首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
ABSTRACT The effects on symptom expression of single amino acid mutations in the central region of the Plum pox virus (PPV) helper component-proteinase (HC-Pro) gene were analyzed in Nicotiana benthamiana using Potato virus X (PVX) recombinant viruses. PVX recombinant virus expressing the wild-type variant of PPV HC-Pro induced the expected enhancement of PVX pathogenicity, manifested as necrosis and plant death. Recombinant virus expressing a variant of PPV HC-Pro containing a single point mutation ( HCL(134)H) was unable to induce this synergistic phenotype. The RNA silencing suppressor activity of PPV HC-Pro was demonstrated in a transient silencing suppression assay. In contrast, the HCL(134)H mutant showed no such activity. These results indicate that a unique point mutation in PPV HC-Pro impaired its ability to suppress RNA silencing and abolished its capacity to induce synergism, and clearly shows for the first time the link between these two functions in potyvirus HC-Pro. Additionally, we compared the effects on virus accumulation in N. benthamiana plants infected with either the PVX recombinant constructs or with native viruses in double infection experiments. PVX (+) and (-) strand genomic RNA accumulated at similar levels in plants infected with PVX recombinants, leading to an increase in PVX pathology, compared with plants infected with PVX alone. This finding confirms that the enhancement of pathogenicity associated with synergistic interaction is not a consequence of more efficient PVX replication due to RNA silencing suppression by PPV HC-Pro.  相似文献   

2.
ABSTRACT Transgenic soybean (Glycine max) plants expressing Soybean mosaic virus (SMV) helper component-protease (HC-Pro) showed altered vegetative and reproductive phenotypes and responses to SMV infection. When inoculated with SMV, transgenic plants expressing the lowest level of HC-Pro mRNA and those transformed with the vector alone initially showed mild SMV symptoms. Plants that accumulated the highest level of SMV HC-Pro mRNA showed very severe SMV symptoms initially, but after 2 weeks symptoms disappeared, and SMV titers were greatly reduced. Analysis of SMV RNA abundance over time with region-specific probes showed that the HC-Pro region of the SMV genome was degraded before the coat protein region. Transgenic soybean plants that expressed SMV HC-Pro showed dose-dependent alterations in unifoliate leaf morphologies and seed production where plants expressing the highest levels of HC-Pro had the most deformed leaves and the lowest seed production. Accumulation of microRNAs (miRNAs) and mRNAs putatively targeted by miRNAs was analyzed in leaves and flowers of healthy, HC-Pro-transgenic, and SMV-infected plants. Neither expression of SMV HC-Pro nor SMV infection produced greater than twofold changes in accumulation of six miRNAs. In contrast, SMV infection was associated with twofold or greater increases in the accumulation of four of seven miRNA-targeted mRNAs tested.  相似文献   

3.
Four of five weeks after planting a group of potato plants ‘Bintje’ was inoculated with potato virus X (PVX). Other groups were inoculated at intervals of 14 days. Tubers produced by plants inoculated 35 days after planting were all infected. The plants inoculated 49 days or later after planting produced few infected tubers. The latter had developed mature plant resistance against PVX infection. The ribosome and RNA contents of leaves were measured by application of adsorption chromatography. A rapid decrease in ribosome and RNA contents occurred in plants at the time of rapid increase in the rate of mature plant resistance. The decrease was most distinct in the fifteenth leaf and therefore the contents in this leaf seem to give a good indication of the rapid increase in resistance.  相似文献   

4.
5.
Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) is globally the most common pathogen of sweetpotato. An East African strain of SPFMV incites the severe 'sweetpotato virus disease' in plants co-infected with Sweet potato chlorotic stunt virus and threatens subsistence sweetpotato production in East Africa; however, little is known about its natural hosts and ecology. In all, 2,864 wild plants growing in sweetpotato fields or in their close proximity in Uganda were observed for virus-like symptoms and tested for SPFMV in two surveys (2004 and 2007). SPFMV was detected at different incidence in 22 Ipomoea spp., Hewittia sublobata, and Lepistemon owariensis, of which 19 species are new hosts for SPFMV. Among the SPFMV-positive plants, approximately 60% displayed virus-like symptoms. Although SPFMV incidence was similar in annual and perennial species, virus-like diseases were more common in annuals than perennials. Virus-like diseases and SPFMV were more common in the eastern agroecological zone than the western, central, and northern zones, which contrasted with known incidence of SPFMV in sweetpotato crops. The data on a large number of new natural hosts of SPFMV detected in this study provide novel insights into the ecology of SPFMV in East Africa.  相似文献   

