首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】探讨锥栗花芽分化的营养生理基础,为人工调控锥栗花芽分化提供理论依据。【方法】以‘华栗4号’锥栗为试材,采用石蜡切片法,明确花芽雏梢分化进程,对比分析此期间完全混合花芽、不完全混合花芽及叶芽中内含营养成分动态变化规律。【结果】锥栗花芽雏梢分化分为冬前花序原基分化期(时期Ⅰ)、冬后花序原基分化期(时期Ⅱ)、花簇苞片原基分化期(时期Ⅲ)和花簇原基分化期(时期Ⅳ)4个时期;在花芽雏梢分化过程中,花芽与叶芽中可溶性糖含量(ω,下同)峰值出现在时期Ⅱ,分别为11.561、10.14、9.085 mg·g~(-1),可溶性蛋白含量在时期Ⅳ达到最高,分别为3.314、2.776、1.712 mg·g~(-1);花芽与叶芽中淀粉含量峰值出现在时期I,分别为148.286、170.482、189.661 mg·g~(-1);完全混合花芽中N、Mg、Fe含量在花芽雏梢分化期均先减后增再减,而K、Mn、Zn含量先增后减再增,Ca含量在时期IV最高,为144.05 mg·g~(-1);不完全混合花芽与叶芽中Zn、N、K、Ca含量均是先加后减。花芽与叶芽中的C/N均是先升后降再升。【结论】碳水化合物和可溶性蛋白的累积及高水平的C/N有利于锥栗完全混合花芽的分化。  相似文献   

2.
【目的】揭示2种育苗模式对草莓花芽分化及果实生长发育的影响。【方法】以草莓优良品种‘红颜’为试材,比较传统地面避雨育苗(CK)和水平架式穴盘基质避雨育苗(NEW)模式下的花芽分化、植物形态、物候期、果实性状等指标的变化特征。【结果】NEW模式下花芽分化早;CK的有机碳(C)、全氮(N)含量总体都高于NEW,CK的C/N比值平稳,NEW的C/N比值在花芽孕育的集中期快速增长;CK的GA、IAA含量显著高于NEW,NEW的ABA含量先上升后小幅下降,NEW的CTK含量一直上升,但含量低于CK;NEW的ABA/GA高于CTK/GA,ABA/IAA高于CTK/IAA,但变化趋势较为相近;CK的各项植株形态指标都高于NEW,CK第1批花序的物候期均较NEW相应退后;NEW模式下可溶性固形物含量、硬度与CK相当,NEW的前期产量显著高于CK,占总产量的48.2%,中、后期产量以CK为高,总产量都达380.0 g·株-1。【结论】NEW模式下的花芽分化早,早期产量高,合适的C/N比值可以促进草莓的花芽分化,ABA/IAA可以解释草莓花芽分化的机制。  相似文献   

3.
以7年生贵妃杧嫁接树为试材,采用酶联免疫吸附法(ELISA)测定产期调节过程中,贵妃杧花芽分化期间生长素(IAA)、赤霉素(GA_3)、玉米素核苷(ZR)、脱落酸(ABA)等4种内源激素含量的动态变化,研究成花过程中叶片内源激素含量的变化与成花的关系。结果表明,喷施乙烯利处理明显提高ZR含量,提高ABA/GA_3、ZR/GA_3、ABA/IAA,有利于花芽由营养生长向生殖生长转变,促进杧果花芽分化。杧果花芽分化过程中GA_3含量呈先升高后下降的趋势,高水平的IAA、ABA有利于杧果花芽分化。  相似文献   

4.
1花芽分化甜樱桃的花芽分化包括生理分化期和形态分化期两个阶段,花束状果枝和短果枝上的花芽在硬核期就开始分化的,果实采收后10天左右,花芽开始大量分化整个分化期需40~45天完成。叶芽萌动后,长成具有6~7片叶簇的新梢的基部各节,其腋芽多能分化成花芽,第二年结果。而开花后长出的新梢顶部各节,  相似文献   

