首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication.  相似文献   

2.
The conventional corn wet‐milling process requires a long steeping time and has environmental and health concerns from the use of SO2. A recently proposed two‐stage enzymatic milling procedure with the first stage of water soaking and coarse grinding of corn and the second stage of incubating with enzymes has been shown to reduce the soaking time and possibly eliminate the need for SO2 addition. This current work explored the applications of protease and high‐intensity ultrasound in the second stage of the two‐stage enzymatic milling for corn starch isolation to further shorten the process time without use SO2. of The starch yield from sonication alone was 55.2–67.8% (starch db) as compared with 53.4% of the water‐only control with stirring for 1 hr and 71.1% of the conventional control with SO2 and lactic acid steeping for 48 hr. Protease digestion alone for 2 hr was not effective (45.8–63.9% yield) in isolating corn starch, but the starch recovery was increased to 61.2–76.1% when protease was combined with sonication. The preferred combination was neutral protease digestion for 2 hr followed by sonication at 75% amplitude for 30 min. The results demonstrated that combinations of high‐intensity ultrasound and neutral protease could replace SO2 and shorten the steeping time in the enzymatic wet‐milling process for corn starch isolation.  相似文献   

3.
The objective of this study was to compare the structure and properties of flours and starches from whole, broken, and yellowed rice kernels that were broken or discolored in the laboratory. Physicochemical properties including pasting, gelling, thermal properties, and X‐ray diffraction patterns were determined. Structure was elucidated using high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). The yellowed rice kernels contained a slightly higher protein content and produced a significantly lower starch yield than did the whole or broken rice kernels. Flour from the yellowed rice kernels had a significantly higher pasting temperature, higher Brabender viscosities, increased damaged starch content, reduced amylose content, and increased gelatinization temperature and enthalpy compared with flours from the whole or the broken rice kernels. However, all starches showed similar pasting, gelling, thermal properties, and X‐ray diffraction patterns, and no structural differences could be detected among different starches by HPSEC and HPAEC‐PAD. α‐Amylase may be responsible for the decreased amylopectin fraction, decreased apparent amylose content, and increased amounts of low molecular weight saccharides in the yellowed rice flour. The increased amount of reducing sugars from starch hydrolysis promoted the interaction between starch and protein. The alkaline‐soluble fraction during starch isolation is presumed to contribute to the difference in pasting, gelling, and thermal properties among whole, broken, and yellowed rice flours.  相似文献   

4.
Variation in power and time of sonication of gluten and glutenin suspensions was used to gain information about the mechanism of molecular breakdown. At low power, an increase in sulfhydryl (SH) content of solubilized gluten could be ascribed to additional glutenin brought into the solution. Higher power sonication of gluten suspensions, at constant protein concentration and with increasing times, progressively shifted the molecular weight distribution (measured by size exclusion HPLC) to lower molecular weights. It was accompanied by a parallel decrease in SH content. This suggested that the freed cysteine residues formed by scission of disulfide (SS) bonds, caused by sonication, reacted to form new intramolecular SS bonds with free cysteines on the same molecular fragments. Circular dichroism measurements appeared to support this conclusion. High‐power ultrasound produced SE‐HPLC profiles with diffuse peaks corresponding to HMW‐GS and LMW‐GS. SDS‐PAGE patterns of protein fractions obtained in different elution ranges of SEHPLC confirmed that individual subunits had been produced by sonication. A fraction of the polymeric protein eluting at the void volume of SE‐HPLC appeared to be resistant to breakdown by sonication.  相似文献   