6.
甘薯羽状斑驳病毒的分离与提纯   总被引:6,自引:0,他引:6  
 本文应用标准的甘薯羽状斑驳病毒(SPFMV)抗血清,通过两次蚜传,从徐薯-18、新大紫上得到一种病毒分离物。接种指示植物后这种分离物仅感染Ipomoea setosa、Ipomoea nil,不侵染Gomphrena globosa L.、Beta vulgaris L.、Nicotiana tabacum L.、Nicotiana glutionsa L.、Brassica pekinensis, Datura stramonium L.、Cucumis sativis L.、Brassica、juncea、Raphanus sativus、Phsalis floridana。此病毒分离物可用蚜传、摩擦接种、嫁接三种方式传播,稀释限点为10-5,体外存活期不到24小时,热灭活温度为60~65℃。蚜传这种分离物到 I.Setosa上,再嫁接到I. nil或I. setosa上扩大增殖,用0.2M pH7.2 PBK进行粗提取,结合垫层超离心,最后经蔗糖密度梯度离心得到了高纯度的病毒的提纯物,OD260/280的比值为1.25,粒体长度主要集中在830~850nm之间。实验证明这种病毒分离物为甘薯羽状斑驳病毒(SPFMV)。病毒收量为64.3mg/kg感病组织。提纯病毒在电镜下任何视野都可见到多量的、密集成堆的病毒粒体。  相似文献   

7.
ABSTRACT Infection of soybean (Glycine max) plants inoculated with particles of Alfalfa mosaic virus (AlMV) isolate 425 at 12 days after germination was monitored throughout the life cycle of the plant (vegetative growth, flowering, seed formation, and seed maturation) by western blot analysis of tissue samples. At 8 to 10 days after inoculation, the upper uninoculated leaves showed symptoms of virus infection and accumulation of viral coat protein (CP). Virus CP was detectable in leaves, stem, roots, seedpods, and seed coat up to 45 days postinoculation (dpi), but only in the seedpod and seed coat at 65 dpi. No virus accumulation was detected in embryos and cotyledons at any time during infection, and no seed transmission of virus was observed. Soybean plants inoculated with recombinant AlMV passaged from upper uninoculated leaves of infected plants showed accumulation of full-length chimeric AlMV CP containing rabies antigen in systemically infected leaves and seed coat. These results suggest the potential usefulness of plants and plant viruses as vehicles for producing proteins of biomedical importance in a safe and inexpensive manner. Moreover, even the soybean seed coat, treated as waste tissue during conventional processing for oil and other products, may be utilized for the expression of value-added proteins.  相似文献   

8.
Sweet potato virus disease (SPVD) is the name used to describe a range of severe symptoms in different cultivars of sweet potato, comprising overall plant stunting combined with leaf narrowing and distortion, and chlorosis, mosaic or vein-clearing. Affected plants of various cultivars were collected from several regions of Uganda. All samples contained the aphid-borne sweet potato feathery mottle potyvirus (SPFMV) and almost all contained the whitefly-borne sweet potato chlorotic stunt closterovirus (SPCSV). SPCSV was detected by a mix of monoclonal antibodies (MAb) previously shown to react only to a Kenyan isolate of SPCSV, but not by a mixture of MAb that detected SPCSV isolates from Nigeria and other countries. Sweet potato chlorotic fleck virus (SPCFV) and sweet potato mild mottle ipomovirus (SPMMV) were seldom detected in SPVD-affected plants, while sweet potato latent virus (SPLV) was never detected. Isolates of SPFMV and SPCSV obtained by insect transmissions together induced typical symptoms of SPVD when graft-inoculated to virus-free sweet potato. SPCSV alone caused stunting and either purpling or yellowing of middle and lower leaves when graft-inoculated to virus-free plants of two cultivars. Similarly diseased naturally inoculated field plants were shown consistently to contain SPCSV. Both this disease and SPVD spread rapidly in a sweet potato crop.  相似文献   

