首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing threats from pests and diseases demand that the South African forest industry explores options to deploy alternative pine species in plantation development. This is especially true for species, such as Pinus patula Schiede and Deppe ex Schltdl. and Cham., which are highly susceptible to the pitch canker fungus Fusarium circinatum. Losses due to F. circinatum have been confined mostly to nurseries and at field establishment resulting in a significant cost to the industry. Although, the fungus has not as yet resulted in stem and branch infections on established P. patula in South Africa, it has caused pitch canker on other, more susceptible species such as P. radiata D. Don., and P. greggii Engelm. ex Parl. As alternatives to P. patula, on the warmer and cooler sites in South Africa, families of P. elliottii Engelm var. elliottii, P. tecunumanii (Schw.) Eguiluz and Perry, P. maximinoi H. E. Moore and P. pseudostrobus Lindl. were screened for tolerance to infection by F. circinatum in greenhouse studies. Seedlings were wounded and inoculated with spores of F. circinatum. Lesion development following inoculation was used to differentiate the levels of tolerance between families. The results showed that P. maximinoi, P. pseudostrobus, and the low elevation variety of P. tecunumanii are highly tolerant to infection with very little family variation. The narrow sense heritability estimates for these species were less than 0.06. In contrast, P. elliottii showed good tolerance with some family variation and a heritability of 0.22, while the high elevation source of P. tecunumanii showed a high degree of family variation and a heritability of 0.59. These results provide the industry with valuable information on pine species tolerant to F. circinatum that could be used as alternatives to P. patula in South Africa.  相似文献   

2.
《Southern Forests》2013,75(4):301-310
Through the collaborative efforts of companies affiliated with the International Program for Tree Improvement and Conservation (Camcore), a number of pine hybrids have been produced over the last decade. Many of these have been planted in trials across southern Africa that broadly represent winter and summer rainfall areas, with the latter ranging from warm to cold temperate sites. The five-year survival and growth of the hybrids and other pines in 12 of these trials were compared with Pinus radiata in the winter rainfall, and P. patula in the summer rainfall, regions where these species have been planted extensively. Except for the highest altitude site, where freezing conditions are common, the survival of most hybrids and tropical pines was better than P. patula or P. radiata. This was, in part, attributed to their improved tolerance to the pitch canker fungus, Fusarium circinatum, which was present in the nursery at the time of planting. In the winter rainfall area, the P. elliottii × P. caribaea hybrid, P. maximinoi and, surprisingly, the P. patula hybrids performed well. In the summer rainfall regions, hybrids with tropical parents such as P. caribaea, P. oocarpa and P. tecunumanii were more productive in the subtropical/warm temperate zone and, with increasing elevation, those hybrids crossed with P. patula performed relatively better. The P. patula × P. tecunumanii hybrid, particularly when crossed with low-elevation P. tecunumanii, performed exceptionally across most sites.  相似文献   

3.
《Southern Forests》2013,75(3):273-280
Pinus species are widely planted by the South African forestry industry and are utilised for pulp, paper and saw timber products. Historically, Pinus patula Schiede ex Schltdl. et Cham. was the most widely planted commercial species in the summer rainfall area, but has come under severe threat due to the fungus Fusarium circinatum. Fusarium circinatum causes mortality in nurseries and in-field after establishment. Other Pinus species, such as P. tecunumanii F.Schwerdtf. ex Eguiluz et J.P.Perry and P. oocarpa Schiede ex Schltdl., have been crossed with P. patula to increase tolerance to F. circinatum and these hybrids have largely overcome the post-planting mortality problem. However, these hybrid-partner species are more prone to frost damage. This study reviewed laboratory screening techniques to assess the frost tolerance level of a range of Pinus pure species and hybrids. In vitro screening was done with the electrolyte leakage and whole-plant freezing techniques. Seedlings and rooted cuttings from a range of genotypes, supplied by Sappi, were tested in vitro at different target temperatures (?3, ?6, ?9 and ?12 °C) to determine their relative frost tolerance. These genotypes included a range of Pinus pure species, four interspecific hybrids (P. patula × P. tecunumanii low elevation [LE], P. patula × P. tecunumanii high elevation [HE], P. elliottii Engelm. × P. caribaea Morelet), and a three-way cross (P. patula × (P. patula × P. oocarpa)). Results from this study indicated that the electrolyte leakage technique was a reliable method to determine frost tolerance under laboratory conditions, with similar pure species rankings as experienced under field conditions. The interspecific hybrids of P. patula × P. tecunumanii LE and HE ranked intermediate between the parental species and the P. patula × P. tecunumanii HE hybrid was more frost tolerant than the P. patula × P. tecunumanii LE hybrid.  相似文献   

