首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
Crystallization ages for six rocks from Fra Mauro have been measured by the argon-40-argon-39 method. All six rocks give an age of 3.77 +/- 0.15 x 10(9) years, which is the same as for fragmental rocks from this site. It is concluded that the Imbrium event and the crystallization of a significant portion of the pre-Imbrian basalts were essentially contemporaneous.  相似文献   

2.
An age of 3.33+/-0.05x10(9) years was obtained for Apollo 15 sample 15555 by argon40-argon-39 dating. The age of rock 15555, a basalt from the rim of Hadley Rille, establishes an upper limit to the age of the rille. The basalt flows filling the Hadley Rille section of the Imbrium basin postdate the formation of the basin-as measured by the Apollo 14 samples of the Fra Mauro formation-by at least 500x10(6) years. Therefore, the mare basalts cannot be simple impact melts but rather must result from some igneous activity on the moon.  相似文献   

3.
The mineralogy of shocked mineral and lithic grains in the Cretaceous-Tertiary (K-T) boundary claystone worldwide is most consistent with a bolide impact on a continent. Both the concentrations and sizes of these shocked grains are greatest in the western interior of North America. These data suggest that the Manson impact structure in north-central Iowa is a viable candidate for the K-T boundary impact event. Argon-40-argon-39 age spectrum dating of shocked microcline from the crystalline central uplift of the Manson impact structure indicates that there was severe argon-40 loss at 65.7 +/- 1.0 million years ago, an age that is indistinguishable from that of the K-T boundary, within the limits of analytical precision.  相似文献   

4.
The neutral mass spectrometer on board the Pioneer Venus multiprobe bus measured composition and structral parameters of the dayside Venus upper atmosphere on 9 December 1978. Carbon dioxide and helium number densities were 6 x 10(6) and 5 x 10(6) per cubic centimeter, respectively, at an altitude of 150 kilometers. The mixing ratios of both argon-36 and argon-40 were approximately 80 parts per million at an altitude of 135 kilometers. The exospheric temperature from 160 to 170 kilometers was 285 +/- 10 K. The helium homopause was found at an altitude of about 137 kilometers.  相似文献   

5.
Widespread basalts and rhyolites were erupted in Madagascar during the Late Cretaceous. These are considered to be related to the Marion hot spot and the breakup of Madagascar and Greater India. Seventeen argon-40/argon-39 age determinations reveal that volcanic rocks and dikes from the 1500-kilometer-long rifted eastern margin of Madagascar were emplaced rapidly (mean age = 87.6 +/- 0.6 million years ago) and that the entire duration of Cretaceous volcanism on the island was no more than 6 million years. The evidence suggests that the thick lava pile at Volcan de l'Androy in the south of the island marks the focal point of the Marion hot spot at approximately 88 million years ago and that this mantle plume was instrumental in causing continental breakup.  相似文献   

6.
Tritium and argon radioactivities, attributable to galactic and solar cosmic-ray interactions, were measured in lunar soil and in three lunar rocks. The tritium in the soil, 325 +/- 17 disintegrations per minute per kilogram, is slightly higher than that in the rocks, 212 to 250 dpm/kg. For two rocks, the tritium was combined with the helium-3 in order to calculate exposure ages of 375 +/- 40 and 205 +/- 25 million years. The argon-37 radioactivities, 21.0 to 27.2 dpm/kg, and the argon-39 radioactivities, 12.1 to 16.4 dpm/kg, are slightly higher than those in stony meteorites. Higher exposure ages were obtained from the argon isotopes than from tritium and helium-3. On the basis of the known galactic cosmic-ray flux and the known cross section, at least half of the observed radioactivities are produced by solar cosmic rays.  相似文献   

7.
The composition of the martian atmosphere was determined by the mass spectrometer in the molecular analysis experiment. The presence of argon and nitrogen was confirmed and a value of 1 to 2750 +/- 500 for the ratio of argon-36 to argon-40 was established. A preliminary interpretation of these results suggests that Mars had a slightly more massive atmosphere in the past, but that much less total outgassing has occurred on Mars than on Earth.  相似文献   