5.
The influence of amylose content, cooking, and storage on starch structure, thermal behaviors, pasting properties, and rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) in different commercial rice cultivars was investigated. Long grain rice with high‐amylose content had a higher gelatinization temperature and a lower gelatinization enthalpy than the other rice cultivars with intermediate amylose content (Arborio and Calrose) and waxy type (glutinous). The intensity ratio of 1047/1022 cm–1 determined by Fourier Transform Infrared (FT‐IR), which indicated the ordered structure in starch granules, was the highest in glutinous and the lowest in long grain. Results from Rapid ViscoAnalyser (RVA) showed that the rice cultivar with higher amylose content had lower peak viscosity and breakdown, but higher pasting temperature, setback, and final viscosity. The RDS content was 28.1, 38.6, 41.5, and 57.5% in long grain, Arborio, Calrose, and glutinous rice, respectively, which was inversely related to amylose content. However, the SDS and RS contents were positively correlated with amylose content. During storage of cooked rice, long grain showed a continuous increase in pasting viscosity, while glutinous exhibited the sharp cold‐water swelling peak. The retrogradation rate was greater in rice cultivars with high amylose content. The ratio of 1047/1022 cm–1 was substantially decreased by cooking and then increased during storage of cooked rice due to the crystalline structure, newly formed by retrogradation. Storage of cooked rice decreased RDS content and increased SDS content in all rice cultivars. However, no increase in RS content during storage was observed. The enthalpy for retrogradation and the intensity ratio 1047/1022 cm–1 during storage were correlated negatively with RDS and positively with SDS (P ≤ 0.01).  相似文献   

6.
Flours and starches from rough rice dried using different treatment combinations of air temperature (T) and relative humidity (RH) were studied to better understand the effect of drying regime on rice functionality. Rough rice from cultivars Bengal and Cypress were dried to a moisture content of ≈12% by three drying regimes: low temperature (T 20°C, RH 50%), medium temperature (T 40°C, RH 12%), and high temperature (T 60, RH 17%). Head rice grains were processed into flour and starch and evaluated for pasting characteristics with a Brabender Viscoamylograph, thermal properties with differential scanning calorimetry, starch molecular‐size distribution with high‐performance size‐exclusion chromatography (HPSEC), and amylopectin chain‐length distribution with high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). Lower head rice and starch yields were obtained from the batch dried at 60°C which were accompanied by an increase in total soluble solids and total carbohydrates in the pooled alkaline supernatant and wash water used in extracting the starch. Drying regime caused no apparent changes on starch molecular‐size distribution and amylopectin chain‐length distribution. Starch fine structure differences were due to cultivar. The pasting properties of flour were affected by the drying treatments while those of starch were not, suggesting that the grain components removed in the isolation of starch by alkaline‐steeping were important to the observed drying‐related changes in rice functionality.  相似文献   

7.
Starch was isolated from three different barleys with normal, highamylose, or high‐amylopectin (waxy) starch. The laboratory‐scale starch isolation procedure included crushing of grains, steeping, wet milling, and sequential filtration and washing with water and alkali, respectively. Yield and content of starch, protein, and dietary fiber, including β‐glucan, were analyzed in isolated starch and in the by‐products obtained. Starch yield was 25–34%, and this fraction contained 96% starch, 0.2–0.3% protein, and 0.1% ash. Most of the remaining starch was found in the coarse material removed by filtration after wet milling, especially for the high‐amylose barley, and in the starch tailings. Microscopy studies showed that isolated starch contained mostly A‐granules and the starch tailings contained mostly B‐granules. Protein concentration was highest in the alkali‐soluble fraction (54%), whereas dietary fiber concentration was highest in the material removed by filtration after alkali treatment for the normal and waxy barleys (55%). The β‐glucan content was especially high for the waxy barley in this fraction (26%). The study thus showed that it was possible to enrich chemical constituents in the by‐products but that there were large differences between barleys. This result indicates a need for modifications in the isolation procedures for different barleys to obtain high yields of starch and different by‐products. Valuable by‐products enriched in β‐glucan or protein, for example, may render starch production more profitable.  相似文献   