4.
《Southern Forests》2013,75(4):203-210
Approximately 50% of the area planted to softwood trees in South Africa has been established with Pinus patula, making it the most important pine species in the country. More effort has gone into developing this species for improved growth, tree form and wood properties than with any other species. This substantial investment has been threatened in the last 10 years by the pitch canker fungus, Fusarium circinatum. The fungus infects and contaminates nursery plants and, once transferred to the field, causes severe mortality of young trees in the first year after establishment. Although nurserymen have some control of the disease, it is recognised that the best long-term solution to mitigate damage because of F. circinatum infection is to identify tolerant species, clones and hybrids for deployment in plantations in the future. Research has shown that alternative species such as P. tecunumanii, P. maximinoi and P. elliottii are suitable for warm sites. Pine hybrids, particularly between P. patula and the high-elevation sources of P. tecunumanii, appear to be a suitable replacement on subtemperate and temperate sites. Although these alternative species and hybrids are more sensitive to subfreezing temperatures than P. patula, their planting range can be increased by including cold tolerance as a selection criterion. Future breeding efforts will most certainly focus on improving the tolerance of pure P. patula to F. circinatum, which can be achieved by identifying specific family crosses and tolerant clones. The commercial deployment of disease-tolerant control-pollinated P. patula and hybrid families will most likely be established as rooted cuttings, which requires more advanced propagation technology. In the long term, new seed orchards comprised of P. patula clones tolerant to F. circinatum could be used to produce seed for seedling production.  相似文献   

5.
The field survival of Pinus patula seedlings in South Africa is frequently below acceptable standards. From numerous studies it has been determined that this is largely due to the pitch canker fungus, Fusarium circinatum. Other commercial pines, such as P. elliottii and P. taeda, show good tolerance to this pathogen and better survival, but have inferior wood properties and do not grow as well as P. patula on many sites in the summer rainfall regions of South Africa. There is, thus, an urgent need to improve the tolerance of P. patula to F. circinatum. Operational experience indicates that when P. patula is hybridized with tolerant species, such as P. tecunumanii and P. oocarpa, survival is greatly improved on the warmer sites of South Africa. Field studies on young trees suggest that this is due to the improved tolerance of these hybrids to F. circinatum. In order to test the tolerance of a number of pine hybrids, the pure species representing the hybrid parents, as well as individual families of P. patula × P. tecunumanii, a series of greenhouse screening trials were conducted during 2008 and 2009. The results indicated that species range in tolerance and hybrids, between P. patula and these species, are intermediate in tolerance to F. circinatum. Within P. patula × P. tecunumanii, large family variation exists when pollen from the high elevation source of P. tecunumanii is used. The results of these studies illustrate the importance of developing pine hybrid breeding programs to overcome the susceptibility of our pure species to pathogens such as F. circinatum.  相似文献   

