首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mars' polar regions are covered with ice-rich layered deposits that potentially contain a record of climate variations. The sounding radar SHARAD on the Mars Reconnaissance Orbiter mapped detailed subsurface stratigraphy in the Promethei Lingula region of the south polar plateau, Planum Australe. Radar reflections interpreted as layers are correlated across adjacent orbits and are continuous for up to 150 kilometers along spacecraft orbital tracks. The reflectors are often separated into discrete reflector sequences, and strong echoes are seen as deep as 1 kilometer. In some cases, the sequences are dipping with respect to each other, suggesting an interdepositional period of erosion. In Australe Sulci, layers are exhumed, indicating recent erosion.  相似文献   

2.
The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed approximately 100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.  相似文献   

3.
The ice-rich south polar layered deposits of Mars were probed with the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express orbiter. The radar signals penetrate deep into the deposits (more than 3.7 kilometers). For most of the area, a reflection is detected at a time delay that is consistent with an interface between the deposits and the substrate. The reflected power from this interface indicates minimal attenuation of the signal, suggesting a composition of nearly pure water ice. Maps were generated of the topography of the basal interface and the thickness of the layered deposits. A set of buried depressions is seen within 300 kilometers of the pole. The thickness map shows an asymmetric distribution of the deposits and regions of anomalous thickness. The total volume is estimated to be 1.6 x 10(6) cubic kilometers, which is equivalent to a global water layer approximately 11 meters thick.  相似文献   

4.
Both poles of Mars are hidden beneath caps of layered ice. We calculated the density of the south polar layered deposits by combining the gravity field obtained from initial results of radio tracking of the Mars Reconnaissance Orbiter with existing surface topography from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft and basal topography from the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express spacecraft. The results indicate a best-fit density of 1220 kilograms per cubic meter, which is consistent with water ice that has approximately 15% admixed dust. The results demonstrate that the deposits are probably composed of relatively clean water ice and also refine the martian surface-water inventory.  相似文献   

5.
Color observations from the High Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter reveal zones of localized fluid alteration (cementation and bleaching) along joints within layered deposits in western Candor Chasma, Mars. This fluid alteration occurred within the subsurface in the geologic past and has been exposed at the surface through subsequent erosion. These findings demonstrate that fluid flow along fractures was a mechanism by which subsurface fluids migrated through these layered deposits. Fractured layered deposits are thus promising sites for investigating the geologic history of water on Mars.  相似文献   

6.
The Mars Exploration Rover (MER), Opportunity, showed that layered sulfate deposits in Meridiani Planum formed during a period of rising acidic ground water. Crystalline hematite spherules formed in the deposits as a consequence of aqueous alteration and were concentrated on the surface as a lag deposit as wind eroded the softer sulfate rocks. On the basis of Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) orbital data, we demonstrate that crystalline hematite deposits are associated with layered sulfates in other areas on Mars, implying that Meridiani-like ground water systems were indeed widespread and representative of an extensive acid sulfate aqueous system.  相似文献   

7.
Mineral deposits on the martian surface can elucidate ancient environmental conditions on the planet. Opaline silica deposits (as much as 91 weight percent SiO2) have been found in association with volcanic materials by the Mars rover Spirit. The deposits are present both as light-toned soils and as bedrock. We interpret these materials to have formed under hydrothermal conditions and therefore to be strong indicators of a former aqueous environment. This discovery is important for understanding the past habitability of Mars because hydrothermal environments on Earth support thriving microbial ecosystems.  相似文献   

8.
The equatorial Medusae Fossae Formation (MFF) is enigmatic and perhaps among the youngest geologic deposits on Mars. They are thought to be composed of volcanic ash, eolian sediments, or an ice-rich material analogous to polar layered deposits. The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument aboard the Mars Express Spacecraft has detected nadir echoes offset in time-delay from the surface return in orbits over MFF material. These echoes are interpreted to be from the subsurface interface between the MFF material and the underlying terrain. The delay time between the MFF surface and subsurface echoes is consistent with massive deposits emplaced on generally planar lowlands materials with a real dielectric constant of approximately 2.9 +/- 0.4. The real dielectric constant and the estimated dielectric losses are consistent with a substantial component of water ice. However, an anomalously low-density, ice-poor material cannot be ruled out. If ice-rich, the MFF must have a higher percentage of dust and sand than polar layered deposits. The volume of water in an ice-rich MFF deposit would be comparable to that of the south polar layered deposits.  相似文献   

9.
The Mars Global Surveyor Mars Orbiter Camera has acquired data that establish the present-day impact cratering rate and document new deposits formed by downslope movement of material in mid-latitude gullies on Mars. Twenty impacts created craters 2 to 150 meters in diameter within an area of 21.5 x 10(6) square kilometers between May 1999 and March 2006. The values predicted by models that scale the lunar cratering rate to Mars are close to the observed rate, implying that surfaces devoid of craters are truly young and that as yet unrecognized processes of denudation must be operating. The new gully deposits, formed since August 1999, are light toned and exhibit attributes expected from emplacement aided by a fluid with the properties of liquid water: relatively long, extended, digitate distal and marginal branches, diversion around obstacles, and low relief. The observations suggest that liquid water flowed on the surface of Mars during the past decade.  相似文献   