5.
【目的】探讨阳光玫瑰葡萄生长期花芽分化进程及相关生理分子水平变化,为葡萄生产调控及花芽分化深入研究提供理论参考。【方法】以4年生阳光玫瑰葡萄为试材,通过徒手剥离冬芽鳞片在体式解剖镜下观察冬芽形态结构变化,测定花芽分化过程中第5节位叶片内碳水化合物、矿质元素含量及冬芽内9个成花关键基因的表达。【结果】南宁地区阳光玫瑰葡萄在新梢6片展叶期时开始花芽形态分化,在末花期进入花序原基分化期。叶片可溶性总糖、淀粉含量在花序原基分化期后显著升高。叶片P、K、Ca和Mg元素含量在花芽形态分化起始时下降,在花序原基分化后60 d时含量显著降低。冬芽中VvFT和VvSOC1基因在花芽分化起始时表达水平较高;VvLFY、VvAP1、VvFUL、VvAP2、VvAP3和VvAG基因均在花序原基分化期及花序原基分化期后80~100 d出现表达波峰,VvFLC基因在花序原基分化后60~100 d的表达水平较高。【结论】南宁地区阳光玫瑰葡萄花芽分化进程开始较早。生产上在果实膨大期和软化期前后应适当补充磷、钾、钙、镁肥,以促进果实发育、花序原基及其各级穗轴分化。VvFT和VvSOC1基因参与诱导始原基及花序原基分化,...  相似文献   

6.
温室甜樱桃花芽形态分化观察   总被引:1,自引:0,他引:1  
【目的】观察温室条件下甜樱桃花芽形态分化时间和各时期的特征,为栽培者进行适时管控、提高花芽分化质量提供理论依据。【方法】从温室甜樱桃硬核期开始,定期取‘美早’‘红灯’‘早大果’3个品种的花芽,利用石蜡切片法观察花芽形态分化状态。【结果】昌黎温室中‘美早’花芽在3月中旬开始形态分化,至6月中旬雌蕊原基分化完成,分化时间持续85 d左右。‘红灯’和‘早大果’形态分化于3月下旬开始,6月下旬完成,持续90 d左右。乐亭‘美早’花芽形态分化比昌黎早15 d开始,花芽分化持续时间100 d左右,分化速度慢于昌黎。‘美早’花芽分化开始于硬核期,‘红灯’和‘早大果’花芽分化开始于成熟期前后。【结论】花芽分化开始时间不能根据品种成熟期来判断,应通过观察分化状态来确定。每个品种花芽形态分化开始时间与其成熟期的关系相对稳定。  相似文献   

7.
韦莉  彭方仁  王世博  谭鹏鹏 《园艺学报》2010,37(8):1303-1310
以蝴蝶兰‘V31’为材料,观察了花芽分化过程,比较了成花诱导和花芽分化过程中叶片内C/N、核酸及相关代谢物质含量的变化。结果表明:蝴蝶兰花芽分化过程可分为6个阶段,即分化初始期、花序原基分化期、小花原基分化期、萼片原基分化期、花瓣原基分化期和合蕊柱及花粉块分化期。叶片中可溶性糖、淀粉和可溶性蛋白质含量均在低温处理35 d达最大值;C/N值的2次高峰先后出现于处理15 d和30 d,进入花器官分化期,可溶性糖、淀粉和可溶性蛋白质含量及C/N值均呈下降趋势。RNA和总核酸含量的变化趋势一致,处理15 d后持续增加,45 d后随着合蕊柱和花粉块的大量分化而迅速下降;RNA/DNA值在处理前30 d基本稳定,花芽萌出后急剧增长,而DNA含量的变化相对平缓。认为高水平的C/N有利于蝴蝶兰花芽的分化,RNA/DNA值(主要是RNA合成量)的急剧增长与植株由生理分化转向花芽形态分化有关。  相似文献   

8.
大樱桃花芽形态分化期的观察   总被引:3,自引:0,他引:3  
通过徒手切片,在显微镜下观察‘意大利早红‘‘红灯‘‘先锋‘‘拉宾斯‘‘斯太拉‘‘斯帕克里‘‘萨姆‘等7个不同成熟期大樱桃品种的花芽形态分化期,并绘制花芽形态分化示意图.观察结果表明:大樱桃花芽形态分化开始于6月上旬,集中分化期在7-8 月份,且分化速度较快.9月上旬花束状果枝上的花芽分化基本结束.大樱桃花芽分化开始的时期与品种的成熟期没有相关性,与芽体的大小也没有关系.  相似文献   

