首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
艾比湖绿洲参考作物蒸散量的敏感性分析   总被引:1,自引:0,他引:1  
【目的】研究艾比湖绿洲参考作物蒸散量对不同气象因子的敏感性。【方法】利用Penman-Monteith公式,基于艾比湖绿洲1962—2016年4个气象站的逐月气象资料计算ET0。通过敏感性分析,计算最高温度、最低温度、相对湿度、日照时间和风速的敏感系数,并运用MK趋势检验分析其变化趋势,最后分析了敏感系数在各个站点的变化特征。【结果】通过MK趋势检验,发现参考作物蒸散量、日照时间和风速呈下降趋势;最高温度、最低温度和相对湿度呈上升趋势。通过敏感性分析,发现最高温度、风速在研究区呈下降趋势,最低温度、相对湿度、日照时间为上升趋势。艾比湖绿洲中,各气象因子对ET0的敏感程度为相对湿度>最高温度>风速>最低温度>日照时间。ET0对不同气象因子的敏感系数在空间上存在差异,最高温度、最低温度、风速、相对湿度在艾比湖北部的阿拉山口较高,在温泉站较低;日照时间则在温泉较高,在阿拉山口较低。【结论】相对湿度对艾比湖绿洲ET0的敏感性最高,日照时间的敏感性最低。  相似文献   

2.
参考作物蒸散量对气象要素的敏感性分析   总被引:4,自引:2,他引:2  
为了研究参考作物蒸散量(ET_0)对气象要素的敏感性,利用新乡地区1951―2003年逐日气象资料,由Penman-Manteith公式计算参考作物蒸散量,采用敏感曲线和敏感系数方法分析了参考作物蒸散量对气象要素的敏感性。结果表明,温度、风速和日照时间3种气象要素与ET_0正相关,相对湿度与ET_0负相关。1―12月,相对湿度和风速的敏感系数表现为"先减小后增大"趋势,而日照时间和温度敏感系数表现为"先增大后减小"趋势。在全年中,ET_0对气象要素的敏感程度表现为相对湿度风速日照时间温度;第一、四季度各气象要素在季尺度中的敏感性均为相对湿度风速日照时间温度,第二季度表现为相对湿度日照时间风速温度,第三季度表现为相对湿度日照时间温度风速;冬小麦生育期典型时段内各气象要素敏感性在1、3、10月份均表现为相对湿度风速日照时间温度,5月则表现为相对湿度日照时间风速温度。  相似文献   

3.
【目的】深入分析宁晋县气候变化及其蒸散发的变化,为该区域的作物种植管理和灌溉计划制定提供参考。【方法】根据1981—2018年河北省宁晋县气象站的逐日气象资料,计算了极端气候指数,并利用FAO56Penman-Monteith公式计算了参考作物蒸散量(ET0)。分析了各气象要素、极端气候指数和ET0的变化趋势,并利用敏感性分析找出影响ET0变化的主要气象因子。【结果】1981—2018年河北省宁晋县降水量无明显变化趋势,平均温度呈显著上升趋势,日照时间、相对湿度和风速呈显著下降趋势;极端高温指标呈上升趋势,极端低温指标呈下降趋势,极端降水指标无显著变化。【结论】相对湿度是ET0年均值主要影响因子;夏季对ET0月均值影响最大的气象因素为净辐射,其他季节,相对湿度对其影响最大;风速和辐射的降低不仅抵消了温度升高和相对湿度降低对ET0的正影响,还使得ET0呈下降趋势,但下降趋势不显著。  相似文献   

4.
根据1961—2013年我国新疆地区55个气象站常规气象资料,基于Penman-Monteith公式计算了参考作物蒸散量(ET0),并计算其对最高温度、最低温度、风速、日照时数和相对湿度的敏感系数,最后分析了敏感系数的时空变化特征。结果表明,年最高、最低温度呈显著增长趋势,风速、参考作物蒸散量及日照时间呈显著减少趋势。最高温度对ET0敏感性最高,相对湿度次之,而日照时数的敏感性最低。由于气象因子空间分布不均匀,所以新疆敏感系数存在空间分布差异。最高温度、风速和相对湿度的敏感系数在新疆中部及北部较高。最低温度在新疆的西部、东部较高,中部天山山区较低。日照时数在南疆地区较高,北疆地区较低。53年来,最高温度和风速的敏感系数呈减少趋势,其中南疆地区减少趋势明显。最低温度的敏感系数全疆呈增加趋势,在天山山区增加趋势明显,日照时数的敏感系数在南疆地区增加趋势明显,相对湿度的敏感系数在全疆地区呈增加趋势。  相似文献   