6.
A. Kanzler  A. Nel  C. Ford 《New Forests》2014,45(3):417-437
During the last 20 years a program to develop and commercialize the Pinus patula × Pinus tecunumanii hybrid, as a replacement for P. patula, has been successfully implemented. The first crosses were initiated during the early 1990s and lead to establishment of field trials across a wide variety of sites. This work gained further impetus when it became apparent that Fusarium circinatum, was causing poor post-planting survival of newly established stands of P. patula. P. tecunumanii, has been shown to be tolerant to this disease and thus a second, more comprehensive hybrid testing phase was implemented. Improvements in controlled pollination techniques and propagation methods, as well as access to genetically improved parent-stock and the use of molecular marker technology for fingerprinting was effectively utilized to greatly improve the process during this second phase. The use of artificial inoculation trials have demonstrated that the hybrid, in particular when using the low elevation (LE) provenances of P. tecunumanii, had substantially greater tolerance to F. circinatum than P. patula and survival figures from field trials support these results. Four-year volumes also indicate large growth improvements, although frost damage on certain sites presents a challenge for deployment on colder sites; and this is being tackled through breeding and accurate mapping of frost risk. Large-scale controlled pollinations and vegetative multiplication are now utilized commercially to produce the P. patula × P. tecunumanii (LE) hybrid as an alternative to P. patula.  相似文献   

7.
《Southern Forests》2013,75(4):277-285
Field establishment of South Africa’s most important commercial pine species, Pinus patula, is severely hampered by the pitch canker fungus, Fusarium circinatum. Importantly, hybrids between P. patula and other pine species tolerant to the pitch canker fungus, such as P. tecunumanii and P. oocarpa, have been identified as an alternative planting stock. In this study, variation in tree volume and dynamic modulus of elasticity (MOEdym) of the P. patula × P. tecunumanii (low- and high-elevation [LE and HE] ecotypes) hybrid was compared with the P. elliottii × P. caribaea hybrid, and the pure species P. tecunumanii (LE) and P. patula. The MOEdym was assessed using the Fakkop TreeSonic microsecond instrument across three sites. The results of the study showed that P. patula × P. tecunumanii LE performed significantly better than P. patula × P. tecunumanii HE for volume and MOEdym, which in turn was significantly better than P. patula. The MOEdym and tree growth decreased with an increase in elevation. There was significant taxon × site interaction for volume and MOEdym. The results of these trials suggested that P. patula × P. tecunumanii LE is a suitable alternative to P. patula in the Sabie region of Mpumalanga in South Africa on frost-free sites, in terms of the traits that were assessed.  相似文献   

8.
Pinus patula and high-elevation (HE) sources of P. tecunumanii exhibit intermediate levels of resistance to pitch canker (Fusarium circinatum), compared to extremely resistant species such as P. oocarpa, and extremely susceptible species such as P. radiata. Seedlings from 20 P. patula provenances and 15 HE P. tecunumanii provenances were artificially inoculated with the pitch canker fungus at 21 and 12 weeks of age, respectively, and assessed for resistance 12–20 weeks later. There was important provenance variation in pitch canker resistance for both species. The 20-week LiveStem percentage ranged from 70.3% to 43.6% among the P. patula provenances and 59.6% to 11.7% among HE P. tecunumanii provenances. There was a geographic pattern to the provenance variation, and in both species, low altitude sources demonstrated more resistance than those from high elevation. Provenance variation in pitch canker resistance could be useful when making selection and breeding decisions with these species.  相似文献   