9.
刺梨花芽分化期芽中内源激素和碳、氮营养的含量动态   总被引:26,自引:0,他引:26  
在对贵农5号刺梨花芽分化进行观察的基础上,对花芽分化期刺梨花芽和叶芽中内源激素的赤霉素(GA1+3)、玉米素核苷(ZRs)、生长素(IAA)、脱落酸(ABA)和淀粉、可溶性总糖、总氮含量变化进行了研究。结果表明,刺梨的花芽分化期需要有高水平的ZRs、碳水化合物及低水平的GA1+3、IAA、ABA和较低水平的氮素营养。在整个花芽分化期,花芽的ZRs/GA1+3、ZRs/IAA、ABA/IAA、ABA/GA1+3及碳/氮比值比叶芽的高;在花芽生理分化期,花芽的ZRs/ABA比值高于叶芽,而形态分化期花芽的ZRs/ABA比值低于叶芽。在刺梨花芽分化的不同时期,花芽和叶芽中的GA1+3、ZRs、IAA、ABA、淀粉、可溶性总糖、总氮含量变化不一。  相似文献   

10.
【目的】明确6-BA及氨基酸硒在激素水平上对葡萄叶片衰老的调控,为设施葡萄叶片衰老延缓技术的建立提供理论依据。【方法】在设施葡萄延迟栽培条件下,以叶片衰老速度不同的‘意大利’和‘无核白鸡心’2个葡萄品种为试材,分别进行叶面喷施6-BA和氨基酸硒处理,以清水为对照,测定不同处理和对照叶片衰老期间功能叶片的叶绿素含量和净光合速率(Pn)及内源激素含量与比值的变化。【结果】外源6-BA和氨基酸硒处理显著延缓了叶片叶绿素含量和净光合速率的下降,明显提高了玉米素核苷(ZR)和赤霉素(GA3)含量和ZR/ABA(脱落酸)、GA3/ABA、(ZR+GA3)/ABA比值,显著降低了ABA含量。生长素(IAA)具有前期保持叶片生长发育和后期促进衰老的双重作用。2个葡萄品种间比较,‘意大利’叶片衰老缓慢。【结论】6-BA和氨基酸硒通过维持较高的GA3/ABA、ZR/ABA和(GA3+ZR)/ABA比值,提高了葡萄叶片的叶绿素含量和净光合速率,延长了功能期,因此,外源喷施6-BA和氨基酸硒是延缓葡萄叶片衰老的重要技术措施。  相似文献   

11.
以墨兰‘企剑白墨’花芽分化期的花芽和功能叶为试材,通过研究花芽分化的形态建成,分析花芽分化期其功能叶淀粉、可溶性糖、可溶性蛋白质含量和过氧化氢酶(CAT)、过氧化物酶(POD)活性及内源激素的动态变化过程,以期为墨兰成花调控机理提供参考依据。结果表明:‘企剑白墨’花芽分化可分为6个时期,未分化期、花序原基分化期、小花原基分化期、花萼原基分化期、花瓣原基分化期以及合蕊柱及花粉块原基分化期。在花芽分化过程中,功能叶中淀粉、可溶性糖和可溶性蛋白质含量均呈上升-下降-上升趋势;CAT和POD活性处于较高水平;赤霉素(GA3)含量整体呈下降趋势,而生长素(IAA)含量持续增加并保持稳定水平,脱落酸(ABA)总体呈上升趋势。综上所述,碳水化合物和可溶性蛋白质的积累有利于诱导花芽形成,花芽的形态建成需要消耗大量糖分和可溶性蛋白质;高活力CAT和POD可保障花芽分化顺利进行;低水平GA3和高水平IAA及ABA利于诱导花芽的发育,高含量GA3、IAA和ABA对花被片原基的分化起重要作用。  相似文献   

12.
杏李花芽分化的组织解剖学研究   总被引:1,自引:0,他引:1  
【目的】通过研究杏李品种花芽形态分化过程的组织结构变化,了解杏李花芽分化过程、时期及品种间的差异,为杏李的栽培管理技术实施提供理论依据。【方法】以3个杏李品种、1个杏品种及1个中国李品种为试材,采用常规石蜡切片法对其花芽分化过程的组织结构进行观察和对比分析。【结果】3个杏李品种花芽均于6月下旬开始分化,可分为未分化期、花原基分化期、萼片原基分化期、花瓣原基分化期、雄蕊原基分化期及雌蕊原基分化期6个时期,分化盛期集中在7月上旬至10月上旬,‘美丽李’花芽分化盛期亦集中在此时间段,且均于10月下旬完成雌蕊分化,而‘赛买提’杏花芽分化盛期集中在7月上旬至8月下旬,且雌蕊分化于9月中旬已基本完成。【结论】3个杏李品种花芽分化所经历的时期均与对照杏、李品种相同,各时期均存在重叠交错现象,无明显界限,花芽逐步分化,各分化阶段的组织结构与‘美丽李’基本一致,整体分化进程也与‘美丽李’较为相近,但均比‘赛买提’慢,进入各分化时期晚于‘赛买提’。  相似文献   

