首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
OBJECTIVE: To evaluate risk behaviors for transmission of zoonotic diseases at petting zoos during a period without a recognized disease outbreak. DESIGN: Observational survey with environmental microbiologic sampling. SAMPLE POPULATION: 6 petting zoos in Tennessee. PROCEDURES: Attendees were observed for animal and environmental contact, eating or drinking, hand-to-face contact, and use of a hand sanitizer. Hands were examined via bacteriologic culture on some attendees. Environmental samples were collected at three petting zoos. RESULTS: 991 attendees were observed; of these, 74% had direct contact with animals, 87% had contact with potentially contaminated surfaces in animal contact areas, 49% had hand-to-face contact, and 22% ate or drank in animal contact areas. Thirty-eight percent used hand sanitizer; children had better compliance than adults. Results of bacteriologic cultures of hands were negative for Salmonella spp and Escherichia coli O157; Salmonella spp were isolated from 63% and E coli O157 from 6% of the environmental samples. CONCLUSIONS AND CLINICAL RELEVANCE: High risk behaviors were common among petting zoo visitors, and disease prevention guidelines were inconsistently followed. This is an example of the importance of one-medicine, one-health initiatives in protecting the public health. Veterinarians, venue operators, and public health authorities must work together on targeted education to improve implementation of existing disease prevention guidelines.  相似文献   

2.
Grazing-fed cattle were previously demonstrated to be reservoir of non-O157 Shigatoxigenic Escherichia coli (STEC) serotypes in Argentina. The acid-resistance of some STEC strains makes it reasonable to assume the presence in feedlot of particular STEC serotypes. Fifty-nine animals were sampled every 2 weeks during 6 months by rectal swabs. Twenty-seven of 59 animals (45.8%) were shown to be Stx2(+); 3/59 (5.1%) carried Stx1(+) and 7/59 (11.9%) were Stx1(+) Stx2(+). Among 44 STEC isolates, 31 isolates were associated to 10 O serogroups (O2, O15, O25, O103, O145, O146, O157, O171, O174, O175) and 13 were considered non-typable (NT). Six H antigens (H2, H7, H8, H19, H21, H25) were distributed in 21 isolates whereas 23 were non-mobile (H-). Seventeen of 44 strains (38.6%) were eaeA(+) and 14 (31.8%) harbored the 60MDa plasmid. The megaplasmid (Mp) and eaeA gene were simultaneously found in a limited number of serotypes belonging to the enterohaemorrhagic E. coli (EHEC). E. coli O157:H7 strains, isolated from four (6.8%) animals, corresponded to the Stx2(+), eaeA(+), Mp(+) pattern. Three O157:H7 strains belonged to phage type 4 and the other strain was atypical. Many serotypes isolated from grain-fed cattle (O2:H25, O15:H21, O25:H19, O145:H-, O146:H-, O146:H21, O157:H7, O175:H8) also differed from those isolated by us previously from grazing animals. The serotypes O15:H21, O25:H19 and O175:H8 had not been identified at present as belonging to STEC. This work provides new data for the understanding of the ecology of STEC in grain-fed cattle and confirms that cattle are an important reservoir of STEC.  相似文献   

3.
Three-hundred and forty-five herds (17 swine, 122 dairy sheep, 124 beef and 82 dairy cattle) were investigated for prevalence of Shiga toxin-producing Escherichia coli (STEC). Rectal faecal samples were selectively enriched and then examined by immunodetection techniques (Immunomagnetic Separation with anti-E. coli O157 Dynabeads, ImmunoMagnetic cell Separation (IMS) and automated enzyme-linked fluorescent immunoassay using VIDAS) and polymerase chain reaction (PCR) (rfbE and fliC genes) to assess the prevalence of E. coli O157:H7. Prevalence of non-O157 STEC was estimated by PCR screening for stx genes of 10 lactose-positive colonies grown on MacConkey agar after enrichment. PCR was used on all STEC isolates to detect stx(1), stx(2), eaeA and E-hlyA genes. Both immunodetection methods showed a moderate-good level of agreement (kappa = 0.649) but IMS showed 87.5% complementary sensitivity. Prevalence of positive herds for E. coli O157:H7 was estimated at 8.7% for sheep and 3.8% for cattle, whereas all the porcine herds tested negative. Non-O157 STEC were also absent from swine, but were isolated more frequently from ovine (50.8%) than bovine herds (35.9%). Within-herd prevalences of excretion of E. coli O157:H7 established by individual testing of 279 sheep (six herds) and 30 beef cattle (one herd) were 7.3% and 6.7% respectively. PCR analysis of 49 E. coli O157:H7 and 209 non-O157 isolates showed a different distribution of virulence genes. All E. coli O157:H7 were stx(2) gene-positive, eaeA was detected in 95.9%, and the toxigenic profile stx(2)/eaeA/E-hlyA was present in 75.5% of the isolates. Among the non-O157 STEC, prevalence of eaeA was significantly lower (5.3%) and E-hlyA was present in 50.2% of the isolates but only sporadically associated with eaeA. stx(2) was predominant in non-O157 isolates from cattle, whereas in sheep the combination stx(1)/stx(2) was more prevalent. This study demonstrated the wide distribution of STEC in ruminant herds, which represent an important reservoir for strains that pose a potential risk for human infections.  相似文献   