9.
The aim of this study was to evaluate the potential of visible and near infrared spectroscopy (Vis/NIRS) in predicting the chemical, physical and mechanical behavior of single-piece natural corks stoppers used for sealing wine bottles. Two training sets of 90 and 150 cork stoppers were used to obtain four spectra per sample in different positions: two of the stopper bases (transversal section) and two of the stopper sides (tangential section and radial section). The samples were scanned in the range of 400–2,500 nm using a Foss-NIRSystems 6500 SY II spectrophotometer equipped with a remote reflectance fiber-optic probe. On each training set, two-thirds of the samples were used to develop modified partial least square (MPLS) calibration equations, and the remaining one-third of the sample for the external validation of these MPLS equations. The best equations were obtained for the transversal section, which is the recommended one when applying Vis/NIRS technology to cork. The best results for the chemical composition were obtained for waxes and total polyphenols, showing coefficient of determination of the cross validation (r cv 2 ) values of 0.64 and 0.56 and coefficient of determination of the external validation (r EV 2 ) values of 0.53 and 0.55, respectively. The best equation for the physical and mechanical parameters was obtained for moisture content (r cv 2  = 0.86 and r EV 2  = 0.85), with somewhat lower results for density, compression force and extraction force (r cv 2  = 0.66, 0.72, 0.52 and r EV 2  = 0.52, 0.49, 0.51, respectively). The SECV (standard error of cross validation) and SEP (standard error of external validation) were similar for all the physical and mechanical parameters, thus confirming the robustness of the equations. MPLS model for moisture content fulfills the requirements for screening (RPD >2.5), but MPLS models obtained for waxes, total polyphenols, density, compression force and extraction force are not good enough for routine analysis or quality control. The results obtained from the MPLS models based on Vis/NIRS technology would permit the continuous quality control of humidity in the production line as well as obtaining information about certain chemical components (extractives contents) and some physical and mechanical parameters (density, extraction force and compression force).  相似文献   

10.
The wave attenuation function of a Japanese black pine forest was evaluated based on its growth at different initial planting densities (P ini) using the spatially explicit, individual-based, dynamic global vegetation model. The forest dynamics were simulated for 150 years utilizing datasets for tree density and stem diameter at different stand ages obtained in the field. To elucidate the ability of the forest to reduce the wave height $ \eta_{t} $ (m), a long linear wave that propagates on dry ground was assumed. The attenuation of $ \eta_{t} $ (m) was expressed as follows: $ \eta_{t} = \eta_{t0} \exp ( - k_{\text{i}} x) $ , where $ \eta_{t0} $ , x, and k i are the initial wave height (m), the distance (m), and the wave attenuation coefficient (m?1), respectively. The tree destruction caused by the waves was considered in order to estimate k i. The model suggested that there was a peak age that maximized k i and was dependent on $ \eta_{t} $ , and that the maximum k i attained decreased with increasing $ \eta_{t} $ . When P ini was varied widely from 0.5 to 4 m?2, the maximum k i for a relatively low wave height (≤3 m) changed dramatically. For example, when $ \eta_{t} = 2{\text{ m}},$ the maximum k i ranged from 0.008 to 0.031 m?1, depending on P ini. Thus, utilizing a relatively low P ini would be an efficient way of quickly creating a forest capable of sufficient wave attenuation in areas where a relatively high wave height (≥4 m) is expected. It was concluded that regular harvesting and planting would be required to realize the full potential of the coastal forests to attenuate waves, and that tailoring P ini is one of the management options that could be used to establish a wave prevention forest.  相似文献   

11.
Financial performance of the P. patula × P. tecunumanii, P. greggii × P. tecunumanii, P. taeda × P. tecunumanii hybrids and their parental species was studied for South Africa. A model was developed for use in determining the profitability of a tree-breeding program (TBP) with pine hybrids in commercial plantations. Growth measurement data were collected in four, 12-year-old genetic trials on Mondi and Sappi land holdings in South Africa. Growth models developed for P. patula and P. taeda in South Africa were used to infer models for the other taxa and to calculate the optimal financial rotation age at discount rates of 6 and 8%. Financial data on pine plantations were collected from different sources in South Africa. Optimal rotation lengths in this study were found to be between 12 and 16 years for pulpwood and 17 years for sawtimber. The model output shows the net present value (NPV), the internal rate of return, and the minimum area that a tree grower has to plant every year in order to justify the investment in a TBP. A stochastic approach with Monte Carlo simulation showed that the sensitivity of NPV to uncertainty in the wood price was greater than that for the planting, harvesting, and transport costs.  相似文献   

