首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Proteins dispersed in the continuous phase of oil-in-water emulsions are capable of inhibiting lipid oxidation reactions. The antioxidant activity of these proteins is thought to encompass both free radical scavenging by amino acid residues and chelation of prooxidative transition metals; however, the precise mechanism by which this occurs remains unclear. In this study, the oxidative stability of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin (beta-Lg) in a Brij-stabilized menhaden oil-in-water emulsion was determined. The presence of low concentrations of continuous phase beta-Lg (250 and 750 microg/mL) significantly inhibited lipid oxidation as determined by lipid hydroperoxides and thiobarbituric acid reactive substances analysis. It was observed that cysteine oxidized before tryptophan in beta-Lg, and both residues oxidized before lipid oxidation could be detected. No oxidation of the methionine residues of beta-Lg was observed despite its reported high oxidative susceptibility. It is conceivable that surface exposure of amino acid residues greatly affects their oxidation kinetics, which may explain why some residues are preferentially oxidized relative to others. Further elucidation of the mechanisms governing free radical scavenging of amino acids could lead to more effective applications of proteins as antioxidants within oil-in-water food emulsions.  相似文献   

2.
Lipid oxidation in dispersed lipids is prevalent at the oil-water interface where lipid hydroperoxides are decomposed into free radicals by transition metals. Free radical scavenging antioxidants are believed to be most effective in lipid dispersions when they accumulate at the oil-water interface. The surface activity of antioxidants could be increased by their conjugation to hydrocarbon chains. In this study, p-hydroxyphenylacetic acid (HPA) was conjugated with either a butyl or dodecyl group. The HPA conjugates were more effective at decreasing interfacial tension than unconjugated HPA, indicating that they were able to adsorb at lipid-water interfaces. However, free HPA was a more effective antioxidant than butyl and dodecyl conjugates in Menhaden oil-in-water emulsions as determined by both lipid hydroperoxides and thiobarbituric acid reactive substances. The increased antioxidant activity of free HPA could be due to its more effective free radical scavenging activity and its higher concentration in the lipid phase of oil-in-water emulsions in the presence of surfactant micelles where it can act as a chain-breaking antioxidant.  相似文献   

3.
The effects of the addition of amino acids and peptides on the oxidation of eicosapentaenoic acid ethyl ester (EPE) encapsulated by maltodextrin (MD) were investigated. The encapsulated lipid was prepared in two steps, that is, by mixing of EPE with MD solutions (+/-amino acids and peptides) to produce emulsions and freeze-drying of the resultant emulsions. The addition of amino acids and peptides improved the oxidation stability of EPE encapsulated with MD, and the inhibition of lipid oxidation by the amino acids and peptides was more effective at 70% relative humidity (RH). Met, Arg, and Trp were effective amino acids for antioxidation at RH = 10 and 40%, whereas at RH = 70%, His was the most effective amino acid, preventing the oxidation of EPE almost perfectly. Carnosine also exhibited a strong antioxidant effect at RH = 70%, but the effect of anserine was inferior. The addition of Met + Trp or Met + Arg inhibited the oxidation of EPE encapsulated with MD at RH = 40%. Cys accelerated the oxidation of EPE, indicating that the thiyl radical may act as a pro-oxidant. No close relationship was observed between the radical scavenging abilities of amino acids and peptides measured in the aqueous diphenylpicrylhydrazyl solution and their antioxidative effects in the powdery system. It is possible that the radical-scavenging ability of amino acids and peptides detected by ESR in the powder system is responsible for the antioxidative activity of these compounds.  相似文献   

4.
Chelators are valuable ingredients used to improve the oxidative stability of food emulsions. Caseins and casein peptides have phosphoseryl residues capable of binding transition metals. Thus, the ability of enriched caseinophosphopeptides to inhibit lipid oxidation in corn oil-in-water emulsions was investigated. Enriched caseinophosphopeptides (25 microM) inhibited the formation of lipid oxidation at both pH 3.0 and 7.0 as determined by lipid hydroperoxides and hexanal. Calcium (0-100 mM) had no influence on the antioxidant activity of the enriched caseinophosphopeptides. Casein hydrolysates were more effective inhibitors of lipid oxidation than the enriched caseinophosphopeptides at equal phosphorus content. Thus, antioxidant properties might not be uniquely attributed to chelating metals by phosphoseryl residues but also by scavenging free radicals. Overall, the observed antioxidant activity of casein hydrolysates means they could be utilized to decrease oxidative rancidity in foods.  相似文献   

