 Pg C by land‐use change. Out of the historic loss of terrestrial C pool of 136 ± 55 Pg, 78 ± 12 Pg is due to depletion of soil organic carbon (SOC) pool comprising 26 ± 9 Pg due to accelerated soil erosion. A large proportion of the historic SOC lost can be resequestered by enhancing the SOC pool through converting to an appropriate land use and adopting recommended management practices (RMPs). The strategy is to return biomass to the soil in excess of the mineralization capacity through restoration of degraded/desertified soils and intensification of agricultural and forestry lands. Technological options for agricultural intensification include conservation tillage and residue mulching, integrated nutrient management, crop rotations involving cover crops, practices which enhance the efficiency of water, plant nutrients and energy use, improved pasture and tree species, controlled grazing, and judicious use of inptus. The potential of SOC sequestration is estimated at 1–2 Pg C yr−1 for the world, 0·3–0·6 Pg C yr−1 for Asia, 0·2–0·5 Pg C yr−1 for Africa and 0·1–0·3 Pg C yr−1 for North and Central America and South America, 0·1–0·3 Pg C yr−1 for Europe and 0·1–0·2 Pg C yr−1 for Oceania. Soil C sequestration is a win–win strategy; it enhances productivity, improves environment moderation capacity, and mitigates global warming. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
In the northern highlands of Ethiopia, establishment of exclosures to restore degraded communal grazing lands has been practiced for the past three decades. However, empirical data on the effectiveness of exclosures in restoring degraded soils are lacking. We investigated the influence of exclosure age on degree of restoration of degraded soil and identified easily measurable biophysical and management‐related factors that can be used to predict soil nutrient restoration. We selected replicated (n = 3) 5‐, 10‐, 15‐, and 20‐year‐old exclosures and paired each exclosure with samples from adjacent communal grazing lands. All exclosures showed higher total soil nitrogen (N), available phosphorus (P), and cation exchange capacity than the communal grazing lands. The differences varied between 2·4 (±0·61) and 6·9 (±1·85) Mg ha−1 for the total N stock and from 17 (±3) to 39 (±7) kg ha−1 for the available P stock. The differences in N and P increased with exclosure age. In exclosures, much of the variability in soil N (R2 = 0·64) and P (R2 = 0·71) stocks were explained by a combination of annual average precipitation, woody biomass, and exclosure age. Precipitation and vegetation canopy cover also explained much of the variability in soil N (R2 = 0·74) and P (R2 = 0·52) stocks in communal grazing lands. Converting degraded communal grazing lands into exclosures is a viable option to restore degraded soils. Our results also confirm that the possibility to predict the changes in soil nutrient content after exclosure establishment using regression models is based on field measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Assessments of the effects of deforestation, post-clearance tillage methods and farming systems treatments on soil properties were made from 1978 through 1987 on agricultural watersheds near Ibadan, southwestern Nigeria. These experiments were conducted in two phases: Phase I from 1978 through 1981 and Phase II from 1983 to 1987, with 1 year (1982) as a transition phase when all plots were sown with mucuna (Mucuna utilis). There were six treatments in Phase I involving combinations of land clearing and tillage methods: (1) manual clearing with no-till (MC-NT); (2) manual clearing with plough-till (MC-PT); (3) shear-blade clearing with no-till (SB-NT); (4) tree-pusher/root rake clearing with no-till (TP-NT); (5) tree-pusher/root-rake clearing with plough-till (TP-PT); (6) traditional farming (TF). The six treatments were replicated twice in a completely randomized design. The traditional treatment of Phase I was discontinued during Phase II. The five farming systems studied during Phase II with a no-till system