12.
  • ? We investigated the effects of flooding for three weeks on physiological responses and uptake of NH 4 + and NO 3 ? by black spruce (Picea mariana (Mill.) BSP.) and tamarack (Larix laricina (Du Roi) K. Koch) seedlings fertilized with labeled (15NH4)2SO4 or K15NO3 in a growth chamber experiment.
  • ? Flooding reduced photosynthesis (A), transpiration (E), water use efficiency (WUE), and current uptake of NH 4 + and NO 3 ? in both species.
  • ? Under flooding, there were no significant differences between the two species in uptake of either NH 4 + or NO 3 ? at the whole-plant level but black spruce had higher translocation of NH 4 + to the shoots than did tamarack.
  • ? Under non-flooded conditions, black spruce seedlings exhibited higher uptake of both NH 4 + and NO 3 ? than did tamarack and demonstrated preferential uptake of NH 4 + (19. 7 mg g?1dw) over NO 3 ? (12.3 mg g?1dw after three weeks). In contrast, non-flooded tamarack seedlings had equal uptake of NH 4 + (4.96 mg g?1dw) and NO 3 ? (4.97 mg g?1dw).
  • ? We hypothesize that the ability of tamarack to equally exploit both 15NH 4 + and 15NO 3 ? would confer an advantage over black spruce, when faced with limitations in the availability of different forms of soil nitrogen.
  •   相似文献   

    13.
    The disease known as pitch canker results from infection of Pinus species by the fungus Fusarium circinatum. This fungus also causes a serious root disease of Pinus seedlings and cuttings in forestry nurseries. Pinus radiata and P. patula are especially susceptible to the pathogen, but there are no records of pitch canker on P. patula in established plantations. To date, only planting material of this tree species in nurseries or in plantations at the time of establishment have been infected by F. circinatum. Symptoms of pitch canker have recently emerged in an established P. patula plantation in South Africa and this study sought to determine whether the symptoms were caused by F. circinatum. Isolates from cankers were identified as F. circinatum using morphology and DNA-based diagnostic markers. Microsatellite markers were then used to determine the genetic diversity of a collection of 52 isolates. The entire population included 17 genotypes representing 30 alleles, with a greater number of genotypes collected from younger (three- to six-year-old) than older (12- to 19-year-old) trees. Both mating types of F. circinatum were present, but no evidence of sexual recombination was inferred from population genetic analyses. This is the first record globally of pitch canker on P. patula trees in managed plantations. It is of significant concern to South Africa, where P. patula is the most important Pinus species utilised for plantation forestry.  相似文献   

    14.
    Abstract

    Pinus patula and Pinus tecunumanii, two pines native to Mexico and Central America, are important plantation species for the forestry sector in the tropics and subtropics. In recent decades, members of the International Tree Conservation & Domestication Program (CAMCORE), North Carolina State University, have established large, multisite provenance trials for these pine species. The data provide valuable information about species and provenance choice for plantation establishment in many regions with different climates. However, since climate is changing rapidly, it may become increasingly difficult to choose the right species and provenance to plant. The aim of this study is to test the suitability of seed material under changing climate of two P. patula varieties (P. patula var. patula and P. patula var. longipedunculata) and two P. tecunumanii ecotypes (highland and lowland). For each variety and ecotype, a site quality model was developed that statistically relates growth to environmental factors and couples the predictions to the average 2020 climate prediction of four general circulation models. Three developed models were significant and robust. Provenances of P. tecunumanii from lowland areas in Central America are expected to be most productive in 2020 because of their promising performance under rather hot and wet climates.  相似文献   