13.
以红富士、首红苹果为研究对象,连续3年用PP333(多效唑)1000mg/L和GA3(赤霉酸)1000mg/L处理,结果表明:PP333可使叶芽的节位数增长,但对花芽的节位数没有明显的影响。而GA3对叶芽节位数没有影响,但首红苹果花芽节位数有减少趋向。二者处理对苹果花芽形态分化开始时期没有影响,但PP333加速了花芽形态分化进程,GA3延迟了花芽形态分化进程。喷PP333提高了ZR(玉米素核苷)/IAA(吲哚乙酸),ZR/GAS(赤霉素)、ABA(脱落酸)/IAA和ABA/GAS比值,从而促进了花芽形成。相反,GA3处理降低了ZR/IAA、ZR/GAS、ABA/IAA和ABA/GAS比值,而抑制了花芽形成。  相似文献   

14.
【目的】对上海暖地条件下的甜樱桃改良型篱壁式栽培模式进行初步评价与优化。【方法】结合避雨设施和矮化砧木Gisela 5的应用,对苗木不同栽植方式、定植时修剪策略与定植角度及苗木质量等条件下篱壁式甜樱桃的生长特性进行对比研究。【结果】上海立地条件下,根域限制能有效抑制营养生长、提高成枝率和优化枝类组成;定植角度30°、短截苗木和采用组培的G5嫁接苗均有利于甜樱桃的营养生长,快速成形,不利于短果枝的形成,枝类组成较劣。【结论】上海地区甜樱桃宜采用改良型篱壁式栽培模式建园,结合根域限制栽植方式有利于提早花芽形成和提高花芽比率,定植时苗木不宜进行短截,苗木定植角度≤30°且选择长势中庸苗木为佳。  相似文献   

15.
【目的】探究不同光质补光处理对杨梅花芽分化和开花进程的影响。【方法】在相同设施条件下,采用色温3329 K的LED白光灯和色温1531 K的LED红光灯对杨梅树进行补光处理,测定树体周围光照度、叶片叶绿素含量、花芽数量和大小,通过形态和解剖观察花芽的萌发及发育状态,以明确不同光质补光处理对杨梅花芽生长的影响。【结果】2种光质补光处理均显著改善树体周围光环境,其中白光处理显著提高树体周围光照度。红光处理下杨梅分化形成的花芽数目最多,同期花芽最大、发育最快,利于提前花期;白光处理也在一定程度上促进花芽生长发育,但花芽数目、花芽纵横径以及花芽发育状态都弱于红光处理;对照组的花芽数量最少,萌发最晚。表明2种不同光质的补光处理均有利于花芽发育,其中较高比例红光的促进效果最为明显。【结论】对设施栽培杨梅树进行补光处理,可显著增加花芽数目,提高花芽纵横径,促进提早开花。其中红光处理促进作用优于白光处理。该研究结果对杨梅设施栽培具有指导作用。  相似文献   

16.
巴旦杏结果枝成花规律研究   总被引:7,自引:0,他引:7  
巴旦杏花芽形态分化自7月上中旬始到9月底结束,小短果枝花芽分化时间早于其它各类果枝;同一时间,花芽分化率表现为小短果枝>短果枝>中果枝>长果枝。短果枝不同部位花芽分化程度及分化率表现上部>中部>下部。生长健壮的徒长枝和发育枝上也有花芽形成。不同枝上花芽的类型、分布、成花率、座果率均有较大差异,成花率以小短果枝和短果枝最高,为83.6%和84%。座果率以短果枝最高(27.8%)。各类枝的不同枝势对其  相似文献   