9.
We previously reported that a strain of Cucumber mosaic virus (Pepo CMV) invaded the shoot apical meristem (SAM, tunica corpus) of tobacco plants at 6–8 days postinoculation (dpi), contrary to earlier observations. To identify a viral factor determining the ability to invade the SAM, we inoculated plants with two other CMV strains, MY17 and Y, and tested the three strains in this study. Immunohistochemical microscopy revealed that MY17 CMV invaded the SAM at 7 dpi, the same as Pepo CMV, but Y CMV did not, even at 21 dpi. Using RNA pseudorecombinants between Pepo and Y CMV, we found that Pepo RNA 2 affected the rate of SAM invasion, and Pepo RNA 3 was required for successful SAM invasion. Inoculation with RNA 1 and RNA 2 from Y CMV and RNA 3 containing the chimeric coat protein (CP) gene between Pepo and Y CMV or a Y RNA 3 point mutant containing a Ser-to-Pro substitution at position 129 in CP (Y129P) revealed that amino acid 129 of CP is the determinant for successful SAM invasion. The rate of SAM invasion of the pseudorecombinants and Y129P was consistent with the efficiency of cell-to-cell movement in the inoculated leaves, implying that SAM invasion by CMV strains may be due to efficient cell-to-cell movement.  相似文献   

10.
Novel and severe symptoms of chlorosis, rugosity, leaf strapping and dark green islands, designated as sweetpotato severe mosaic disease (SPSMD), were caused by dual infection of Sweet potato mild mottle virus (SPMMV; Ipomovirus ) and Sweet potato chlorotic stunt virus (SPCSV; Crinivirus ) in three East African sweetpotato cultivars (Tanzania, Dimbuka and New Kawogo). The storage root yield was reduced by ∼80%, as compared with healthy plants under screenhouse conditions in Uganda. Plants infected with SPMMV or SPCSV alone showed nonsignificant or 50% yield reduction, respectively. SPCSV reduced resistance to SPMMV in sweetpotato, similar to the situation with resistance to Sweet potato feathery mottle virus (SPFMV; Potyvirus ) that breaks down following infection with SPCSV, followed by development of sweet potato virus disease (SPVD). In single virus infections with SPMMV and SPFMV or their coinfection, cvs Tanzania and Dimbuka were initially systemically infected, displayed symptoms and contained readily detectable virus titres, but new leaves were symptomless with very low virus titres, indicating recovery from disease. In contrast, cv. New Kawogo remained symptomless and contained low SPMMV and SPFMV titres following graft inoculation. These moderate and high levels of resistance to SPMMV and SPFMV, respectively, were lost and cultivars succumbed to a severe disease following coinfection with SPCSV. The synergistic interactions increased titres of SPMMV and SPFMV RNA by ∼1000-fold as quantified by real-time PCR, whereas SPCSV titres were reduced twofold, indicating an antagonistic interaction. Coinfection with SPMMV and SPFMV caused no detectable changes in virus titres or symptom severity.  相似文献   

11.
MDMV HC-Pro在玉米叶片中的积累及免疫定位   总被引:3,自引:0,他引:3  
 本文以感病自交系Mo17、掖107和抗病自交系黄早四为材料,研究了玉米矮花叶病毒(MDMV)和MDMV辅助成份-蛋白酶(HC-Pro)在叶片中的积累动态和细胞内定位。结果表明,在接种后3 d,MDMV就在掖107和Mo17接种叶的上位叶积累到了相当高的程度,6 d后达到高峰;而MDMV在黄早四中的浓度一直低于在掖107和Mo17中的浓度。在接种掖107和Mo176 d后,MDMV HC-Pro在上位叶中的积累到达高峰,而在黄早四植株中MDMV HC-Pro直到第9 d才到最高,而且浓度一直低于感病自交系掖107和Mo17。麦二叉蚜从发病植株上获毒后的传毒效率变化与MDMV、MDMV HC-Pro在叶片中的积累动态一致。通过胶体金标记对MDMV HC-Pro进行免疫定位,发现在细胞质中、与质膜相联系的风轮状内含体、片层凝集状内含体、细胞质高密度物质和病毒粒子周围有金标记,说明在这些部位有MDMV HC-Pro的存在。  相似文献   