    15.
    Adelgids (Hemiptera) in the genus Pineus have been reported as introduced insect pests causing serious losses to Pinus plantations worldwide. In 2008, Pineus boerneri was recorded for the first time in Colombia, with infestations noted on Pinus kesiya, P. tecunumanii, P. maximinoi and P. oocarpa. The lack of information on this insect in Colombia prompted investigations of its life cycle and infestation levels as well as host susceptibility of the main Pinus species planted in Colombia. In addition, the possibility of using a Ceraeochrysa species, an already established predator of adelgids in Colombia, for biological control was considered. Results showed that Pineus boerneri in Colombia has an anholocyclic life cycle comprised of four instars with a complete duration of between 49 and 97 d. Infestations were higher in the middle and upper part of trees. Pinus kesiya and P. maximinoi had the highest levels of susceptibility in field as well as in greenhouse trials. A survey of naturally infested trees showed P. tecunumanii to be moderately susceptible, whereas P. patula and P. oocarpa had low levels of susceptibility in a greenhouse trial but were not susceptible in the field. Investigations considering the impact of predation of Ceraeochrysa species showed a high predation rate of up to 140 P. boerneri consumed per day by a single Ceraeochrysa individual. Other predators of P. boerneri were recorded but were not sufficiently common to warrant detailed study.  相似文献   

    16.
    In 1995 a species/provenance test was established in the state of Puebla, Mexico to assess and compare the growth of Pinus greggii var. australis, P. maximinoi, P. patula and P. tecunumanii, including 10, 5, 11 and 4 provenances of each species, respectively. Each provenance test lot consisted of seed from 7 to 10 individual trees collected in natural stands. Range-wide samples were included in the test for P. greggii var. australis and P. patula. Material of P. maximinoi and P. tecunumanii from Guatemala, Honduras and Nicaragua, as well as Mexico was established in the test. The test site is in a mountainous area at 1440m elevation, near 20°N latitude. At 5 years of age significant differences were seen at both the species and provenance levels in survival, total height, diameter and volume. The overall test survival was 93%. Variance among species was three time greater than among provenances, comprising 25–33% of the total variation. P. maximinoi had the greatest height, diameter and volume (62dm3) followed by P. tecunumanii (53dm3). P. greggii var. australis had an average volume of 43dm3 and P. patula produced 30dm3. Although P. maximinoi had the lowest survival rate, the San Jeronimo provenance was the most productive of all 30 provenances tested; 98% survival and 73dm3 volume. This was equivalent to 2.8cm annual diameter increment and 2m in height growth per year. Significant growth differences among provenances within species indicate that potential gain exists using provenance selection.  相似文献   

    17.
    u| li]? Genotypic variation in wood total and partial shrinkage, basic density and growth traits was estimated in 51÷2 year old Acacia auriculiformis trees in a clonal test. li]? In the tangential, radial and longitudinal directions, the mean values were 2.64%, 1.64% and 0.77% for partial shrinkage, and 5.92%, 3.23%, and 0.96% for total shrinkage, respectively. Total and partial transverse shrinkage were significantly greater in sapwood than in heartwood. li]? Clonal repeatability (H C 2 ) estimates for partial shrinkage were lower than those for total shrinkage, and heartwood shrinkages had lower H C 2 than those for sapwood. Estimates of H C 2 were from 0.32 to 0.38 for total transverse shrinkage, comparable to H C 2 for both total and partial volumetric shrinkages (0.40 and 0.32, respectively). However, H C 2 for longitudinal shrinkages, total and partial coefficients of anisotropy were only from 0.09 to 0.18. li]? The genotypic coefficients of variation of all shrinkage traits varied from 5.45% to 8.02%. Total shrinkage was strongly positively correlated with partial shrinkage in each dimension. Genotypic correlations were not significant between shrinkage and growth traits or density. Strong and significant correlations between transverse shrinkage in heartwood and sapwood (0.87) indicated that juvenile shrinkage is a good genetic indicator of this trait in older trees. Utilisation du retrait du bois dans l’amélioration de l’Acacia auriculiformis A. Cunn. ex Benth à croissance rapide au Vietnam.  相似文献   