5.
为深刻了解玉米浅埋滴灌典型应用区农业气象要素对参考作物腾发量(ET_0)的影响,本研究采用拓展傅里叶幅度敏感性检验(EFAST)法对农业气象因子进行全局敏感性分析,明确不同ET_0的气象成因,为了解获知农业气象变化对作物蒸散发耗水的影响以及合理设计灌溉制度提供参考。结果表明:通辽市2017年、2018年生长季内的气象因素的变化规律具有西辽河流域的典型特征,即春季冷凉干燥多风、夏季湿热多雨,水文年型分别为丰水年、平水年。ET_0与日值最高气温、最低气温、日均风速、日照时数呈正相关,与日均相对湿度呈负相关。该典型区气象因子对ET_0的一阶、全局敏感性指数大小排序为:日均风速(0.220/0.324)最高气温(0.125/0.157)日均相对湿度(0.100/0.139)日照时数(0.091/0.116)最低气温(0.007/0.034),前4个指数为高敏感因子。2017年、2018年生长季ET_0的界限分别为1.5~9.3、1.3~9.6 mm/d,采样气象值相应的ET_0的界限为0.5~9.2 mm/d,作物生长季内高气温、大风速、低湿度、长日照出现频次越高,潜在蒸散耗水量越大,在农业气象的变化的影响下,使得灌溉制度需做出相应调整。  相似文献   

6.
【目的】探讨BP、极限学习机、小波神经网络算法在广东典型气候代表站点的适用性,建立ET_0简化计算模型。【方法】以韶关、深圳、广州、揭西、湛江站为研究对象,收集各站1981—2010年逐日平均、最高、最低气温、相对湿度、日照时间、风速观测数据,以FAO-56Penman-Monteith ET_0计算值为基准,对比3种算法计算效结果,确定最优算法,并结合因子敏感性分析建立了ET_0简化计算模型。【结果】①P<0.05显著水平下,广州、韶关站各气象因子均差异显著;湛江、广州、揭西、深圳4站除日最高气温差异显著,其他气象因子差异均不显著;②ET_0因子敏感性分析中,韶关、广州、深圳3站日最低、最高气温、日照时间敏感系数较大,韶关站为0.040、0.113、0.223,广州站为0.043、0.101、0.208,深圳站为0.054、0.105、0.181;揭西和湛江站日最高气温、相对湿度、日照时间敏感系数较大,分别为:0.105、-0.040、0.216和0.098、-0.072、0.197,综合各站来看,日最高气温、日照时间最为敏感;③全因子输入条件下,ET_0计算精度表现为BP>极限学习机>小波神经网络;④ET_0简化计算精度表现为BP(全因子输入)>BP-1(日最高、最低气温,相对湿度,日照时间作输入)>BP-2(日最高气温、日照时间输入),但差值不大。【结论】因此,基于日最高气温、日照时间2因素的BP算法一定程度能简化计算ET_0。  相似文献   

7.
土默特右旗ET0对气象因子和相关参数的响应   总被引:1,自引:1,他引:0  
【目的】研究ET0与气象因子和相关参数的响应性。【方法】以内蒙古包头市土默特右旗为研究区,采用ENVI5.3软件,遥感反演相关参数,分析了参考作物腾发量(ET0)与气象因素和相关参数的相关性和主成分。【结果】(1)在年尺度上,气象因素对ET0的相关性排序为:净辐射日照时间最高温度相对湿度最低温度风速。在月尺度上,ET0在7月对最高温度和日照时间最敏感;4月ET0对相对湿度最敏感;5月对风速最敏感;净辐射与ET0相关性在4—10月都很显著;ET0与最低温度相关性不显著。在作物生长季,ET0主要受净辐射、日照时间、最高温度的影响。(2)3种相关参数NDVI、植被覆盖度、地表温度和ET0均显著正相关,NDVI的相关性最显著。(3)利用主成分分析得到主成分变量Z1、Z2代替了原始数据(最高温度、最低温度、相对湿度、日照时间、风速、NDVI、植被覆盖度、地表温度、净辐射),使复杂的研究变得简单。【结论】在作物生长季,ET0主要受净辐射、日照时间、最高温度的影响;在相关参数中,与NDVI的相关性最好。  相似文献   