in all treatments were: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) and (3) fallowing with Mucuna utilis on severely degraded and moderately degraded watersheds, respectively, for 1 year followed by maize-cowpea rotation for another; (4) and (5) ley farming involving establishment of pasture in the first year on severely and moderately degraded plots, respectively, controlled grazing in the second year, and growing maize (Zea mays)-cowpea (Vigna unguiculata) in the third year. All treatments, imposed on watersheds of 2–4 ha each, were replicated twice. The soil properties analyzed were particle size distribution, total aggregation and mean weight diameter of aggregates, soil bulk density, penetrometer resistance, water retention characteristics, infiltration capacity and saturated hydraulic conductivity. These properties were measured under the forest cover in 1978, and once every year during the dry season thereafter during Phases I and II. Prior to deforestation, mean soil bulk density was 0·72 Mg m−3 and 1·30 Mg m−3, soil penetration resistance was 32·4 KPa and 90·7 KPa, and mean weight diameter of aggregates was 3·7 mm and 3·2 mm for 0–5 cm and 5–10 cm depths, respectively. The infiltration rate was excessive (54–334 cm hr−1) and saturated hydraulic conductivity was rapid (166–499 cm hr−1) under the forest cover. Furthermore, water transmission properties varied significantly even over short distances of about 1 m. Deforestation and cultivation increased soil bulk density and penetration resistance but decreased mean weight diameter of aggregates. One year after deforestation in 1980, mean soil bulk density was 1·41 Mg m−3 for 0–5 cm depth and 1·58 Mg m−3 for 5–10 cm depth. Soil bulk density and penetration resistance were generally higher for NT than for PT methods, and the penetration resistance was extremely high in all treatments by 1985. During Phase II, soil bulk density was high during the grazing cycle of the ley farming treatment. Sand content at 0–5 cm depth increased and clay content decreased with cultivation duration. Soon after deforestation, saturated hydraulic conductivity and equilibrium infiltration rate in cleared and cultivated land declined to only 20–30 per cent of that under forest. Mean saturated hydraulic conductivity following deforestation was 46·0 cm hr−1 for 0–5 cm depth and 53·7 cm hr−1 for 5–10 cm depth. Further, infiltration rate declined with deforestation and cultivation duration in all cropping systems treatments. During Phase I, mean infiltration rate was 115·8 cm hr−1 under forest cover in 1978, 20·9 cm hr−1 in 1979, 17·4 cm hr−1 in 1980 and 20·9 cm hr−1 in 1981. During Phase II, mean infiltration rate was 8·5 cm hr−1 in 1982, 11·9 cm hr−1 in 1983, 11·0 cm hr−1 in 1984, 11·3 cm hr−1 in 1985 and 5·3 cm hr−1 in 1986. Infiltration rate was generally high in ley farming and mucuna fallowing treatments. Natural fallowing drastically improved the infiltration rate from 19·2 cm hr−1 in 1982 to 193·2 cm hr−1 in 1986, a ten-fold increase within 5 years of fallowing. High-energy soil water retention characteristics in Phase I were affected by those treatments that caused soil compaction by mechanized clearing and no-till systems. Soil water retention at 0·01 MPa potential in 1979 was 19·2 per cent (gravimetrics) for SB, 17·9 per cent for TP, 15·9 per cent for MC and 17·8 per cent for TF methods. With regards to tillage, soil water retention was 17·8 per cent for NT compared with 16·8 per cent for PT. During Phase II, water retention characteristics were not affected by the farming system treatments. Mean soil water retention (average of 4 years' data from 1982 to 1986) at 0·01 MPa for 0–5 cm depth was 16·6 per cent for alley cropping, 16·7 per cent for mucuna fallowing and 16·8 per cent for ley farming. Mean soil water retention for 1·5 MPa suction was 9·3 per cent for alley cropping, 8·7 per cent for mucuna fallowing, and 9·3 per cent for ley farming. Water retention at 1·5 MPa suction correlated with the clay and soil organic carbon content.  相似文献   

6.