10.
Chlorides commonly precipitate during the evaporation of surface water or groundwater and during volcanic outgassing. Spectrally distinct surface deposits consistent with chloride-bearing materials have been identified and mapped using data from the 2001 Mars Odyssey Thermal Emission Imaging System. These deposits are found throughout regions of low albedo in the southern highlands of Mars. Geomorphologic evidence from orbiting imagery reveals these deposits to be light-toned relative to their surroundings and to be polygonally fractured. The deposits are small (< approximately 25 km(2)) but globally widespread, occurring in middle to late Noachian terrains with a few occurrences in early Hesperian terrains. The identification of chlorides in the ancient southern highlands suggests that near-surface water was available and widespread in early Martian history.  相似文献   

11.
Paige DA 《Science (New York, N.Y.)》2005,307(5715):1575-1576
New results from the Mars Express Orbiter mission reveal multiple deposits of minerals formed in the presence of liquid water. They reinforce the conclusion that ancient Mars was warmer and wetter than it is today, and increase the number of promising localities to search for evidence of past life.  相似文献   

12.
Mars' north pole is covered by a dome of layered ice deposits. Detailed ( approximately 30 centimeters per pixel) images of this region were obtained with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter (MRO). Planum Boreum basal unit scarps reveal cross-bedding and show evidence for recent mass wasting, flow, and debris accumulation. The north polar layers themselves are as thin as 10 centimeters but appear to be covered by a dusty veneer in places, which may obscure thinner layers. Repetition of particular layer types implies that quasi-periodic climate changes influenced the stratigraphic sequence in the polar layered deposits, informing models for recent climate variations on Mars.  相似文献   

13.
During its first 30 orbits around Mars, the Viking orbiter took approximately 1000 photographic frames of the surface of Mars with resolutions that ranged from 100 meters to a little more than 1 kilometer. Most were of potential landing sites in Chryse Planitia and Cydonia and near Capri Chasma. Contiguous high-resolution coverage in these areas has led to an increased understanding of surface processes, particularly cratering, fluvial, and mass-wasting phenomena. Most of the surfaces examined appear relatively old, channel features abound, and a variety of features suggestive of permafrost have been identified. The ejecta patterns around large craters imply that fluid flow of ejecta occurred after ballistic deposition. Variable features in the photographed area appear to have changed little since observed 5 years ago from Mariner 9. A variety of atmospheric phenomena were observed, including diffuse morning hazes, both stationary and moving discrete white clouds, and wave clouds covering extensive areas.  相似文献   

14.
Data from the Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) on the Mars Express spacecraft identify the distinct mafic, rock-forming minerals olivine, low-calcium pyroxene (LCP), and high-calcium pyroxene (HCP) on the surface of Mars. Olivine- and HCP-rich regions are found in deposits that span the age range of geologic units. However, LCP-rich regions are found only in the ancient Noachian-aged units, which suggests that melts for these deposits were derived from a mantle depleted in aluminum and calcium. Extended dark regions in the northern plains exhibit no evidence of strong mafic absorptions or absorptions due to hydrated materials.  相似文献   

15.
Water has supposedly marked the surface of Mars and produced characteristic landforms. To understand the history of water on Mars, we take a close look at key locations with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter, reaching fine spatial scales of 25 to 32 centimeters per pixel. Boulders ranging up to approximately 2 meters in diameter are ubiquitous in the middle to high latitudes, which include deposits previously interpreted as finegrained ocean sediments or dusty snow. Bright gully deposits identify six locations with very recent activity, but these lie on steep (20 degrees to 35 degrees) slopes where dry mass wasting could occur. Thus, we cannot confirm the reality of ancient oceans or water in active gullies but do see evidence of fluvial modification of geologically recent mid-latitude gullies and equatorial impact craters.  相似文献   

16.
Athabasca Valles is a young outflow channel system on Mars that may have been carved by catastrophic water floods. However, images acquired by the High-Resolution Imaging Science Experiment camera onboard the Mars Reconnaissance Orbiter spacecraft reveal that Athabasca Valles is now entirely draped by a thin layer of solidified lava-the remnant of a once-swollen river of molten rock. The lava erupted from a fissure, inundated the channels, and drained downstream in geologically recent times. Purported ice features in Athabasca Valles and its distal basin, Cerberus Palus, are actually composed of this lava. Similar volcanic processes may have operated in other ostensibly fluvial channels, which could explain in part why the landers sent to investigate sites of ancient flooding on Mars have predominantly found lava at the surface instead.  相似文献   

17.
Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO(2)) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO(2) volatile release. If released into the atmosphere at times of high obliquity, the CO(2) reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.  相似文献   

18.
During October 1976, the Viking 2 orbiter acquired approximately 700 high-resolution images of the north polar region of Mars. These images confirm the existence at the north pole of extensive layered deposits largely covered over with deposits of perennial ice. An unconformity within the layered deposits suggests a complex history of climate change during their time of deposition. A pole-girdling accumulation of dunes composed of very dark materials is revealed for the first time by the Viking cameras. The entire region is devoid of fresh impact craters. Rapid rates of erosion or deposition are implied. A scenario for polar geological evolution, involving two types of climate change, is proposed.  相似文献   

19.
Previously unrecognized insolation variations on Mars are a consequence of periodic variations in eccentricity, first established by the theory of Brouwer and Van Woerkom (1950). Such annual insolation variations, characterized by both 95,000-year and 2,000,000-year periodicities, may actually be recorded in newly discovered layered deposits in the polar regions of Mars. An additional north-south variation in seasonal insolation, but not average annual insolation, exists with 51,000-year and 2,000,000-year periodicities.  相似文献   

20.
Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury's topography occurred after the earliest phases of the planet's geological history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号