8.
利用山西省及周边地区共计35个气象站点1957—2014年的逐日气象数据,使用Penman-Monteith公式计算参考作物蒸散量(ET_0),采用一元线性回归和反距离加权插值法分析ET_0的时空变化特征,并采用逐步回归分析对ET_0的影响因素进行研究。结果表明,1年ET_0随时间的变化特征呈现混合模式,以下降趋势为主。2多年平均ET_0空间分布差异显著,区域内存在2个高值区、2个次高值区和2个低值区。秋季ET_0的空间分布特征与年ET_0的空间分布最为接近,而冬季,春季和夏季ET_0的空间分布特征与年ET_0的空间分布相差较大。3各站点年ET_0受同时期气象要素的影响程度由大到小的排序为:风速、温度、相对湿度、日照时间或降水量。全省不同站点多年平均年ET_0受气象要素的影响程度由大到小的排序为:风速、温度、相对湿度、日照时间、降水量。全省不同站点多年平均年ET_0受地理要素的影响程度由大到小的排序为:海拔、纬度。  相似文献   

9.
潜在蒸散发(ET_0)是估算作物需水量的基础。根据石羊河流域5个气象站5年的气温、风速、相对湿度等日气象要素资料,采用Penman-Monteith公式计算石羊河流域的ET_0,建立六因子、四因子和三因子的支持向量机(SVM)模型与人工神经网络(ANN)模型模拟日ET_0,对模拟值与计算值进行比较,以均方根误差(RMSE)、平均绝对误差(MAE)、确定性系数(DC)以及皮尔逊相关系数(R)作为模型的性能评价指标,对模型进行检验以获得模拟精度较高的模型。结果表明:相同因子输入下ANN模型较SVM模型在石羊河流域模拟日ET_0有着更高的模拟精度。该研究可为气象要素资料不全的站点提供模拟日ET_0的可行方法。  相似文献   

10.
【目的】探索吉兰泰及周边地区蒸散发的时空变化规律。【方法】以吉兰泰为对象,利用MODIS数据通过SEBAL模型估算了研究区2017年植被生长季5—10月的日蒸散发,并分析了蒸散发与环境因子的相关性。【结果】①生长季日平均蒸散量整体趋势呈单峰型分布趋势,日均蒸散量最大值在7月(3.98 mm),最小值在10月(1.11 mm);②在空间分布上,研究区东南部蒸散发最高,东北部蒸散发最低;不同土地利用类型中蒸散发值由大到小分别为林地、耕地、草地、戈壁、沙漠;各土地利用类型蒸散发量的时间动态表现一致,呈生长期>生长初期>生长后期;③归一化植被指数、高程与蒸散发正相关,风速以及地表温度与蒸散发负相关。【结论】SEBAL模型估算的蒸散发与P-M作物系数法的蒸散发进行对比,相对误差在允许范围之内,表明SEBAL模型对本研究区蒸散发的估算是可靠的。研究区靠近山地的蒸散发大于荒漠区的蒸散发。在植被生长季中生长初期的蒸散发受温度和风速影响最大,生长期和生长后期的蒸散发受地表温度和高程影响最大。  相似文献   

11.
黑河流域近53年气候变化对参考作物腾发量影响研究   总被引:1,自引:0,他引:1  
全球气候变化已成既定事实,其直接影响着陆地蒸散发及水平衡。基于Mann-Kendall非参数检验法、Pettitt突变点检验法以及GIS的空间分析功能,分析了黑河流域16个站点1960-2012年风速、气温、湿度、净辐射和参考作物腾发量(ET_0)的时空变化特征,并采用去气象因子趋势法评估了气候变化对ET_0的影响。结果表明:黑河流域平均风速、平均相对湿度、净辐射呈减少趋势,平均气温呈显著增加趋势;在气候变化背景下,流域参考作物腾发量年均减少0.37mm。各站年ET_0与气温、风速、净辐射呈正相关,与相对湿度呈负相关,且影响ET_0的主要气象要素是气温和风速。额济纳旗和高台参考作物腾发量的变化很大程度上决定着流域参考作物腾发量的变化。ET_0和各气候因子均存在明显的突变点和时空差异;流域ET_0的变化也存在时空差异,风速变化是导致其空间差异的主要原因。  相似文献   