12.
ABSTRACT The 50-kDa protein (P50) encoded by the open reading frame 2 of Apple chlorotic leaf spot virus (ACLSV), a putative movement protein, was expressed in transgenic Nicotiana occidentalis plants. P50 in transgenic plants was mainly detected in a modified form in the cell wall fraction, similar to that in infected leaves. The P50-expressing plants (P50 plants) complemented the systemic spread of the P50-defective mutants of an infectious cDNA clone of ACLSV (pCLSF), indicating that P50 in transgenic plants was functional. Severity of symptoms was greatly enhanced and accumulation of virus in upper leaves was increased in P50 plants inoculated with pCLSF or ACLSV compared with that in nontransgenic control plants (NT plants). Conversely, transgenic plants expressing the coat protein of ACLSV (CP plants) showed a significant delay in symptom development and a reduction of virus accumulation. However, most P50 plants inoculated with Grapevine berry inner necrosis virus (GINV), another species of the genus Trichovirus, neither developed obvious symptoms nor supported virus accumulation in inoculated or upper leaves. In contrast, systemic symptoms developed and virus accumulated equally in NT and CP plants inoculated with GINV. After inoculation with Apple stem grooving virus or Apple stem pitting virus, there was no difference in symptom development and virus accumulation among P50, CP, and NT plants. Our results indicate that transgenic plants expressing a functional P50 were more susceptible to homologous virus and, on the contrary, showed strong resistance to the heterologous virus GINV.  相似文献   

13.
14.
甘薯病毒病害(Sweet potato virus disease,SPVD)是由毛形病毒属(Crinivirus)的甘薯褪绿矮化病毒(Sweet potato chlorotic stunt virus,SPCSV)和马铃薯Y病毒属(Potyvirus)的甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)协生共侵染甘薯引起的病毒病害[1].  相似文献   

15.
Isolate DX of potato virus X (PVX) caused the typical reactions of a group three strain, systemic top necrosis in presence of potato hypersensitivity gene Nx and mosaic with gene Nb. When tubers harvested from DX-infected plants of the Nx: Nb cultivars Maris Piper and Pentland Dell were, grown on, most progeny plants were healthy, but some had systemic top necrosis caused by DX while others had mosaic symptoms in upper leaves and severe necrosis in lower ones. Infective sap from the plants with mosaic and necrosis always caused similar symptoms when inoculated to Pentland Dell. Only group four PVX strains can cause systemic infection without top necrosis in Nx:Nb cultivars, so the affected plants all contained a group four strain. That the severe necrosis of their lower leaves resulted from a shock reaction rather than from isolate DX also being present was indicated because the plants partially recovered, inoculations from near to the dilution end-point failed to demonstrate any separation of strains and behaviour on back-testing to Pentland Dell was unchanged after passage twice through tubers of this cultivar. Also, although DX caused severe necrotic symptoms in tubers of both Nx: Nb cultivars, these symptoms did not develop in tubers of plants with mosaic and necrosis. When cultured serially in Nicotiana glutinosa , the group four strain eventually reverted to group three.  相似文献   

16.
Zucchini squash is host to Cucurbit yellow stunting disorder virus (CYSDV), a member of the genus Crinivirus, and Cucumber vein yellowing virus (CVYV), a member of the genus Ipomovirus, both transmitted by the whitefly Bemisia tabaci. Field observations suggest the appearance of new symptoms observed on leaves of zucchini squash crops when both viruses were present. When infected during controlled experiments with CYSDV only, zucchini plants showed no obvious symptoms and the virus titer decreased between 15 and 45 days postinoculation (dpi), after which it was no longer detected. CVYV caused inconspicuous symptoms restricted to vein clearing on some of the apical leaves and the virus accumulated progressively between 15 and 60 dpi. Similar accumulations of virus followed single inoculations with the potyvirus Zucchini yellow mosaic virus (ZYMV) and plants showed severe stunting, leaf deformation, and mosaic yellowing. However, in mixed infections with CYSDV and CVYV, intermediate leaves showed chlorotic mottling which evolved later to rolling, brittleness, and complete yellowing of the leaf lamina, with exception of the veins. No consistent alteration of CVYV accumulation was detected but the amounts of CYSDV increased ≈100-fold and remained detectable at 60 dpi. Such synergistic effects on the titer of the crinivirus and symptom expression were not observed when co-infected with ZYMV.  相似文献   

17.
Potato plants ‘Bintje’ were grown in growth chambers; one group of 27 plants at a daily regime of 15 h light and 9 h darkness with corresponding temperatures of 18 °C and 12°C, and a second group of 27 potato plants at a daily regime of 15 h light and 9 h darkness with corresponding temperatures of 22 °C and 17 °C. The plants of both groups were inoculated with potato virus X (PVX) 56 days after planting. Young leaves had a 3-fold higher ribosome and RNA content than ageing leaves. The decrease occurred earlier at 22 °C than at 18 °C. Although plants grown at 18 C produced smaller and fewer leaves than those grown at 22 C, the former produced a higher weight of tubers than those at the higher temperature. Although corresponding leaves of both groups showed considerable differences in ribosome and RNA contents, the rate of virus translocation to the tubers was equal in both groups. This can be explained by the different growth pattern.  相似文献   