4.
Over a 12 month period, 588 cattle faecal samples and 147 farm environmental samples from three dairy farms in southeast Queensland were examined for the presence of Shiga-toxigenic Escherichia coli (STEC). Samples were screened for Shiga toxin gene (stx) using PCR. Samples positive for stx were filtered onto hydrophobic grid membrane filters and STEC identified and isolated using colony hybridisation with a stx-specific DNA probe. Serotyping was performed to identify serogroups commonly associated with human infection or enterohaemorrhagic Escherichia coli (EHEC). Shiga-toxigenic Escherichia coli were isolated from 16.7% of cattle faecal samples and 4.1% of environmental samples. Of cattle STEC isolates, 10.2% serotyped as E. coli O26:H11 and 11.2% serotyped as E. coli O157:H7, and the E. coli O26:H11 and E. coli O157:H7 prevalences in the cattle samples were 1.7 and 1.9%, respectively. Prevalences for STEC and EHEC in dairy cattle faeces were similar to those derived in surveys within the northern and southern hemispheres. Calves at weaning were identified as the cattle group most likely to be shedding STEC, E. coli O26 or E. coli O157. In concurrence with previous studies, it appears that cattle, and in particular 1-14-week-old weanling calves, are the primary reservoir for STEC and EHEC on the dairy farm.  相似文献   

5.
Shiga toxin-producing Escherichia coli (STEC), particularly O157, are major food borne pathogens. Non-O157 STEC, particularly O26, O45, O103, O111, O121, and O145, have also been recognized as a major public health concern. Unlike O157, detection procedures for non-O157 have not been fully developed. Our objective was to develop a multiplex PCR to distinguish O157 and the 'top six' non-O157 serogroups (O26, O45, O103, O111, O121, and O145) and evaluate the applicability of the multiplex PCR to detect the seven serogroups of E. coli in cattle feces. Published sequences of O-specific antigen coding genes, rfbE (O157) and wzx and wbqE-F (non-O157), were analyzed to design serogroup-specific primers. The specificity of amplifications was confirmed with 138 known STEC strains and the reaction yielded the expected amplicons for each serogroup. In feces spiked with pooled 7 STEC strains, the sensitivity of the detection was 4.1 × 10(5)CFU/g before enrichment and 2.3 × 10(2) after 6h enrichment in E. coli broth. Additionally, 216 fecal samples from cattle were collected and tested by multiplex PCR and cultural methods. The multiplex PCR revealed a high prevalence of all seven serogroups (178 [O26], 108 [O45], 149 [O103], 30 [O111], 103 [O121], 5 [O145], and 160 [O157]) of 216 samples in fecal samples. Cultural procedures identified 33.1% (53/160) and 35.5% (11/31) of PCR-positive samples for E. coli O157 and non-O157 serogroups, respectively. Samples that were culture-positive were all positive by the multiplex PCR. The multiplex PCR can be used to identify serogroups of putative STEC isolates.  相似文献   