12.
基于地统计学普通克立格插值法,对全国631个基准、基本和一般地面气象观测站的ET_0、气温、风速、相对湿度、太阳辐射、降雨量等影响要素,采用气候倾向率、分形、重标极差分析法、线性回归等方法对其进行分析。结果表明:在全国范围内ET_0呈普遍下降趋势,宁夏、陕西、山西、东北等地区以0.01~28.61 mm/(10 a)速率升高,但增加趋势不显著;ET_0的变化复杂性较小,在我国西部太阳辐射的变化复杂性大于降水量,我国东部反之;ET_0与太阳辐射的Hurst指数均大于0.5,小于1.0,在未来时间内均保持与过去一致的变化趋势,黑龙江西部、内蒙古中部降雨量的Hurst指数均在0.5以下,降水量在未来一段时间内变化趋势与过去相反。  相似文献   

13.
【目的】明确石羊河流域典型畦灌玉米蒸散发量变化规律及其驱动因素。【方法】基于涡度相关系统,在2015—2018年于中国农业大学石羊河试验站对西北典型畦灌玉米蒸散发量进行了连续观测。基于偏相关分析及结构方程模型分析了玉米蒸散发量与环境因子之间的关系。【结果】畦灌玉米生育期平均蒸散发量为524.3 mm,日平均蒸散发量为3.5 mm/d,生育期内日蒸散发量呈先上升后下降的单峰变化趋势,在7月达到峰值。净辐射量与蒸散发量之间的相关性最高,对蒸散发量影响程度较大的环境因子为净辐射量、温度、饱和水汽压差。结构方程结果表明,叶面积指数作为中间变量与蒸散发量之间存在正相关性。【结论】畦灌玉米生育期内日蒸散发量呈先上升后下降的变化趋势,净辐射量、温度、饱和水汽压差是对蒸散发量影响较大的环境因子。  相似文献   

14.
江苏省参考作物蒸散量的时空变化及影响因素分析   总被引:1,自引:0,他引:1  
【目的】参考作物蒸散量是水分循环和能量循环的重要组成部分,研究其变化特征及影响因素可以为该地区合理利用水资源,高效水分管理及农业生产布局提供参考。【方法】利用1961-2018年江苏省60个站点的风速、温度、相对湿度和日照时数等逐日数据计算了逐日蒸散量(ET0),并采用气候倾向率、敏感性分析、通径分析、贡献率分析等方法对江苏省ET0的时空变化及影响因素进行分析。【结果】①江苏省1961-2018年平均ET0为976.8 mm,区域整体ET0的变化幅度为-0.44 mm/10 a,共有28个站点ET0呈增加趋势(47%),主要分布在无锡以及苏州等苏南区域,共有11个站点ET0增加趋势显著(p<0.05),其中无锡、太仓、靖江地区ET0气候倾向率较大,分别为18.6、19.0、30.0 mm/10 a。共有32个站点ET0呈减小趋势(53%),主要分布在连云港、徐州、宿迁等苏北地区,共有16个站点ET0减小趋势显著(p<0.05),其中新沂、泗洪、灌南地区ET0减小趋势较大,分别为-19.2、-23.1、-23.2 mm/10a;②丰县(1 007.4 mm)、徐州(1 041.1 mm)以及西连岛(1 130.3 mm)区域为ET0的高值中心;③ET0对平均温度、日照时间、风速为正敏感,对相对湿度为负敏感,且ET0对相对湿度最敏感。平均温度、日照时间、风速、相对湿度与ET0决策系数分别为0.09、0.33、-0.02、0.29。敏感系数空间分布上,ST与SWS纬向分布特征都较明显;④贡献率分析表明,主要影响因素为风速的有22个站点,均分布在苏北地区,其中沛县、泗阳、新沂站风速对ET0变化贡献较大,分别为-13.44%、-12.52%、-12.49%,主要影响因素为相对湿度的有38个站点,主要分布在苏南地区,其中丹阳、靖江、昆山站相对湿度对ET0变化贡献较大,分别为18.47%、18.57%、20.87%,全区平均温度和日照时间不对ET0变化产生主要影响。【结论】苏北地区ET0变化的主要影响因素是风速,且风速贡献率为负,苏南地区ET0变化的主要影响因素是相对湿度,相对湿度贡献率为正。  相似文献   