This paper reports on a field study conducted in Kilie catchment, East Shoa Zone, Ethiopia to assess the rate of soil erosion by employing a soil loss prediction model (Universal Soil Loss Equation) integrated with in remote sensing and geographical information systems (RS/GIS), environment and gully measurement techniques. The final soil erosion risk map was produced after multiplication of the six factors involved in the USLE and RS/GIS. Gully measurement showed that the erosion rate is higher for the upland areas than the lowlands due to inappropriate soil and water conservation measures, free grazing by animals and conversion of hillside areas into farmlands. About 97·04 per cent of the study catchment falls within a range of 0–10 t ha−1 yr−1 sheet/rill erosion rate. We found that 2·17 per cent of the study area in the uplands has a soil erosion rate falling between 10 and 20 t ha−1 yr−1. About 0·8 per cent of the study area in the uplands is hit by severe sheet/rill erosion rate within the range of 20–60 t ha−1 yr−1. Gully erosion extent in the study area was evaluated through gully measurement and quantification methods. Gully density of 67 m ha−1 was recorded in the catchment. The gully to plot area ratio was found to be 0·14 on average. Hence, in the upland areas, sustainable land management practices are required in order to reduce the rate of soil erosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Large areas in the Upper Tana river catchment, Kenya, have been over‐exploited, resulting in soil erosion, nutrient depletion and loss of soil organic matter (SOM). This study focuses on sections of the catchment earmarked as being most promising for implementing Green Water Credits, an incentive mechanism to help farmers invest in land and soil management activities that affect all fresh water resources at source. Such management practices can also help restore SOM levels towards their natural level. Opportunities to increase soil organic carbon (SOC) stocks, for two broadly defined land use types (croplands and plantation crops, with moderate input levels), are calculated using a simple empirical model, using three scenarios for the proportion of suitable land that may be treated with these practices (low = 40 per cent, medium = 60 per cent, high = 80 per cent). For the medium scenario, corresponding to implementation on ~348 000 ha in the basin, the eco‐technologically possible SOC gains are estimated at 4·8 to 9·3 × 106 tonnes (Mg) CO2 over the next 20 years. Assuming a conservative price of US$10 per tonne CO2‐equivalent on the carbon offset market, this would correspond to ~US$48–93 million over a 20‐year period of sustained green water management. This would imply a projected (potential) payment of some US$7–13 ha−1 to farmers annually; this sum would be in addition to incentives that are being put in place for implementing green water management practices and also in addition to the benefits that farmers would realize from the impact on production of these practices themselves. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Temporal changes in soil chemical and nutritional properties were evaluated in a long-term experiment conducted on Alfisols in West Africa. Effects of land use and cropping duration on soil chemical properties at 0–5 cm and 5–10 cm depths were evaluated for five treatments: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) mucuna (Mucuna utilis) fallowing for 1 year followed by maize (Zea mays)-cowpea (Vigna unguiculata) cultivation for 2 years on severely degraded land; (3) fallowing with mucuna on moderately degraded soils; (4) ley farming involving growing improved pastures for 1 year, grazing for the second year, and growing maize-cowpea for the third year on severely degraded land; (5) ley farming on moderately degraded soils. Soil chemical properties were measured once every year from 1982 through 1986 during the dry season, and included pH, soil organic carbon (SOC), total soil nitrogen (TSN), Bray-P, exchangeable cations, and effective cation exchange capacity (CEC). Regardless of the cropping system treatments, soil chemical quality decreased with cultivation time. The rate of decrease at 0–5 cm depth was 0·23 units year−1 for pH, 0·05 per cent year−1 for SOC, 0·012 per cent year−1 for TSN, 0·49 cmol kg−1 year−1 for Ca2+, 0·03 cmol kg−1 year−1 for Mg2+, 0·018 cmol kg−1 year−1 for K+, and 0·48 cmol kg−1 year−1 for CEC. Although there was also a general decrease in soil chemical quality at 5–10 cm depth, the trends were not clearly defined. In contrast to the decrease in soil properties given above, there was an increase in concentration at 0–5 cm depth of total acidity with cultivation time at the rate of 0·62 cmol kg−1 year−1, and of Mn3+ concentration at the rate of 0·081 cmol kg−1 year−1. Continuous cropping also increased the concentration of Bray-P at 0–5 cm depth due to application of phosphatic fertilizer. Trends in soil chemical properties were not clearly defined with regards to cropping system treatments. In general, however, soil chemical properties were relatively favorable in ley farming and mucuna fallowing treatments imposed on moderately degraded soils. Results are discussed in terms of recommended rates of fertilizer use, in view of soil test values, expected yields, and critical limits of soil properties.  相似文献   

9.