8.
Starch can be classified into rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) according to its resistance to amylolytic enzymes. This study investigated the effects of cultivar and feedstock under varying parboiling conditions on the physicochemical properties and starch fractions of parboiled rice. Rice (rough or brown) was soaked, steamed under pressure, dried immediately or stored at room temperature for 24 hr prior to drying, and then treated with or without a repeated steam cycle prior to milling. The storage treatment significantly increased the retrograded amylopectin enthalpy and amylose‐lipid complex melting temperature of parboiled rice. Parboiled rice samples prepared from brown rice feedstock had higher peak melting temperatures but lower enthalpy values of retrograded amylopectin than samples prepared from rough rice after the storage treatment. The pasting viscosity of parboiled rice was most affected by the repeated autoclaving treatment and cultivar. Starch fractions in parboiled rice were significantly affected by cultivar and storage and by the interactions of cultivar and parboiling conditions. The storage treatment significantly increased SDS and generally decreased RDS in parboiled rice. Parboiled rice with different SDS and RS contents can be produced by varying rice cultivar and parboiling conditions.  相似文献   

9.
The structural features of rice starch that may contribute to differences in the functionality of three long‐grain rice cultivars were studied. Dried rough rice samples of cultivars Cypress, Drew, and Wells were analyzed for milling quality, grain physical attributes, and starch structures and physicochemical properties. Drew was lower in head rice yield and translucency and higher in percentage of chalky grains compared with Cypress and Wells. Apparent amylose content (21.3–23.1%), crude protein (8.3–8.6%), and crude fat (0.48–0.64%) of milled rice flours were comparable, but pasting properties of rice flours as measured by viscoamylography, as well as starch iodine affinity and thermal properties determined by differential scanning calorimetry were different for the three cultivars. Drew had higher peak, hot paste, and breakdown viscosities, and gelatinization temperature and enthalpy. Molecular size distribution of starch fractions determined by high‐performance size‐exclusion chromatography showed that the three samples were similar in amylose content (AM) (20.0–21.8%) but differed in amylopectin (AP) (64.7–68.3%) and intermediate material (IM) (10.9–13.5%). Drew had highest AP and lowest IM contents, whereas Cypress had the lowest AP and highest IM contents. High‐performance anion‐exchange chromatography of isoamylase‐debranched starch indicated that the AP of Drew was lower in A and B1 chains but higher in B2, B3, and longer chains.  相似文献   

10.
Double mashing for wort production is a time‐consuming process that can be reduced if pregelatinized adjuncts are used. Optimal extruding conditions were determined to obtain brewing adjuncts from corn and sorghum starch. For corn starch extrusion, a Box–Behnken design was devised in which moisture, screw speed, temperature of the barrel, and concentrations of sodium stearoyl lactylate (SSL) were varied, and sorghum starch was extruded according to a 23 model in which the modified variables were moisture, SSL concentration, and temperature. The aim was to maximize starch damage and minimize resistant starch and final viscosity as determined with a Rapid Visco Analyzer. The treatments that satisfied these requirements were mashed, and wort extract yield was determined. Glucose, maltose, and maltotriose concentrations in the resulting worts were determined by HPLC with a refractive index detector. Feedstock tempering and SSL content were the most important factors affecting the response; for corn starch, treatments with lower moisture (20%) and middle levels of SSL (0.5%) or with high levels of both moisture (40%) and SSL (1%) produced the most desirable samples for mashing, whereas for sorghum starch the best treatment was tempering to 20% moisture and containing middle levels of SSL (0.5%). No statistical differences were found between these experimental treatments and the control.  相似文献   