6.
Shiga toxin-producing Escherichia coli (STEC) are a public health concern. Bacterial culture techniques commonly used to detect E. coli O157:H7 will not detect other STEC serotypes. Feces from cattle and other animals are a source of O157:H7 and other pathogenic serotypes of STEC. The objective of this study was to estimate the pen-level prevalence of Shiga toxins and selected STEC serotypes in pre-slaughter feedlot cattle. Composite fecal samples were cultured and a polymerase chain reaction (PCR) was used to detect genes for Shiga toxins (stx1 and stx2) and genes for O157:H7, O111:H8, and O26:H11 serotypes. Evidence of Shiga toxins was found in 23 pens (92%), O157:H7 in 2 (8%), O111:H8 in 5 (20%), and O26:H11 in 20 (80%) of the 25 pens investigated. Although pen-level prevalence estimates for Shiga toxins and non-O157 serotypes seem high relative to O157:H7, further effort is required to determine the human health significance of non-O157 serotypes of STEC in feedlot cattle.  相似文献   

7.
Cattle are a natural reservoir for Shiga toxigenic Escherichia coli (STEC), however, no data are available on the prevalence and their possible association with organic or conventional farming practices. We have therefore studied the prevalence of STEC and specifically O157:H7 in Swiss dairy cattle by collecting faeces from approximately 500 cows from 60 farms with organic production (OP) and 60 farms with integrated (conventional) production (IP). IP farms were matched to OP farms and were comparable in terms of community, agricultural zone, and number of cows per farm. E. coli were grown overnight in an enrichment medium, followed by DNA isolation and PCR analysis using specific TaqMan assays. STEC were detected in all farms and O157:H7 were present in 25% of OP farms and 17% of IP farms. STEC were detected in 58% and O157:H7 were evidenced in 4.6% of individual faeces. Multivariate statistical analyses of over 250 parameters revealed several risk-factors for the presence of STEC and O157:H7. Risk-factors were mainly related to the potential of cross-contamination of feeds and cross-infection of cows, and age of the animals. In general, no significant differences between the two farm types concerning prevalence or risk for carrying STEC or O157:H7 were observed. Because the incidence of human disease caused by STEC in Switzerland is low, the risk that people to get infected appears to be small despite a relatively high prevalence in cattle. Nevertheless, control and prevention practices are indicated to avoid contamination of animal products.  相似文献   

8.
Shiga toxin-producing Escherichia coli (STEC) O157:H7 represents a major public health concern worldwide, with cattle recognized as their main natural reservoir. The aim of this work was to determine the prevalence and the pheno-genotypic characteristics of STEC O157:H7 in a herd with 268 cattle of the fighting bulls breed (De Lidia breed) managed under extensive conditions in the South-West of Spain. Rectal-anal swabs of all animals were collected and examined for STEC O157:H7 by performing an immunomagnetic concentration and separation procedure combined with PCR, and the resulting isolates were characterized by both phenotypic and genotypic methods. Overall, STEC O157:H7 was isolated from seven animals (2.6%) in the herd. The PCR procedure indicated that all seven isolates displayed stx2, eae-γ1, ehxA, O157 rfbE, and fliCh7 genes. They belonged to phage types 4 (one isolate) and 42 (two isolates), and four isolates reacted with typing phages but did not conform to a recognized pattern. Among the seven isolates there were five indistinguishable PFGE patterns and other two which differed only in ?2 restriction fragments, supporting the existence of horizontal transmission among animals in the herd. The present study demonstrates that cattle managed under extensive conditions in Spain can excrete STEC O157:H7 with their faeces. To our knowledge this is the first isolation of this pathogen from De Lidia cattle.  相似文献   

9.
Domestic farm animals represent an important reservoir of infection for Shiga toxin-producing Escherichia coli (STEC). Nevertheless the bacterial factors required to colonise these hosts are poorly defined. In this study, the prevalence of a recently described fimbrial gene cluster, lpfO113, among human and animal isolates of STEC was investigated. lpfO113 has been shown to play a role in the adherence of STEC O113:H21 to epithelial cells. Here the presence of the lpfAO113 gene (predicted to encode a major fimbrial subunit) was examined by PCR in E. coli of serogroups O157 and O26 isolated from pigs (n=38), cattle (n=10), and humans (n=9). In addition, we tested for several other genetic virulence markers including Shiga toxin (stx), intimin (eae), the translocated intimin receptor (tir), EHEC-hemolysin (ehx) and F18 fimbriae (fedA). Overall 45 of the 57 strains (79%) possessed the lpfAO113 gene as determined by the presence of a 573 bp PCR product. Moreover, there was a close correlation between the presence of the lpfAO113 marker and the absence of the eae gene. lpfAO113 was found in all of pig isolates, suggesting a possible role in colonisation of the porcine host. In addition, several E. coli strains isolated from pigs had two fimbrial gene markers, fedA and lpfAO113. lpfAO113 was not present in strains of E. coli O157:H7 as described previously. Overall these results show that lpfAO113 is widely distributed among eae-negative E. coli isolates and thus may represent an important adherence factor in this group of pathogens.  相似文献   