This paper evaluates soil loss due to water erosion in an area of 32,362 ha with a predominant land use of vineyards (Alt Penedès–Anoia region, Catalonia, Spain). The Soil and Water Assessment Tool (SWAT) was used incorporating daily climatic data for the period 2000–2010 and also detailed soil and land use maps. Particular attention was given to the universal soil loss equation cover and management factor (C factor) of vineyards, with a minimum value of 0·15 being determined for this crop. The model was calibrated using daily flow data for the year 2010, which yielded satisfactory results. Even so, significant differences were obtained on days with high‐intensity rainfall events, when the model overestimated runoff and peak discharge. In these vineyards, the simulated average soil losses per sub‐basin ranged between 0·13 and 9·73 Mg ha−1 y−1, with maximum values of between 26·32 and 42·60 Mg ha−1 y−1 registered in fine‐loamy soils developed on unconsolidated Tertiary marls. Other findings were related to problems associated with SWAT calibration under Mediterranean conditions characterised by major climate variability and high‐intensity rainfall events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Reclamation of disturbed soils is done with the primary objective of restoring the land for agronomic or forestry land use. Reclamation followed by sustainable management can restore the depleted soil organic carbon (SOC) stock over time. This study was designed to assess SOC stocks of reclaimed and undisturbed minesoils under different cropping systems in Dover Township, Tuscarawas County, Ohio (40°32·33′ N and 81°33·86′ W). Prior to reclamation, the soil was classified as Bethesda Soil Series (loamy‐skeletal, mixed, acid, mesic Typic Udorthent). The reclaimed and unmined sites were located side by side and were under forage (fescue—Festuca arundinacea Schreb. and alfa grass—Stipa tenacissima L.), and corn (Zea mays L.)—soybean (Glycine max (L.) Merr.) rotation. All fields were chisel plowed annually except unmined forage, and fertilized only when planted to corn. The manure was mostly applied on unmined fields planted to corn, and reclaimed fields planted to forage and corn. The variability in soil properties (i.e., soil bulk density, pH and soil organic carbon stock) ranged from moderate to low across all land uses in both reclaimed and unmined fields for 0–10 and 10–20 cm depths. The soil nitrogen stock ranged from low to moderate for unmined fields and moderate to high in some reclaimed fields. Soil pH was always less than 6·7 in both reclaimed and unmined fields. The mean soil bulk density was consistently lower in unmined (1·27 mg m−3 and 1·22 mg m−3) than reclaimed fields (1·39 mg m−3 and 1·34 mg m−3) planted to forage and corn, respectively. The SOC and total nitrogen (TN) concentrations were higher for reclaimed forage (33·30 g kg−1; 3·23 g kg−1) and cornfields (21·22 g kg−1; 3·66 g kg−1) than unmined forage (17·47 g kg−1; 1·98 g kg−1) and cornfield (17·70 g kg−1; 2·76 g kg−1). The SOC stocks in unmined soils did not differ among forage, corn or soybean fields but did so in reclaimed soils for 0–10 cm depth. The SOC stock for reclaimed forage (39·6 mg ha−1 for 0–10 cm and 28·6 mg ha−1 for 10–20 cm depths) and cornfields (28·3 mg ha−1; 32·2 mg ha−1) were higher than that for the unmined forage (22·7 mg ha−1; 17·6 mg ha−1) and corn (21·5 mg ha−1; 26·8 mg ha−1) fields for both depths. These results showed that the manure application increased SOC stocks in soil. Overall this study showed that if the reclamation is done properly, there is a large potential for SOC sequestration in reclaimed soils. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Development of alternative sources through wastewater reuse is important to meet water demands in arid regions. However, effects of wastewater irrigation on soil properties and crop performance must be evaluated before advocating its widespread use. Objectives of this study were to evaluate: (i) effects of prior evaporative disposal of saline‐sodic blowdown water (BW) on soil (fine‐loamy, mixed, and thermic Typic Calciorthods) properties in the disposal area, and (ii) effects of flood irrigation with three water qualities (control, BW 1X, and BW 2X) on soil salinity and alfalfa performance using a greenhouse soil column study (soil collected from same study area as objective (i)). Results indicated that although prior land disposal of BW had increased salinity and sodicity of soil, they were within the tolerance limits of the intended crop, alfalfa. Mass balance calculations indicated measured (15·6 Mg ha−1) and calculated (13·2 Mg ha−1) salt accumulation at the test site used for evaporative disposal were similar. Alfalfa grown using BW under greenhouse conditions produced prime quality hay and biomass yield similar to the control treatment (8·3 g column−1 vs. 10·5 g column−1 in control). Although 