15.
利用1955—2009年山西地区5个站点(大同、阳泉、太原、吕梁和临汾)逐日气象资料,采用FAO推荐的Penman-Monteith公式计算参考作物蒸散量(ET0),分析了不同地区的气象要素(温度、相对湿度、日照时数和风速)和年ET0随时间变化特征,并采用敏感性分析方法对影响ET0变化的主要气候因子进行了探讨。结果表明,5个站点平均温度和平均相对湿度从低纬度到高纬度逐渐增大;而平均风速和平均日照时数则逐渐减小。5站点的多年平均温度随时间有平缓上升趋势。大同和阳泉的年ET0高于其他站点,其他站差异不明显。4气象要素中对大同、太原和吕梁站ET0影响最大的要素为相对湿度,对临汾站ET0影响最大的要素为日照时数,温度变化对各站点ET0的影响作用最小。  相似文献   

16.
为了解宁夏固海扬水灌区ET_0对各气象因子的敏感性,以该灌区内同心站为研究区域,根据同心站1961-2016年逐日气象资料,采用Penman-Monteith公式计算ET_0,利用Mann-Kendall趋势分析法探究宁夏固海扬水灌区ET_0和各气象因子变化趋势,采用Sobol全局敏感性分析方法分析ET_0对各气象因子的敏感性。结果表明,ET_0在近56年的突变年份为1980年,1981-2016年ET_0和各气象因子较1961-1980年均呈上升趋势。各气象因子总敏感性系数的年内变化特点在1961-1980年和1981-2016年基本相同,而一阶敏感性系数在这两个时间段的变化特点呈多样性和不确定性。ET_0对各气象因子的一阶敏感性系数年际变化趋势中,平均气温、最高气温、最低气温、相对湿度和日照时数的一阶敏感性系数呈下降趋势,仅风速的一阶敏感性系数呈上升趋势。  相似文献   

17.
根据1951—2016年河南省10个典型气象站点逐日气象资料,利用Penman-Monteith模型计算了参考作物蒸散量,通过Mann-Kendall检验、克里金插值分析、通径分析等方法,对河南省近66 a参考作物蒸散量的时空变化特征及主要影响因素进行了分析.结果表明:河南省整体ET_0随年际变化呈下降趋势,降幅约为1.37 mm/a,其中安阳、洛阳、郑州、商丘、许昌、宝丰、西华和驻马店等地ET_0下降趋势显著;河南省ET_0曾在20世纪80年代初期经历了由高至低的突变,降幅约为62 mm/a;近66 a来,河南省年参考作物蒸散量介于917~1 007 mm之间,中部地区即郑州市南部、许昌市西北部参考作物蒸散量较大,而在东南部即西华、宝丰、商丘和驻马店,参考作物蒸散量较小;突变前后ET_0空间分布差异显著,且四季ET_0空间分布差异明显,其中春季和夏季分布特征与全年分布较为接近;对ET_0构成主要影响的气象因子排序依次为风速、日照时数、平均相对湿度和平均温度;风速、日照时数和平均温度与ET_0呈正相关,平均相对湿度与ET_0呈负相关.该研究可为河南省农田水分管理提供科学依据.  相似文献   