10.
In order to evaluate the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains, 197 fecal samples of healthy cattle from 10 dairy farms, four beef farms and one slaughterhouse at Rio de Janeiro State, Brazil, were examined for Shiga toxin (Stx) gene sequences by polymerase chain reaction (PCR). For presumptive isolation of O157:H7 E. coli, the Cefixime-potassium tellurite-sorbitol MacConkey Agar (CT-SMAC) was used. A high occurrence (71%) of Stx was detected, and was more frequently found among dairy cattle (82% vs. 53% in beef cattle), in which no differences were observed regarding the age of the animals. Dot blot hybridization with stx1 and stx2 probes revealed that the predominant STEC type was one that had the genes for both stx1 and stx2 in dairy cattle and one that had only the stx1 gene for beef cattle. Three (1.5%) O157:H7 E. coli strains were isolated from one beef and two dairy animals by the use of CT-SMAC. To our knowledge, this is the first report of O157:H7 isolation in Brazil. A PCR-based STEC detection protocol led to the isolation of STEC in 12 of 16 randomly selected PCR-positive stool samples. A total of 15 STEC strains belonging to 11 serotypes were isolated, and most of them (60%) had both stx1 and stx2 gene sequences. Cytotoxicity assays with HeLa and Vero cells revealed that all strains except two of serotype O157:H7 expressed Stx. The data point to the high prevalence of STEC in our environment and suggest the need for good control strategies for the prevention of contamination of animal products.  相似文献   

11.
PROBLEM ADDRESSED: Shiga toxin-producing Escherichia coli (STEC), have emerged as food poisoning pathogens which can cause severe diseases in humans. OBJECTIVE: The aim of this study was to determinate the serotypes and virulence genes of STEC strains isolated from sheep in Spain, with the purpose of determining whether sheep represent a potential source of STEC pathogenic for humans. METHODS AND APPROACH: Faecal swabs obtained from 697 healthy lambs on 35 flocks in Spain during the years 2000 and 2001 were examined for STEC using phenotypic (Vero cells) and genotypic (PCR) methods. RESULTS: STEC O157:H7 strains were isolated from seven (1%) animals in six flocks, whereas non-O157 STEC strains were isolated from 246 (35%) lambs in 33 flocks. A total of 253 ovine STEC strains were identified in this study. PCR showed that 110 (43%) strains carried stx(1) genes, 10 (4%) possessed stx(2) genes and 133 (53%) both stx(1) and stx(2). Enterohaemolysin (ehxA) and intimin (eae) virulence genes were detected in 120 (47%) and in 9 (4%) of the STEC strains. STEC strains belonged to 22 O serogroups and 44 O:H serotypes. However, 70% were of one of these six serogroups (O6, O91, O117, O128, O146, O166) and 71% belonged to only nine serotypes (O6:H10, O76:H19, O91:H-, O117:H-, O128:H-, O128:H2, O146:H21, O157:H7, O166:H28). A total of 10 new O:H serotypes not previously reported in STEC strains were found in this study. Seven strains of serotype O157:H7 possessed intimin type gamma1, and two strains of serotype O156:H- had the new intimin zeta. STEC O157:H7 strains were phage types 54 (four strains), 34 (two strains) and 14 (one strain). CONCLUSIONS: This study confirms that healthy sheep are a major reservoir of STEC pathogenic for humans. However, because the eae gene is present only in a very small proportion of ovine non-O157 STEC, most ovine strains may be less pathogenic.  相似文献   