3·6 years equivalent of flood irrigation with BW 1X did not result in saline soil (BW 1X irrigated soils EC ranged from 2·2 to 3·5 dS m−1), BW 2X irrigation resulted in saline soils. Sodicities of irrigated soils were greater in fine textured deep soils than coarse textured surface soils (e.g., SAR of 6·1 at 0–5 cm vs. 19·5 mmol1/2 L−1/2 at 30–60 cm in BW 1X), indicating the need for high solubility Ca amendments for long‐term irrigation with BW on fine texture soils within the soil profile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A semiquantitative nutrient balance is presented for a field monocropped with sisal on Ferralsols in Tanzania. Input of nutrients included wet deposition, non-symbiotic nitrogen fixation and nutrients added with planting material. Nutrient output consisted of the harvested product. The average annual shortfall between 1966 to 1990 was 12 kg N ha−1, 2·8 kg P ha−1, 38 kg K ha−1, 44 kg Ca ha−1 and 19 kg Mg ha−1. The nutrient balance was compared to changes in topsoil (0–20 cm) nutrient contents of the sisal field during the same period. Average annual decrease in soil nutrient contents was: 104 kg N ha−1, 1·8 kg P ha−1, 11 kg K ha−1, 29 kg Ca ha−1 and 10 kg Mg ha−1. Much more nitrogen was lost from the topsoil than can be explained by the nutrient balance, indicating significant losses. Changes in soil phosphorus content are almost explained by the nutrient balance. More exchangeable cations were removed with the yield than were lost from the topsoil, which may imply that cations are extracted from the subsoil. Both the nutrient balance and the changes in soil nutrient contents showed that monocropping sisal is mining nutrients. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The effect of soil management and land use change are of interest to the sustainable land management for improving the environment and advancing food security in developing countries. Both anthropogenic changes and natural processes affect agriculture primarily by altering soil quality. This paper reviews and synthesizes the available literatures related to the influence of soil management and land use changes on soil carbon (C) stock in Ethiopia. The review shows that topsoil C stock declines approximately 0–63%, 0–23%, and 17–83% upon land use conversion from forest to crop land, to open grazing, and to plantation, respectively. An increase of 1–3% in soil C stock was observed within 10 years of converting open grazed land to protected enclosures. However, there was a little change in soil C stock below 20 cm depth. There is a large potential of increasing SOC pool with adoption of land restorative measures. Total potential of soil C sequestration with the adoption of restoration measures ranges 0·066–2·2 Tg C y−1 on rain‐fed cropland and 4·2–10·5 Tg C y−1 on rangeland. Given large area and diverse ecological conditions in Ethiopia, research data available in published literature are rather scanty. Therefore, researchable priorities identified in this review are important. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrological and water-quality measurements were made on a 44·3 ha watershed under forest cover and following deforestation and conversion to an agricultural land-use. Under secondary tropical rainforest, water yield ranged from 2·2 per cent to 3·1 per cent of annual rainfall. Deforestation of 7 per cent of the watershed area increased water yield to 7·0 per cent of annual rainfall. Baseflow increased with deforestation, and increased progressively with time after deforestation. It was 5·1 per cent of annual rainfall in 1979, 15·1 per cent in 1980, 16·4 per cent in 1981 and 17·9 per cent in 1982. In comparison, surface flow was 4·5 per cent in 1979 and 6·2 per cent in 1980, but decreased to 2·3 per cent in 1981 and 2·4 per cent in 1982. Total water yield following deforestation and conversion to agricultural land-use ranged from 9·6 per cent to 21·3 per cent of the annual rainfall received. The dry season flow decreased with time as the dry season progressed, but increased over the years following deforestation. Surface runoff during the rainy season depended on ground cover and soil quality. The extent and severity of soil degradation affected the dynamics of surface flow. Because of actively growing crops, plant nutrient concentrations in surface runoff were low. Forested lysimeters had higher seepage losses than cropped lysimeters, and the water-use efficiency was 1·9–3·6 kg ha−1 mm−1 for cowpeas compared with 6·1–11·0 kg ha−1 mm−1 for maize. The delivery ratio was high immediately after deforestation and decreased to a steady value of about 3·2 per cent within 7 years. The data show five distinct phases of soil degradation in relation to generation of surface runoff. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this study was to measure the in situ soil CO2 flux from grassland, afforested land and reclaimed coalmine overburden dumps by using the automated soil CO2 flux system (LICOR‐8100® infrared gas analyzer, LICOR Inc., Lincoln, NE). The highest soil CO2 flux was observed in natural grassland (11·16 µmol CO2 m−2s−1), whereas the flux was reduced by 38 and 59 per cent in mowed site and at 15‐cm depth, respectively. The flux from afforested area was found 5·70 µmol CO2 m−2s−1, which is 50 per cent lower than natural grassland. In the reclaimed coalmine overburden dumps, the average flux under tree plantation was found to be lowest in winter and summer (0·89–1·12 µmol CO2 m−2s−1) and highest during late monsoon (3–3·5 µmol CO2 m−2s−1). During late monsoon, the moisture content was found to be higher (6–7·5 per cent), which leads to higher microbial activity and decomposition. In the same area under grass cover, soil CO2 flux was found to be higher (8·94 µmol CO2 m−2s−1) compared with tree plantation areas because of higher root respiration and microbial activity. The rate of CO2 flux was found to be determined predominantly by soil moisture and soil temperature. Our study indicates that the forest ecosystem plays a crucial role in combating global warming than grassland; however, to reduce CO2 flux from grassland, mowing is necessary. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Vetiver grass is widely used to reduce soil erosion and has been applied in many areas of the world. However, studies of the effect of vertical hedge intervals on runoff, soil loss and outflow sediment size distribution under a steep slope area are rare. The vetiver grass system (VGS) with three vertical hedge intervals (0·75, 1·5 and 3 m) and no hedgerow were tested at three land slopes (30, 40 and 50 per cent) under three simulated rainfall intensities (60, 85 and 110 mm h−1). It has been observed that vetiver grass (Vetiveria nemoralis) has great potential for reducing runoff and soil loss by about 38·7–68·6 and 56·2–87·9 per cent, respectively. The vetiver strips delayed incipient runoff and reduced peak runoff rate and steady erosion rate. The land slope affected soil loss but did not have a significant effect on runoff. A narrow vetiver hedge interval slightly reduced runoff and soil loss more than a wider one. The soil loss equation obtained in this study revealed that runoff has a higher effect on soil loss. The median sediment size that passed through the vetiver strip increased with rainfall intensity and was mostly dominated by very fine sand, silt and clay. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Spatiotemporal heterogeneity of soil available nitrogen (AN) (sum of NO3–N and NH4+–N) is the essential basis for soil management and highly correlates to crop yield. Both geostatistical and traditional analyses were used to describe the spatiotemporal distribution of AN in the 0–20‐cm soil depth on typical Mollisol slopes (S1 and S2) in Northeast China. The concentration of NO3–N dynamics at slope positions was typically opposite to NH4+–N. The peak values of AN typically moved from the summit of the slope to the bottom from spring to autumn and were mainly influenced by the content of NO3–N (S1, 7·9–18·9 mg kg−1; S2, 1·2–103·6 mg kg−1), both of NO3–N (S1, 3·9–8·3 mg kg−1; S2, 2·2–28·0 mg kg−1) and NH4+–N (S1, 21·4–30·5 mg kg−1; S2, 2·1–23·3 mg kg−1), and NH4+–N (S1, 10·5–28·9 mg kg−1; S2, 5·0–39·0 mg kg−1) in the seedling stage, vegetative growth stage, and reproductive growth stage, respectively. The spatial autocorrelation of AN was strong and was mainly influenced by structural factors during crop growth stages. This was mainly determined by soil erosion–deposition (SED) and soil temperature–moisture (STM) in the seedling stage; this was also mainly influenced by SED, STM, crop type, and crop growth in the vegetative growth stage and by early STM and early SED in the reproductive growth stage. Generally, the content of AN, NO3–N, and NH4+–N on the whole slope was mainly determined by the early SED and local fertilizer application, while their spatiotemporal heterogeneity, especially the evenness, was mainly changed by SED, STM, crop growth, and crop types on the slope scale. In order to increase more crop yields, additional N fertilizer application on both the summit and the bottom during the vegetative growth stage and conservation tillage systems or additional soil amendments on the back slopes was necessary. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Field runoff plots were established in 1984 to evaluate the effects of slope length on runoff, soil erosion and crop yields on newly cleared land for four consecutive years (1984–1987) on an Alfisol at Ibadan, Nigeria. The experimental treatments involved six slope lengths (60 m to 10 m at 10-m increments) and two tillage methods (plough-based conventional tillage and a herbicide-based no-till method) of seedbed preparation. A uniform crop rotation of maize (Zea mays)/cowpeas (Vigna unguiculata) was adopted for all four years. An uncropped and ploughed plot of 25 m length was used as a control. The water runoff from the conventional tillage treatment was not significantly affected by slope length, but runoff from the no-till treatment significantly increased with a decrease in slope length. The average runoff from the no-till treatment was 1·85 per cent of rainfall for 60 m, 2·25 per cent for 40 m, 2·95 per cent for 30 m, 4·7 per cent for 20 m and 5·15 per cent for 10 m slope length. In contrast to runoff, soil erosion in the conventional tillage treatment decreased significantly with a decrease in slope length. For conventional tillage, the average soil erosion was 9·59 Mg ha−1 for 60 m, 9·88 Mg ha−1 for 50 m, 6·84 Mg ha−1 for 40 m, 5·69 Mg ha−1 for 30 m, 1·27 Mg ha−1 for 20 m and 2·19 Mg ha−1 for 10 m slope length. Because the no-till method was extremely effective in reducing soil erosion, there were no definite trends in erosion with regard to slope length. The average sediment load (erosion:runoff ratio) also decreased with a decrease in slope length from 66·3 kg ha−1 mm−1 for 60 m to 36·3 kg ha−1 mm−1 for 10 m slope length. The mean C factor (ratio of soil erosion from cropped land to uncropped control) also decreased with a decrease in slope length. Similarly, the erosion:crop yield ratio decreased with a decrease in slope length, and the relative decrease was more drastic in conventional tillage than in the no-till treatment. The slope length (L) and erosion relationship fits a polynomial function (Y=c+aL+bL2). Formulae are proposed for computing the optimum terrace spacing in relation to slope gradient and tillage method. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Turkey's forests have been continuously facing conversion into both agriculture and pasturelands, causing not only degradation and fragmentation of forested lands but also negative changes in soil properties that have not been thoroughly investigated. In order to determine possible changes in some physical and hydrophysical soil parameters along with the dispersion ratio between natural coppice forests and the neighbouring forest‐to‐grassland converted areas, a foothill of Mount Sacinka in Artvin was chosen as a research area. Besides land use, possible effects of elevation change on soil properties due to the mountainous and moderately steep landscape of the region were also taken into consideration. The soil samples were analysed for soil texture, permeability, field capacity, bulk density, organic matter, pH and dispersion ratio. The results indicated that whereas permeability (43·05 mm h−1 in forest and 18·82 mm h−1 in pasture), field capacity (43·45% in forest and 38·08% in pasture) and organic matter (6·36% in forest and 5·34% in pasture) values turned out to be higher in forest soils, bulk density (0·91 g cm−3 in forest and 1·06 g cm−3 in pasture) and pH (5·89 in forest and 6·55 in pasture) values were low in grassland soils, meaning that conversion has negative effects on soil properties. Additionally, the mean dispersion ratios of 27·55% and 33·58% for forest and pastureland soils, respectively, indicated soil erosion problems in both land uses. In addition, as for elevation effect, forest soils especially showed better characteristics at higher elevations with high permeability, field capacity and organic matter and low pH and dispersion ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Soils are an effective sink for carbon storage and immobilization through biomass productivity and enhancement of soil organic carbon (SOC) pool. The SOC sink capacity depends on land use and management. Degraded lands lose large amounts of C through SOC decomposition, erosion, and leaching. Thus, restoration of disturbed and degraded mine lands can lead to increase in biomass productivity, improved soil quality and SOC enhancement and sequestration. Reclamation of mined lands is an aggrading process and offers significant potential to sequester C. A chronosequence study consisting of 0‐, 5‐, 10‐, 15‐, 20‐ and 25‐year‐old reclaimed mine soils in Ohio was initiated to assess the rate of C sequestration by pasture and forest establishment. Undisturbed pasture and forest were used as controls. The SOC pool of reclaimed pasture sites increased from 15·3 Mg ha−1 to 44·4 Mg ha−1 for 0–15 cm depth and from 10·8 Mg ha−1 to 18·3 Mg ha−1 for 15–30 cm depth over the period of 25 years. The SOC pool of reclaimed forest sites increased from 12·7 Mg ha−1 to 45·3 Mg ha−1 for 0–15 cm depth and from 9·1 Mg ha−1 to 13·6 Mg ha−1 for 15–30 cm depth over the same time period. The SOC pool of the pasture site stabilized earlier than that of the forest site which had not yet attained equilibrium. The SOC sequestered in 0–30 cm depth over 25 years was 36·7 Mg ha−1 for pasture and 37·1 Mg ha−1 for forest. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号