18.
Kobori T  Osaki T  Ohki ST 《Phytopathology》2003,93(11):1445-1451
ABSTRACT A potential regulatory site for Cucumber mosaic virus (CMV, pepo strain) movement necessary to establish systemic infection was identified through immunological and hybridization studies on Tetragonia expansa, which was systemically infected by CMV at 36 degrees C but not at 24 degrees C. In inoculated leaves, cell-to-cell movement of CMV was enhanced at 36 degrees C compared with that observed at 24 degrees C. CMV was distributed in the phloem cells of minor veins as well as epidermal and mesophyll cells at both 36 and 24 degrees C. CMV was detected in the petioles of inoculated leaves, stems, and petioles of uninoculated upper leaves at 36 degrees C, whereas CMV was detected only in the petioles of inoculated leaves and in stems at 24 degrees C. CMV moved into the phloem and was transported to the stem within 24 h postinoculation (hpi) at 36 degrees C. However, it did not accumulate in the petioles of the upper leaves until 36 hpi. In petioles of inoculated leaves at 24 degrees C, CMV was detected in the external phloem but not in the internal phloem. From these results, we conclude that systemic infection is established after viral entrance into the phloem pathway in T. expansa at 36 degrees C.  相似文献   

19.
The effect of cultivation temperatures on the resistance reaction to three Potato virus Y strains (PVYO, PVYN and PVYNTN) in potato cultivars carrying Rychc was examined. When potato plants carrying Rychc were cultivated at 22 °C, a few small necrotic spots developed on inoculated leaves by 5 days after mechanical inoculation (dpi), and systemic infection of a few symptomless plants was confirmed at 28 dpi by IC‐RT‐PCR. At 28 °C, distinct necrotic spots developed on inoculated leaves by 5 dpi, and systemic symptoms occasionally appeared at 28 dpi. Thus, high temperature weakens Rychc‐conferred resistance. However, the incidence of systemic infection and the titre of virus in resistant cultivars at 28 °C were lower than in a susceptible cultivar. In graft inoculation under high summer temperatures, some plants developed necrosis on the leaves and stem, but PVY was barely detected by RT‐PCR in leaves on potato carrying Rychc. When seedlings from progeny tubers of plants that were inoculated with PVY and grown in a greenhouse at >30 °C in the daytime were examined by ELISA and IC‐RT‐PCR, PVY was not detected in cultivars carrying Rychc. These results show that Rychc confers an extreme resistance to PVY strains occurring in Japan.  相似文献   

20.
ABSTRACT Transgenic Nicotiana occidentalis plants expressing a movement protein (P50) and partially functional deletion mutants (DeltaA and DeltaC) of the Apple chlorotic leaf spot virus (ACLSV) showed resistance to Grapevine berry inner necrosis virus (GINV). The resistance is highly effective and GINV was below the level of detection in both inoculated and uninoculated upper leaves. In contrast, GINV accumulated in inoculated and uninoculated leaves of nontransgenic (NT) plants and transgenic plants expressing a dysfunctional mutant (DeltaG). On the other hand, in some plants of a transgenic plant line expressing a deletion mutant (DeltaA', deletion of the C-terminal 42 amino acids), GINV could spread in inoculated leaves, but not move into uninoculated leaves. In a tissue blot hybridization analysis of DeltaA'-plants inoculated with GINV, virus could be detected in leaf blade, midribs, and petiole of inoculated leaves, but neither in stems immediately above inoculated leaves nor in any tissues of uninoculated leaves. Immunohistochemical analysis of GINV-inoculated leaves of DeltaA'-plants showed that GINV could invade into phloem parenchyma cells through bundle sheath of minor veins, suggesting that the long-distance transport of GINV might be inhibited between the phloem cells and sieve element (and/or within sieve element) rather than bundle sheath-phloem interfaces. Immunogold electron microscopy using an anti-P50 antiserum showed that P50 accumulated on the parietal layer of sieve elements and on sieve plates. The results suggested that resistance in P50-transgenic plants to GINV is due to the interference of both long-distance and cell-to-cell movement of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号