18.
艾比湖流域潜在蒸散量时空变化特征   总被引:2,自引:0,他引:2  
潜在蒸散发是衡量气候变化下区域水热资源演变的重要参数。利用艾比湖流域10个气象站1961-2012年逐日气温、降水、日照时数、风速、相对湿度等资料,计算了该流域近52 a潜在蒸散量(ET_0),并分析了其时空变化特征。结果表明:(1)艾比湖流域年、春季、夏季和秋季的ET_0都呈增加趋势,冬季ET_0呈减少趋势。年ET_0增势为0.93 mm/a,在1987年发生增加突变并存在15 a左右的变化周期。(2)艾比湖流域春季、夏季、秋季和年ET_0空间分布总体都表现为北部大于南部,而冬季ET_0在空间上自西向东逐渐减少。变化趋势上,艾比湖流域年、春季、夏季和秋季的ET_0表现为中部增势强于南部和北部;冬季中部减势强于流域南部和北部。(3)年代变化上,20世纪60-80年代ET_0空间上都呈减少趋势,20世纪80年代-21世纪初呈增加趋势。其中80年代ET_0最小,2001-2012年ET_0最大。(4)气候因子与ET_0的变化密切相关,但在突变前后存在差异;其中气温对ET_0的影响最大。该研究可为气候变化下干旱半干旱区水热演变的研究以及流域尺度的生态环境保护和管理提供借鉴。  相似文献   

19.
【目的】研究气候变化背景下榆林市参考作物需水量的多时间尺度变化特征及其与各气象因子的相关性,便于衡量气候变化背景下榆林市水热资源的演变特征。【方法】根据榆林气象站1959—2014年逐日气象资料(平均地表温度、平均气温、蒸发量、平均气压、平均相对湿度、日照时间和平均风速等),采用彭曼公式、Mann-Kendall突变检验、小波分析及相关分析法研究了榆林市参考作物需水量多时间尺度变化特征。【结果】1959—2014年榆林站全年及四季参考作物需水量均呈增加趋势,线性倾向率分别为30.7、11.4、6.7、5.7、6.9 mm/10 a。全年参考作物需水量突变年份为1995年,春、夏、秋三季参考作物需水量均在1998年发生突变,冬季在1989年发生突变;全年及四季参考作物需水量的第一主周期分别为26、28、27、28、26 a,第二主周期分别为8、7、9、8、4 a,第三主周期分别为4、2、4、4、12 a;参考作物需水量与平均相对湿度、日照时间、平均气温、平均风速以及年平均地表温度的相关系数分别为-0.128、0.223、0.935、0.271、0.940。【结论】榆林站1959—2014年不同时间尺度的参考作物需水量均呈增加趋势,平均气温、日平均地表温度是影响榆林气象站ET_0的主要因素。  相似文献   

20.
潜在蒸散发与气象因素间关系复杂,研究由多个气候区组成的甘肃省潜在蒸散的时空变化规律及影响因子,对探明气候变化对水文循环的影响具有重要意义。基于甘肃省及周边31个气象站点1961-2020年逐日气象资料,对甘肃省8个气候区通过Penman-Monteithm模型,应用Kriging插值法、Mann-Kendall检验和偏相关分析等分析方法,分析了研究区不同气候类型的潜在蒸散发时空变化特征及其影响因子。结果表明:(1)1961-2020年甘肃省各气候区气象因子变化差距明显,其中各气候区平均温度、最高温度、最低温度在60 a来均呈显著上升趋势;平均相对湿度除河西西部暖温带干旱区和祁连山高寒半干旱区以外,均呈下降趋势;平均风速除河西西部暖温带干旱区、河西冷温带干旱区和陇中北部冷温带半干旱区外,均呈上升趋势;年降水除陇中南部温带半湿润区外,均呈显著上升趋势,年日照时数差异微小。(2)在蒸散发空间分布格局上,年均潜在蒸散发在春季、夏季、秋季总体为西北高,东南低的特点,年均波动范围710~1 363 mm;而冬季略显不同,则呈现出东南高、西北低的特点。(3)1961-2020年各气候区73.42%的区域潜在蒸散发变化趋势在0.05水平上显著相关,变化趋势波动范围在-2.62 mm/a到3.01 mm/a之间。(4)甘肃省各气候区潜在蒸散发与气温、日照时数和风速呈正相关关系,其中对温度的相关程度最高,A、B、C、D干旱及半干旱区潜在蒸散发对风速的相关程度高于湿润气候区,而相较于干旱及半干旱区来说,日照时数对潜在蒸散发的相关程度在湿润区更高。所有气候区均与相对湿度呈负相关关系,降雨则对各气候区潜在蒸散发变化的作用最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号