11.
Changes in the digestibility and the properties of the starch isolated from normal and waxy maize kernels after heat‐moisture treatment (HMT) followed by different temperature cycling (TC) or isothermal holding (IH) conditions were investigated. Moist maize kernels were heated at 80°C for 2 hr. The HMT maize kernels were subjected to various conditions designed to accelerate retrogradation of the starch within endosperm cells. Two methods were used to accelerate crystallization: TC with a low temperature of –24°C for 1 hr and a high temperature of 20, 30, or 50°C for 2, 4, or 24 hr for 1, 2, or 4 cycles, and IH at 4, 20, 30, or 50°C for 24 hr. The starch granules were then isolated from the treated kernels. The starch isolated from HMT normal maize kernels treated by TC using –24°C for 1 hr and 30°C for 2 hr for 2 cycles gave the greatest SDS content (24%) and starch yield (54%). The starch isolated from HMT waxy maize kernels treated by TC using –24°C for 1 hr and 30°C for 24 hr for 1 cycle had an SDS content of 19% and starch yield of 43%. The results suggest that TC after HMT changes the internal structure of maize starch granules in a way that results in the formation of SDS (and RS). They also suggest that thermal treatment of maize kernels is more effective in producing SDS than is the same treatment of isolated starch. All starch samples isolated from treated normal maize kernels exhibited lower peak viscosities, breakdown, and final viscosities and higher pasting temperatures than did the control (untreated normal maize starch). Although peak viscosities and breakdown of the starch isolated from treated waxy maize kernels were similar to those of the control (untreated waxy maize starch), their pasting temperatures were higher. The starch isolated from treated normal and waxy maize kernels with the highest SDS contents (described above) were further examined by DSC, X‐ray diffraction, and polarized light microscopy. Onset and peak temperatures of gelatinization of both samples were higher than those of the controls. Both retained the typical A‐type diffraction pattern of the parent starches. The relative crystallinity of the starch from the treated normal maize kernels was higher than that of the control, while the relative crystallinity of the starch from the treated waxy maize kernels was not significantly different from that of the control. Both treated starches exhibited birefringence, but the granule sizes of both starches, when placed in water, were slightly larger than those of the controls.  相似文献   

12.
The objectives of this research were to develop a rapid method for extracting proteins from mashed and nonmashed sorghum meal using sonication (ultrasound), and to determine the relationships between the levels of extractable proteins and ethanol fermentation properties. Nine grain sorghum hybrids with a broad range of ethanol fermentation efficiencies were used. Proteins were extracted in an alkaline borate buffer using sonication and characterized and quantified by size‐exclusion HPLC. A 30‐sec sonication treatment extracted a lower level of proteins from nonmashed sorghum meal than extracting the proteins for 24 hr with buffer only (no sonication). However, more protein was extracted by sonication from the mashed samples than from the buffer‐only 24‐hr extraction. In addition, sonication extracted more polymeric proteins from both the mashed and nonmashed samples compared with the buffer‐only extraction method. Confocal laser‐scanning microscopy images showed that the web‐like protein microstructures were disrupted during sonication. The results showed that there were strong relationships between extractable proteins and fermentation parameters. Ethanol yield increased and conversion efficiency improved significantly as the amount of extractable proteins from sonication of mashed samples increased. The absolute amount of polymeric proteins extracted through sonication were also highly related to ethanol fermentation. Thus, the SE‐HPLC area of proteins extracted from mashed sorghum using sonication could be used as an indicator for predicting fermentation quality of sorghum.  相似文献   

13.
Starch was isolated from Amaranthus cruentus seeds by different alkaline treatments and combinations of low alkaline steeping and protease treatments. For low alkaline-protease treatments, amaranth seeds were steeped in a NaOH solution (0.05%, pH 12) for 22 hr to loosen the protein matrix and ground. The pH of the ground slurry was adjusted to 7.5 and subjected to a protease (from Aspergillus sojae) treatment. The slurry was incubated with 1 or 0.5% of the protease (based on total amount of seeds) for 2 hr at 37°C and 50 rpm. The starch was then isolated by screening and centrifugation. This method produced starch with a low protein content (≤0.2%) and a high recovery (≈80%). Amaranth starch isolated by alkaline treatments were also studied by using various concentrations of NaOH steeping solutions and with or without alkaline solution during grinding and washing. The properties of amaranth starch isolated by alkaline and low alkaline-protease treatments were analyzed and compared. The properties of the amaranth starch were also compared with those of normal and waxy maize starches.  相似文献   

14.
The pasting properties of rice flours and reconstituted rice flours from mixing a common starch with proteins extracted from different rice cultivars at different total protein content levels were studied. Results showed that not only the total protein content but also the protein composition had an effect on the pasting properties of the rice flours. Among the different strands of rice proteins, globulin had the strongest influence on the pasting properties, followed by glutelin, whereas prolamin had the least influence. At the subunit level of the proteins, proteins with a molecular weight of 17,000, most likely from globulin, had the strongest effect on the peak viscosity of the rice flour, followed by those of 33,000. In comparison with that of the rice starch, the influence of proteins in rice was limited. The effect of interactions between the rice proteins and the starch, such as the role of starch‐granule‐associated proteins, was not isolated in this study, and further investigation is required to quantify this effect.  相似文献   