12.
The study objectives were to determine the prevalence and serotypes of non-O157 Shiga toxin-producing Escherichia coli (STEC) in pens of feedlot cattle and on corresponding beef carcasses. We collected 25 fecal samples from 84 pens in 21 Alberta feedlots and 40 carcass swabs from each preslaughter pen for analysis by culture and polymerase chain reaction (PCR). Non-O157 STEC were recovered from feces from 12 (14%) of the 84 pens and 12 (57%) of the 21 feedlots by examination of 1 E. coli isolate positive for 4-methylumbelliferyl-beta-beta-glucuronide per sample. Twelve non-O157 serotypes were detected, but 7 of the 15 STEC isolates lacked the accessory virulence genes eae and hlyA. Although 115 (7%) of the carcass broths were PCR-positive, no STEC isolates were recovered from the 1650 carcasses sampled. Our data indicate that multiple non-O157 STEC serotypes may be present in cattle feces, yet are unlikely to be recovered from the corresponding beef carcasses when 20 colonies per sample from PCR-positive broth cultures are analyzed.  相似文献   

13.
In summer 2003, a study was performed in thirty Swiss petting zoos with the objective to determine the prevalence of zoonotic agents, and to describe hygiene measures implemented to reduce the risk of human infection. Fecal samples from different animal species were collected from the floor of pens to determine the prevalence of Salmonella spp., Campylobacter spp., verocytotoxin producing E. coli/ VTEC and Francisella tularensis. A questionnaire on hygiene measures, number of animals per species, housing system, care procedures and feeding was administered to every petting zoo to estimate exposure of visitors to zoonotic microorganisms. In total, 423 fecal samples were examined. Of these samples, 41 were positive for Campylobacter spp., which were mainly isolates from pigs and poultry (35% positive samples from each species). In pigs, 50% of the positive samples (6 samples) were typed as C. jejuni. The others were typed as C. coli (3) and C lan' (3), respectively. Five poultry isolates were typed as C. jejuni, and two as C. coli. Two samples were positive for Salmonella spp. Salmonella typhimurium was isolated from a goat, the other isolate could not be identified by serotyping. Neither Francisella tularensis nor verocytotoxin producing E. coli/ VTEC were found. The low prevalence of zoonotic microorganisms in Swiss petting zoos could be attributed to the cleanness of enclosures and animals, low stocking rates and good animal care. However, there is room for improvement concerning visitors' information on hygiene and hand washing. Furthermore, a strict separation between picnic - areas and animals should be enforced.  相似文献   

14.
The importance of latent zoonoses has increased in recent years in view of foodborne diseases: (i) the "healthy" animal repesents a reservoir for specific pathogens; () no pathological-anatomical changes in the carcass and its organs show the presence of these pathogens; and (iii) these pathogens may enter the food chain via hygienic weak points in the slaughtering process. To estimate the risks involved and to take appropriate measures, analysis of the slaughtering process should be complemented by collecting data relating to the carriage of the animals of latent zoonotic pathogens. From October 2004 to June 2005, fecal samples from 630 slaughtered sheep were enriched and then examied by IMS technique and by PCR to assess the prevalence of E. coli O157 (OE). Seven samples (1.1%), distributed throughout the whole examination period, were found to be positive. To assess the potential pathogenicity for humans, E. coli O157 strains were isolated by colony hybridization and further characterized. The isolated strains fermented Sorbitol, showed four different H tys (H7, H12, H38, H48), and were all negative for stx. One O157:H7 strain harbored the gene for intimin (eae) in combination with ehxA, and paa. In consequence, the potential health hazard from sheep meat related to O157 STEC seems current not to be of particular importance in Switzerland. Results emphasize the fact that E. coli O157 are not always STEC but may belong to other pathotypes as nontraditional EPEC.  相似文献   