5.
We have investigated the antioxidant activity of hydrolysates from whey proteins bovine alpha-lactalbumin (alpha-La) and beta-lactoglobulin A (beta-Lg A) by commercial proteases (pepsin, trypsin, chymotrypsin, thermolysin, and Corolase PP). Corolase PP was the most appropriate enzyme to obtain antioxidant hydrolysates from alpha-La and beta-Lg A (ORAC-FL values of 2.315 and 2.151 micromol of Trolox equivalent/mg of protein, respectively). A total of 42 peptide fragments were identified by HPLC-MS/MS in the beta-Lg A hydrolysate by Corolase PP. One of the sequences (Trp-Tyr-Ser-Leu-Ala-Met-Ala-Ala-Ser-Asp-Ile) possessed radical scavenging (ORAC-FL value of 2.621 micromol of Trolox equivalent/micromol of peptide) higher than that of butylated hydroxyanisole (BHA). Our results suggest that whey protein hydrolysates could be suitable as natural ingredients in enhancing antioxidant properties of functional foods and in preventing oxidation reaction in food processing.  相似文献   

6.
Maillard reaction products (MRPs) were prepared by reacting casein peptides with different concentrations of glucose at 80 °C for up to 12 h. The chemical properties of MRPs and their effects on lipid oxidation in fish oil-in-water emulsions were investigated. Increasing browning development and absorbance in 294 nm in the MRPs caused an increase in DPPH radical scavenging, but a decrease in iron chelation, which could be related to the loss of free amino groups in the peptides. The MRPs produced with longer reaction time or higher glucose concentrations were less effective in inhibiting lipid oxidation in emulsions at pH 7.0 compared to casein peptides alone. However, the antioxidant activity of MRPs in emulsions at pH 3.0 was not decreased by prolonged heating. The bitterness of MRPs was less than that of the original casein peptides, and bitterness decreased with increasing heating time and glucose concentrations. Therefore, the Maillard reaction was a potential method to reduce the bitterness of casein peptides while not strongly decreasing their antioxidant activity.  相似文献   

7.
In this work, the angiotensin-converting enzyme (ACE)-inhibitory and radical-scavenging activities of the beta-lactoglobulin (beta-Lg)-derived peptides WY f(19-20), WYS f(19-21), WYSL f(19-22), WYSLA f(19-23), WYSLAM f(19-24), and WYSLAMA f(19-25) have been determined. The ACE-inhibitory activity (IC50) varied from 38.3 to 90.4 microM, with the exception of WYS (>500 microM). All beta-Lg-derived peptides also exhibited radical-scavenging activity (oxygen radical absorbance capacity (ORAC) values ranged from 4.45 to 7.67 micromol Trolox equivalents/micromol of peptide). The presence and position of amino acids Trp, Tyr, and Met were proposed to be responsible for the antioxidant activity. The equimolar amino acid mixtures of all the peptides showed ORAC values lower than those of the corresponding peptides, indicating that the peptidic bond or the structural conformation had a positive influence on this activity. Finally, positive antioxidant effects of WYS, WYSL, and WYLA with ascorbic acid were observed, whereas WY and WYSLAM showed negative effects, both cases for different molar ratio mixtures. These results should be taken into account in the development of new food ingredients on the basis of peptides from beta-Lg.  相似文献   

8.
To obtain a better understanding of how the interfacial region of emulsion droplets influences lipid oxidation, the oxidative stability of salmon oil-in-water emulsions stabilized by whey protein isolate (WPI), sweet whey (SW), beta-lactoglobulin (beta-Lg), or alpha-lactalbumin (alpha-La) was evaluated. Studies on the influence of pH on lipid oxidation in WPI-stabilized emulsions showed that formation of lipid hydroperoxides and headspace propanal was much lower at pH values below the protein's isoelectric point (pI), at which the emulsion droplets were positively charged, compared to that at pH values above the pI, at which the emulsion droplets were negatively charged. This effect was likely due to the ability of positively charged emulsion droplets to repel cationic iron. In a comparison of lipid oxidation rates of WPI-, SW-, beta-Lg-, and alpha-La-stabilized emulsions at pH 3, the oxidative stability was in the order of beta-Lg > or = SW > alpha-La > or = WPI. The result indicated that it was possible to engineer emulsions with greater oxidative stability by using proteins as emulsifier, thereby reducing or eliminating the need for exogenous food antioxidants.  相似文献   