17.
大葱花芽分化过程中内源激素的变化   总被引:15,自引:1,他引:14  
苏华  徐坤  刘伟 《园艺学报》2007,34(3):671-676
为探讨激素与大葱花芽分化的关系, 研究了不同大葱品种花芽分化过程中植株根、假茎及叶片内源激素的变化动态。结果表明, 大葱植株根、假茎及叶片ABA、GA3、ZR的含量均在花芽分化基本完成时达到高峰, 而IAA则至低谷, 且内源激素出现高峰或低谷的时间, 与不同品种花芽分化完成时间一致, 表明测试激素均与花芽分化有密切关系。但不同器官内源激素含量高低及变化幅度显著不同, 其中叶片ABA、GA3及根系ZR含量较高, 且变化显著, 而IAA在根系及叶片中的含量及变化幅度差异较小, 但显著高于假茎。大葱叶片ABA / IAA、ABA /GA3均随花芽分化率的增加而显著升高, 花芽分化完成时达峰值, 之后迅速降低, 说明叶片内源激素间的平衡关系, 在大葱的花芽分化过程中亦起着重要的调控作用。  相似文献   

18.
以3年生基质盆栽蓝莓品种利珀蒂为试材,设置不同程度的环割处理(环割1、2、3、4圈),测定不同处理下蓝莓树体生长及生理指标,探讨环割对基质栽培蓝莓生长及花芽形成的影响。结果表明,环割可以有效抑制树势,控制新梢旺长,增加新梢粗度,阻碍树体的光合产物向下运输,使树体光合速率降低,提高叶片中可溶性蛋白含量与C/N,调节内源激素平衡,提高花芽数,进而提高树体产量,但环割程度过重并不利于树体形成花芽。环割处理后的30~120 d,环割3圈处理表现最好,植株叶片的净光合速率比CK显著降低了62.63%,叶片可溶性蛋白含量和C/N分别比CK提高了51.21%和67.00%,ABA/IAA、ABA/GA3、ZR/IAA、ZR/GA3分别比CK提高了49.91%、32.83%、41.14%、25.05%,花芽数比CK显著提高了44.58%。在实际生产中可以采用环割3圈的修剪方式来调控基质栽培蓝莓的生长,增加花芽数。  相似文献   

19.
以红富士、首红苹果为研究对象,连续3年用PP333(多效唑)1000mg/L和GA3(赤霉酸)1000mg/L处理,结果表明:PP333可使叶芽的节位数增长,但对花芽的节位数没有明显的影响。而GA3对叶芽节位数没有影响,但首红苹果花芽节位数有减少趋向。二者处理对苹果花芽形态分化开始时期没有影响,但PP333加速了花芽形态分化进程,GA3延迟了花芽形态分化进程。喷PP333提高了ZR(玉米素核苷)/IAA(吲哚乙酸),ZR/GAs(赤霉素)、ABA(脱落酸)/IAA和ABA/GAs比值,从而促进了花芽形成。相反,GA3处理降低了ZR/IAA、ZR/GAs、ABA/IAA和ABA/GAs比值,而抑制了花芽形成。  相似文献   

20.
【目的】探究无土栽培条件下不同砧木类型‘富士’苹果幼树叶片植物激素和矿质元素含量的年动态变化,明确不同砧木类型‘富士’苹果幼树叶片内源激素和养分周年变化特性,为‘富士’苹果砧木矮化性预测和叶片营养诊断提供参考。【方法】以3 a生T337自根砧、T337中间砧和乔砧‘富士’苹果幼树为试材,每小区分别选取长势一致的6株幼树作为1次重复,共3次重复。【结果】3种砧木类型‘富士’苹果幼树生长势强弱为乔砧T337中间砧T337自根砧。‘富士’苹果幼树定植后60~90 d,叶片IAA/ABA和(IAA+GA+ZR)/ABA比值均为乔砧T337中间砧T337自根砧,叶片ABA含量为T337自根砧T337中间砧乔砧,幼树生长势越强,叶片IAA/ABA和(IAA+GA+ZR)/ABA比值越大,叶片ABA含量越少。3种砧木类型‘富士’苹果幼树叶片N和P含量定植后90~150 d变化平稳,K、Ca和Mg含量定植后60~120 d变化较小,表明‘富士’苹果幼树定植后90~120 d叶片矿质元素含量变化较平稳。‘富士’苹果幼树叶片ABA与Ca含量存在极显著正相关关系,(IAA+GA+ZR)/ABA比值和IAA/ABA比值与Ca含量呈极显著负相关关系,相关系数均大于0.8。【结论】年周期内‘富士’苹果叶片内源激素和矿质营养含量呈波动变化趋势,且不同砧木类型间存在一定的差异,取样时间不同,分析结果存在差异。通过激素含量预测‘富士’苹果砧木矮化性的适宜采集叶样时期为定植后60~90 d,而‘富士’苹果叶片营养诊断较合理的采样时期为定植后90~120 d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号