15.
Flour properties of 25 Australian wheat cultivars were examined for their relationship to alkaline noodle quality. Rapid Visco Analyzer (RVA) analyses of flours showed that RVA breakdown and final viscosity determined in both water and dilute sodium carbonate were significantly related to the alkaline noodle firmness, elasticity, and surface smoothness. Flour swelling volume (FSV) of flours was negatively correlated with alkaline noodle firmness and elasticity, and positively correlated with surface smoothness of cooked noodles. Use of a dilute sodium carbonate solution led to overall increases in both paste viscosity and FSV. High FSV and low RVA final viscosity values were associated with both the softest noodles and with cultivars containing a null allele for granule-bound starch synthase on chromosome 4A. Flour protein content and SDS sedimentation volumes were significantly related to noodle texture. The relationship between protein content and noodle firmness was dependent on the Null4A status of the flours and suggested an interaction between starch and protein in determining noodle texture. Multiple regression analysis using flour protein and FSV accounted for 76% of the variation in alkaline noodle firmness. A speculative model of noodle structure was developed based on a concept of the cooked noodle as a composite material.  相似文献   

16.
Proteins were detected in channels of commercial starches of normal maize, waxy maize, sorghum, and wheat through labeling with a protein‐specific dye and examination using confocal laser scanning microscopy (CLSM). The dye, specifically 3‐(4‐carboxybenzoyl)quinoline‐2‐carboxaldehyde (CBQCA), fluoresces only after it reacts with primary amines in proteins, and CLSM detects fluorescence‐labeled protein distribution in an optical section of a starch granule while it is still in an intact state. Starch granules in thin sections of maize kernels also had channel proteins, indicating that proteins are native to the channels and not artifacts of isolation. Incubation of maize starch with protease (thermolysin) removed channel proteins, showing that channels are open to the external environment. SDS‐PAGE analysis of total protein from gelatinized commercial waxy maize starch revealed two major proteins of about Mr 38,000 and 40,000, both of which disappeared after thermolysin digestion of raw starch. Commercial waxy maize starch granule surface and channel proteins were extracted by SDS‐PAGE sample buffer without gelatinization of the granules. The major Mr 40,000 band was identified by MALDI‐TOF‐MS and N‐terminal sequence analysis as brittle‐1 (bt1) protein.  相似文献   

17.
Starch samples isolated from wheat flour that represented four possible waxy states (0, 1, 2, and 3‐gene waxy) were subjected to crushing loads under both dry and wet conditions. Calibrated loads of 0.5–20 kg were applied to the starch samples and the percentage of damaged granules was visually determined. Under dry crushing conditions, starches containing amylose (0, 1, and 2‐gene waxy) had between 1% (5‐kg load) to 3% (15‐ and 20‐kg load) damaged granules, whereas waxy starch (3‐ gene waxy; <1% amylose) began rupturing at 0.5‐kg load (3.5% damaged granules) and had 13% damaged granules when ≥10‐kg load was applied. Under wet crushing conditions, normal and partial waxy starch (0, 1, and 2‐gene waxy) showed little difference in percentage of damaged granules when compared to the results of dry crushing. Waxy starch (3‐gene waxy), however, showed substantially increased numbers of damaged granules: 12% damaged granules at 0.5‐kg load, rising to 55% damaged granules at 15‐kg load. The results indicate that waxy starch granules are less resistant to mechanical damage than normal starch granules. Furthermore, blends of normal and waxy wheats or wheat flours intended to have a particular amylose‐amylopectin ratio will be a complex system with unique processing and formulation considerations and opportunities.  相似文献   