    18.
    This paper discusses family differences in the stiffness of young Pinus elliottii×P. caribaea wood and how these differences relate to differences in growth rate and altitude. Trees for measurement were obtained from three 5?year?old progeny trials established at three diverse sites on the estate of Komatiland Forests (Pty) Ltd. The trials included the following controls: P. elliottii, P. patula, P. taeda, P. patula×P. tecunumanii and P. tecunumanii. Diameter at breast height and sound velocity (which has a direct relationship with wood stiffness) were measured on all healthy trees. Virtually all of the species and hybrids exhibited marked decreases in growth rate and velocity (stiffness) with increasing altitude; the effect on velocity was most likely partly due to the inverse relationship that normally exists between wood density and altitude in most pines. Differences in growth rate explained only a small proportion of the total variation in velocity. The average sound velocities of P. patula, P. patula×P. tecunumanii and P. tecunumanii surpassed the velocity values of most of the P. elliottii×P. caribaea crosses at all three sites. Results of Spearman rank correlations of average treatment velocity between sites suggested only some similarity in the ranking orders among sites. The inverse effect of altitude on wood stiffness suggests that trees grown at increased altitudes are likely to yield wood with higher proportions of wood not meeting the minimum stiffness requirement for structural lumber at final harvest. The wood of some P. elliottii×P. caribaea crosses would be particularly vulnerable. Considering the large variation found, presumably largely genetic, there can be little doubt that a good opportunity exists for the development of genotypes more suitable for planting at higher altitudes.  相似文献   

    19.

    Context

    The gain in accuracy of breeding values with the use of single trial spatial analysis is well known in forestry. However, spatial analyses methodology for single forest genetic trials must be adapted for use with combined analyses of forest genetic trials across sites.

    Aims

    This paper extends a methodology for spatial analysis of single forest genetic trial to a multi-environment trial (MET) setting.

    Methods

    A two-stage spatial MET approach using an individual-tree model with additive and full-sib family genetic effects was developed. Dispersion parameters were estimated using Bayesian techniques via Gibbs sampling. The procedure is illustrated using height growth data at age 10 from eight large Tsuga heterophylla (Raf.) Sarg. second-generation full-sib progeny trials from two series established across seven sites in British Columbia (Canada) and on one in Washington (USA).

    Results

    The proposed multi-environment spatial mixed model displayed a consistent reduction of the posterior mean and an increase in the precision of error variances $ \left( {\sigma _{e}^{2}} \right) $ than the model with ??sets in replicates?? or incomplete block alpha designs. Also, the multi-environment spatial model provided an average increase in the posterior means of the narrow- and broad-sense individual-tree heritabilities (h N 2 and h B 2 , respectively). No consistent changes were observed in the posterior means of additive genetic correlations (r Ajj??).

    Conclusion

    Although computationally demanding, all dispersion parameters were successfully estimated from the proposed multi-environment spatial individual-tree model using Bayesian techniques via Gibbs sampling. The proposed two-stage spatial MET approach produced better results than the commonly used nonspatial MET analysis.  相似文献   

    20.
    Growth data are presented to 15 years of age from a genetic study involving factorial matings within and between P. elliottii var. elliottii and P. caribaea var. hondurensis, planted across three sites in southeast Queensland. Specific volume equations developed using the centroid method for each taxon/site combination as well as a generic (i.e. conical) volume equation, were used to estimate the mean annual increment (MAI) at 10 and 15 years of age. MAI estimated using the conical volume equation were downwardly biased by 18% in P. elliottii but the bias was less than 2% in P. caribaea var. hondurensis, and yielded different rankings of taxa at each site compared to the taxon/site specific volume equations. At all three sites, P. caribaea var. hondurensis and the F1 and F2 hybrids significantly exceeded the productivity of P. elliottii; however, differences between P. caribaea var. hondurensis and hybrid pine were generally small. Assuming a realistic contribution of the three site-types to the population of deployment environments, average MAIs for southeast Queensland were estimated as: 17.6, 23.0, 23.7 and 23.5 m3 ha?1 y?1 for Pee, Pch, F1 and F2 respectively.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号