15.
Shiga toxigenic Escherichia coli (STEC) are an important group of pathogens and can be transmitted to humans from direct or indirect contact with cattle faeces. This study investigated the shedding of E. coli O157 and O26 in cattle at the time of slaughter and factors associated with super‐shedding (SS) animals. Rectoanal mucosal swab (RAMS) samples were collected from cattle (n = 1,317) at three large Irish commercial beef abattoirs over an 18 month period, and metadata were collected at the time of sampling regarding farm of origin, animal age, breed and gender. RAMS swabs were examined for the presence and numbers of E. coli O157 and O26 using a previously developed quantitative real‐time PCR protocol. Samples positive by PCR were culturally examined and isolates analysed for the presence of stx subtypes, eae and phylogroup. Any samples with counts >104 CFU/swab of STEC O157 or O26 were deemed to be super‐shedders. Overall, 4.18% (55/1,317) of RAMS samples were positive for STEC O157, and 2.13% (28/1,317) were classified as STEC O157 SS. For STEC O26, 0.76% (10/1,317) of cattle were positive for STEC O26, and 0.23% (3/1,317) were classified as super‐shedders. Fewer STEC shedders and SS were noted among older animals (>37 months). There was a seasonal trend observed for STEC O157, with the highest prevalence of shedding and SS events in the autumn (August to October). The majority of E. coli O157 (50/55) isolates had stx2 and were eae positive, with no significant difference between SS and low shedders (LS). Interestingly, all STEC O26 (n = 10) were eae negative and had varied stx profiles. This study demonstrates that, while the overall shedding rates are relatively low in cattle at slaughter, among positive animals there is a high level of SS, which may pose a higher risk of cross‐contamination during slaughter.  相似文献   

16.
These experiments determined the ability of Escherichia coli O157:H7 to colonize and persist in pigs simultaneously inoculated with other pathogenic E. coli strains. Three-months-old pigs were inoculated with a mixture of five E. coli strains. The mixture included two Shiga toxigenic E. coli (STEC) O157:H7 strains, two enterotoxigenic E. coli (ETEC) strains and one enteropathogenic E. coli (EPEC) strain. A high dose mixture with all five strains at 10(10)CFU/animal (CFU: colony forming units) and a low dose mixture with the STEC strains at 10(7)CFU and the EPEC and ETEC strains remaining at 10(10)CFU were used. The STEC strains persisted in the alimentary tracts of some pigs at 2 months post-inoculation, following inoculation with both the high and low dose mixtures. When all strains were given at 10(10)CFU (high dose) the STEC strains persisted in greater numbers and in more pigs than did the other E. coli strains. The results demonstrated that persistent colonization (> or =2 months) by E. coli O157:H7 can occur in pigs. These findings were similar to those reported from sheep inoculated with the same mixture of E. coli strains. The results are consistent with reports suggesting that pigs have the potential to be reservoir hosts for STEC O157:H7.  相似文献   

17.
A cross-sectional study was conducted to determine the prevalence and characteristics of verocytotoxigenic Escherichia coli (VTEC) on 25 dairy farms each located in Waller field and Carlsen field farming areas in Trinidad. On each selected farm, faecal samples were collected from milking cows, calves and humans; rectal swabs were obtained from pet farm dogs; bulk milk was sampled as well as effluent from the milking parlour. Escherichia coli was isolated from all sources on selective media using standard methods. Isolates of E. coli were subjected to slide agglutination test using E. coli O157 antiserum, vero cell cytotoxicity assay to detect verocytotoxin (VT) and heat labile toxin (LT) production, the polymerase chain reaction (PCR) to detect VT genes, and the dry spot test to screen for E. coli O157 and non-O157 strains. In addition, faecal samples from animal and human sources were tested for VT genes using PCR. Of a total of 933 E. coli isolates tested by the slide test, eight (0.9%) were positive for the O157 strain. The vero cell cytotoxicity assay detected VT-producing strains of E. coli in 16.6%, 14.6%, 3.2% and 7.1% of isolates from cows, calves, farm dogs and humans respectively (P < 0.05; chi(2)). For LT production, the highest frequency was detected amongst isolates of E. coli from calves (10.8%) and the lowest (0.0%) amongst isolates from humans and bulk milk (P < 0.05; chi(2)). Of the 61 VT-producing isolates by vero cell cytotoxicity assay tested by PCR, the VT, LT and eae genes were detected in 62.3%, 4.9% and 1.6% respectively (P < 0.05; chi(2)). Amongst the 45 E. coli isolates that were VT positive (vero cell) or VT-gene positive by PCR, 2.2%, 2.2%, 4.4% and 6.7% belonged to non-O157 strains O91, O111, O103 and O157, respectively, as determined by the Dry spot test. Detection of VTEC strains in milk and dairy animals poses a health risk to consumers of milk originating from these farms. In addition, the demonstration of VTEC strains in humans, VT gene in faecal samples and E. coli isolates as well as non-O157 VTEC strains of E. coli are being documented for the first time in the country.  相似文献   