18.
The compositions and physical properties of Japanese salt and alkaline noodle flours were contrasted and compared to those of flours from U.S. hard white and soft white wheats (HWW and SWW) and from Australian SWW wheats often segregated for salt noodles. The alkaline noodle flours averaged 11.5% protein, which was 3% higher than the salt noodle flours, and they had lower ash content (0.35 vs. 0.41%). Granulation of the salt noodle flours showed the same proportion of small particles (<38 μm) as in soft wheat flours but different levels of intermediate and large particles. The level of small particles was ≈10% greater in salt noodle flours than in the alkaline noodle flours. The alkaline noodle flours had ≈8% more fine particles and 2.5% more damaged starch than the HWW flours, which is consistent with fine grinding of hard wheat flour in the noodle flour. Starch damage also was higher in the salt noodle flours (5.3%) than in the SWW flours. The salt noodle flours had a higher sodium dodecyl sulfate (SDS) sedimentation volume and a higher gluten index than the SWW flours from the United States. The SDS volume and gluten index were lower for the alkaline noodle flours than for the HWW flours, showing the preference for a mellow gluten of low-intermediate strength in alkaline noodle flour. Mixograph data also supported the conclusions of mellow gluten in alkaline noodle flour. The swelling powers (1.7% at 92.5°C) for Australian SWW, salt noodle, U.S. HWW, U.S. SWW, and alkaline noodle flours, were 19.4, 18.1, 17.0, 16.1, and 15.8 g/g, respectively, showing the preferences for high- and low-swelling starch, respectively, in the salt noodle and the alkaline noodle flour. A similar order of flour swelling was indicated by peak viscosity of flours heated at 12% solids in starch paste viscosity analysis. Water holding capacity of flour was correlated highly (r = 0.95, P < 0.01) with swelling power, both measured at 1.7% flour solids at 92.5°C.  相似文献   

19.
《Cereal Chemistry》2017,94(6):928-933
Japonica and indica rice starches (10% w/w) were pregelatinized in a boiling water bath for 5 or 10 min and subsequently heat‐treated in a dry state for 0, 1, 2, or 3 h at 130°C to examine the effects of dry heating on pasting viscosity, paste clarity, thermal properties, X‐ray diffraction pattern, and gel strength of pregelatinized starches. Heat treatment obviously changed the physicochemical properties of pregelatinized rice starch. The pregelatinized rice starches had higher peak viscosity and final viscosity than the corresponding native rice starches. Heat treatment of pregelatinized rice starch for 1 h increased the peak viscosity, but treatment for 2 or 3 h decreased the peak viscosity compared with the unheated pregelatinized rice starch. The indica rice starch exhibited more substantial changes in pasting viscosity than did japonica rice starch during heat treatment. The melting enthalpy of the endothermic peak occurred at 90–110°C, and the intensity of the X‐ray diffraction peak at 20° was increased by dry heating, possibly owing to the enhanced amylose‐lipid complexes. The dry heat treatment of pregelatinized starch caused an increase in paste clarity and a decrease in gel strength.  相似文献   

20.
The morphology and microstructure of starch granules from two cultivars of triticale and from normal corn were characterized using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Compared to numerous pores distributed randomly on the surfaces of corn starch granules, markedly fewer pores were observed on the surfaces of starch granules isolated from Pronghorn triticale, and even fewer on the surfaces of starch granules isolated from Ultima triticale. CLSM with fluorescence staining revealed that starch‐associated protein was predominately distributed on the granule surface and in the internal channels of both triticale and corn starches. However, after triticale starch was treated with SDS or SO2, the radially oriented, protein‐filled internal channels of the granules were observed more frequently and extended to the central region of granules. Phospholipid was located mainly on the granule surface but also in channels and throughout granules in triticale starches, whereas in corn starch granules, it was mainly in the channels. The amount of protein and phospholipid in chemically and protease‐treated starches varied with starch source and treatment conditions. In treated triticale starches, the nitrogen content was positively correlated with the phosphorus content, indicating a close association between protein and phospholipid within starch granules. Starch‐associated protein and phospholipid may play an important role in maintaining the structural stability of both the granule surface and the internal channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号