8.
Results from the Pioneer Venus sounder probe neutral mass spectrometer indicate that there is no difference in the isotopic ratios of carbon and oxygen between Venus and Earth to within +/- 5 percent. The mixing ratio of nitrogen is 3.5(+3)(-2) percent with an isotopic ratio within 20 percent of that of Earth. The ratio of argon-36 to argon-40 is 85 percent, and the ratio of argon-38 to argon-36 is 20 percent. The mixing ratios of argon-36 and argon-40 are approximately 40 and 50 parts per million, respectively, with an error of about a factor of 2 (mainly toward a lesser amount) resulting from uncertainty in the response of the ion pump to rare gases. Hydrogen chloride cannot account for more than a few percent of the 36 mass peak, and therefore the large excess of primordial argon is a reasonable conclusion. The ratio of neon-20 to argon-36 of 0.5 +/- 0.3 is definitely terrestrial in character rather than solar. These results indicate that there is a large excess of all primordial noble gases on Venus relative to Earth. There appears to be a considerably higher abundance of sulfur compounds below 20 kilometers than in or above the main cloud layer. The 32 and 60 mass peaks show a sharp increase below 22 kilometers, indicating the possible production of sulfur and carbon oxysulfide (COS) at the expense of sulfur dioxide.  相似文献   

9.
The formation age of the glass in the orange soil brought back by the Apollo 17 astronauts from the Taurus-Littrow valley has been measured by the (40)Ar-(39)Ar stepwise heating technique to be 3710 +/- 60 x 10(6) years. The orange glass is thus much older than expected. Four fragments, presumably from the subfloor basalt, were also analyzed and have crystallization ages of 3710 +/- 70, 3720 +/- 50, 3770 +/- 50, and 3790 +/- 70 x 10(6) years. These ages do not provide evidence for recent extensive lunar volcanism. The magmatic activity in the Sea of Serenity and the Sea of Tranquillity occurred very close in time, if not contemporaneously. The volcanic activity in the Sea of Tranquillity and the Sea of Serenity may have been triggered by the impact event forming the Sea of Rains basin.  相似文献   

10.
The cosmic-ray exposure age of the Farmington meteorite was found to be greater than 7000 years from the ratio of the carbon-14 and argon-39 present and less than 25,000 years from the ratio of the aluminum-26 and argon-39 present. This exposure age is about an order of magnitude smaller than was estimated previously.  相似文献   

11.
The (40)Ar/(39)Ar ages of a sanidine clast from a melt-matrix breccia of the Manson, Iowa, impact structure (MIS) indicate that the MIS formed 73.8 +/- 0.3 million years ago (Ma) and is not coincident with the Cretaceous-Tertiary boundary (64.43 +/- 0.05 Ma). The MIS sanidine is 9 million years older than (40)Ar/(39)Ar age spectra of MIS shock-metamorphosed microcline and melt-matrix breccia interpreted earlier to be 64 to 65 Ma. Grains of shock-metamorphosed quartz, feldspar, and zircon were found in the Crow Creek Member (upper Campanian) at a biostratigraphic level constrained by radiometric ages in the Pierre Shale of South Dakota that are consistent with the (40)Ar/(39)Ar age of 73.8 +/- 0.3 Ma for MIS reported herein.  相似文献   

12.
(40)Ar/(39)Ar dating of drill core samples of a glassy melt rock recovered from beneath a massive impact breccia contained within the 180-kilometer subsurface Chicxulub crater in Yucatán, Mexico, has yielded well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from (40)Ar/(39)Ar ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The (40)Ar/(39)Ar ages, in conjunction with geochemical and petrological similarities, strengthen the recent suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site.  相似文献   

13.
Subglacially erupted volcanic rocks from Mount Early and Sheridan Bluff, Antarctica, yield whole-rock potassium-argon dates and argon-40/argon-39 release spectra of Early Miocene age. Field associations suggest the existence of the East Antarctic ice sheet and significant uplift of the Transantarctic Mountains by that time.  相似文献   

14.
The (87)Rb-(87)Sr internal isochrons for five rocks yield an age of 3.65 +/-0.05 x 10(9) years which presumably dates the formation of the Sea of Tranquillity. Potassium-argon ages are consistent with this result. The soil has a model age of 4.5 x10(9) years, which is best regarded as the time of initial differentiation of the lunar crust. A peculiar rock fragment from the soil gave a model age of 4.44 x 10(9) years. Relative abundances of alkalis do not suggest differential volatilization. The irradiation history of lunar rocks is inferred from isotopic measurements of gadolinium, vanadium, and cosmogenic rare gases. Spallation xenon spectra exhibit a high and variable (131)Xe/(126)Xe ratio. No evidence for (129)I was found. The isotopic composition of solar-wind xenon is distinct from that of the atmosphere and of the average for carbonaceous chondrites, but the krypton composition appears similar to average carbonaceous chondrite krypton.  相似文献   