18.
This study was carried out to evaluate the role of wild artiodactyls as reservoirs of Escherichia coli O157:H7 for livestock and humans. Retroanal mucosal swabs samples from 206 red deer (Cervus elaphus), 20 roe deer (Capreolus capreolus), 6 fallow deer (Dama dama) and 11 mouflon (Ovis musimon), collected during the hunting season (autumn-winter) in South-western Spain, were screened. Samples were pre-enriched in modified buffered peptone water, concentrated by an immunomagnetic separation technique and cultured onto selective cefixime tellurite sorbitol MacConkey agar. Polymerase chain reaction (PCR) was used to detect the presence of genes coding O157 and H7 antigens and the virulence factors verocytotoxin, intimin and enterohaemolysin. Three E. coli O157:H7 isolates were obtained from red deer (1.5%). Two of them showed inability to ferment sorbitol and lack of beta-d-glucuronidase (GUD) activity, however, the other strain investigated was an atypical sorbitol-fermenting E. coli O157:H7 with GUD(+) activity. This is the first report pointing to red deer as a reservoir of E. coli O157:H7 in Spain.  相似文献   

19.
The aims of the study were to determine the prevalence of enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) and other Shiga toxin-producing E. coli (STEC) in feces of white veal calves in an operation in Ontario, to evaluate exposure of the calves to EHEC O157, and to investigate the milk replacer diet and antimicrobial resistance as factors that might influence the prevalence of EHEC O157. Feces from three cohorts of 20-21 calves were collected weekly for 20 weeks and processed for isolation of EHEC O157:H7 and detection of STEC by an ELISA. Exposure to EHEC O157 was also investigated by measuring IgG and IgM antibodies to the O157 lipopolysaccharide (O157 Ab) in sera by ELISA. The prevalences of EHEC O157 were 0.17% of 1151 fecal samples and 3.2% of 62 calves, and for STEC were 68% of 1005 fecal samples and 100% of 62 calves. Seroconversion to active IgG and IgM O157 Ab responses in some calves was not associated with isolation of EHEC O157. The milk replacer contained low levels of antibodies to EHEC antigens and without antimicrobial drugs, it did not inhibit the growth of EHEC O157 in vitro. Two E. coli O157:H7 that were isolated were totally drug sensitive whereas 60 commensal E. coli isolates that were examined were highly resistant. Antibodies in milk replacer that might be protective in vivo, and susceptibility to antimicrobial agents in the milk replacer may contribute to the low prevalence of EHEC O157 in white veal calves.  相似文献   

20.
In order to determine the occurrence, serotypes and virulence markers of Shiga toxin-producing Escherichia coli (STEC) strains, 153 fecal samples of cattle randomly selected from six dairy farms in Sao Paulo State, Brazil, were examined for Shiga toxin (Stx) production by the Vero cell assay. Feces were directly streaked onto MacConkey Sorbitol Agar and incubated at 37 degrees C overnight. Sorbitol-negative colonies (maximum 20) and up to 10 sorbitol-positive colonies from each plate were subcultured onto presumptive diagnostic medium IAL. Sorbitol-negative isolates were screened with O157 antiserum for identification of O157:H7 E. coli. Isolates presenting cytotoxic activity were submitted to colony hybridization assays with specific DNA probes for stx1, stx2, eae, Ehly and astA genes. The isolation rate of STEC ranged from 3.8 to 84.6% depending on the farm analysed. STEC was identified in 25.5% of the animals, and most of them (64.1%) carried a single STEC serotype. A total of 202 STEC isolates were recovered from the animals, and except for the 2 O157:H7 isolates all the others expressed cytotoxic activity. The great majority of the STEC isolates carried both stx1 and stx2 genes (114/202, 56.4%) or stx2 (82/202, 40.6%); and whereas the Ehly sequence occurred in most of them (88%) eae was only observed in O157:H7 and O111:HNM isolates. Serotypes O113:H21, O178:H19 and O79:H14 were the most frequent STEC serotypes identified and widely distributed among animals from different farms, while others such as O77:H18, O88:H25 and O98:H17 occurred only in particular farms. This is the first report on the occurrence of STEC in dairy cattle in Sao Paulo State, and the results point to substantial differences in rate of isolation, serotypes and genetic profile of STEC that has been previously described among beef cattle in our community. Moreover, to our knowledge O79:H14 and O98:H17 represent new STEC serotypes, while O178:H19 has only been recently reported in Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号