15.
Tracks attributed to the spontaneous fission of plutonium-244 and of uranium-238 were detected in a large whitlockite crystal in the lunar breccia 14321 from the Fra Mauro formation. For a track-retention age of 3.95 x 10(9) years the number of plutonium tracks relative to the number of uranium tracks is 0.51 +/- 0.15, provided that the rock was not heavily neutron-irradiated 3.95 X 10(9) years ago.  相似文献   

16.
The crystallization age of an Apollo 15 anorthosite rock, 15415,9, returned from the lunar highlands has been measured to be (4.09 +/- 0.19) x 10(9) years. The primitive lunar crust must have been formed in the first 300 to 400 x 10(6) years. The results give some credence to the hypothesis that the primitive lunar surface was molten and large-scale fractional crystallization occurred in the early history of the moon.  相似文献   

17.
(40)Ar/(39)Ar dating of tektites discovered recently in Cretaceous-Tertiary (K-T) boundary marine sedimentary rocks on Haiti indicates that the K-T boundary and impact event are coeval at 64.5 +/- 0.1 million years ago. Sanidine from a bentonite that lies directly above the K-T boundary in continental, coal-bearing, sedimentary rocks of Montana was also dated and has a (40)Ar/(39)Ar age of 64.6 +/- 0.2 million years ago, which is indistinguishable statistically from the age of the tektites.  相似文献   

18.
Analytical data for 42 major and trace elements were mostly obtained by a combination of instrumental and radiochemical neutron activation analyses using both thermal and 14-million-electronvolt neutrons. Excesses of nitrogen and chlorine in the fines, compared with the rocks, are attributed to the solar wind. A striking similarity for contents of seven elements in lunar metal and metal from the calcium-rich achondrite Juvinas was noted. Fractional dissolution was used to separate five radionuclides produced by cosmic-ray bombardment in the fines and rock 57-40. Results for argon-39 from the reaction potassium-39 (n,p), and for argon-37, from the reaction calcium-40 (n,a), seem to require a neutron spectrum conitaining more neutrons below 2 million electronvolts than the evaporation spectrum or that given by Arnold, Honda, and Lal (1) or a strong time dependence for the neutron flux.  相似文献   

19.
Lead from Apollo 11 fines is more radiogenic than any meteoritic lead reported and older than any terrestrial radiogenic lead: (201)Pb/(206)Pb/(207)Pb/(208)Pb = 1/99(.6)/69(.0)117(.1). Comparison with primordial lead from meteoritic troilite yields a 207Pb/ 206Pb age of 4.7 + 0.1 x 10(9) years. The (238)U/(204)Pb ratio is > 90 and the (232)Th/(238)U ratio is 3.9 +/-0.1. The lead conitent is > 1.7 x 10(-6). Evidently Pb was strongly depleted and Th and U strongly enriched in the formation of this material. Thallium was too low (< 5 x 10-9) to yield mass spectra, but indications are favorable for eventual observation of extinct natural radioactivity of (205)Pb.  相似文献   

20.
Measurements of the lead isotopic composition and the uranium, thorium, and lead concentrations in meteorites were made in order to obtain more precise radiometric ages of these members of the solar system. The newly determined value of the lead isotopic composition of Canyon Diablo troilite is as follows: (206)Pb/(204)Pb = 9.307, (207)Pb/(2O4)Pb = 10.294, and (208)Pb/(204)Pb = 29.476. The leads of Angra dos Reis, Sioux County, and Nuevo Laredo achondrites are very radiogenic, the (206)Pb/(204)Pb values are about 200, and the uranium-thorium-lead systems are nearly concordant. The ages of the meteorites as calculated from a single-stage (207)Pb/(206)Pb isochron based on the newly determined primordial lead value and the newly reported (235)U and (838)U decay constants, are 4.528 x 10(9) years for Sioux County and Nuevo Laredo and 4.555 x 10(9) years for Angra dos Reis. When calculated with the uranium decay constants used by Patterson, these ages are 4.593 x 10(9) years and 4.620 x 10(9) years, respectively, and are therefore 40 to 70 x 10(6) years older than the 4.55 x 10(9) years age Patterson reported. The age difference of 27 x 10(6) years between Angra dos Reis and the other two meteorites is compatible with the difference between the initial (87)Sr/(86)Sr ratio of Angra dos Reis and that of seven basaltic achondrites observed by Papanastassiou and Wasserburg. The time difference is also comparable to that determined by (129)1-(129)Xe chronology. The ages of ordinary chondrites (H5 and L6) range from 4.52 to 4.57 x 10(9) years, and, here too, time differences in the formation of the parent bodies or later metamorphic events are indicated. Carbonaceous chondrites(C2 and C3) appear to contain younger lead components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号