9.
The effect of selected phenolic compounds, namely, gallic acid, cyanidin-3-glucoside, (+)-epicatechin, chlorogenic acid, genistein and rutin (50 and 200 microM), and alpha-tocopherol (50 microM) against the oxidation of oil-in-water emulsions (37 degrees C/10 days) containing 1% myofibrillar proteins (MPs), was investigated. Emulsions containing 1% bovine serum albumin (BSA) were also prepared for comparative purposes. Protein oxidation was assessed by measuring the loss of natural tryptophan fluorescence and the protein carbonyl gain by using fluorescence spectroscopy. Lipid oxidation was concurrently analyzed by measuring the increase of conjugated dienes (CDs) and hexanal. Proteins inhibited lipid oxidation in oil-in-water emulsions, and MPs showed a more intense antioxidant activity than BSA. MPs were also more resistant to oxidative deterioration than BSA. The different antioxidant capacity of MPs and BSA and their susceptibility to suffer oxidative reactions might be derived from their different amino acid composition and three-dimensional structures. The addition of the phenolic compounds resulted in a variety of effects, including both antioxidant and pro-oxidant effects. Gallic acid, cyanidin-3-glucoside, and genistein were the most efficient inhibitors of lipid and protein oxidation. The chemical structure of the phenolic compounds as well as the nature and conformation of the proteins were greatly influential on the overall effect against oxidative reactions.  相似文献   

10.
The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p < 0.05), OMWW > oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.  相似文献   

11.
The effect of protein and peptide addition on the oxidation of eicosapentaenoic acid ethyl ester (EPE) encapsulated by maltodextrin (MD) was investigated. The encapsulated lipid (powder lipid) was prepared in two steps, i.e., mixing of EPE with MD solutions (+/- protein and peptides) to produce emulsions and freeze-drying of the resultant emulsions. EPE oxidation in MD powder progressed more rapidly in the humid state [relative humidity (RH) = 70%] than in the dry state (RH = 10%). The addition of soy protein, soy peptide, and gelatin peptides improved the oxidation stability of EPE encapsulated by MD, and the inhibition of lipid oxidation by the protein and the peptides was more dramatic in the humid state. Especially, the oxidation of EPE was almost perfectly suppressed when the lipid was encapsulated with MD + soy peptide during storage in the humid state for 7 days. Several physical properties such as the lipid particle size of the emulsions, the fraction of nonencapsulated lipids, scanning electron microscopy images of powder lipids, and the mobility of the MD matrix were investigated to find the modification of encapsulation behavior by the addition of the protein and peptides, but no significant change was observed. On the other hand, the protein and peptides exhibited a strong radical scavenging activity in the powder systems as well as in the solution systems. These results suggest that a chemical mechanism such as radical scavenging ability plays an important role in the suppression of EPE oxidation in MD powder by soy proteins, soy peptides, and gelatin peptides.  相似文献   

12.
Sorghum samples were either untreated or oxidized with performic acid (PA) before hydrolysis, and their amino acid contents were determined by cation exchange chromatography using an amino acid analyzer. HCl was used to destroy excess PA. Oxidative pretreatment of the samples resulted in increased yields of Cys (as cysteic acid), Met (as Met dioxide), and His, destroyed Tyr and Phe, and resulted in the appearance of an extraneous peak which most likely consisted of halogenation by-products (HBP) of Tyr and Phe. The destruction of Tyr and Phe occurred despite the presence of phenol, a halogen scavenger, in both the PA and hydrolysis reagents. The higher His values observed in all oxidized samples most likely resulted from the co-elution of His with Tyr and Phe HBP. It was concluded that the complete (except Trp) amino acid content of a feedstuff cannot be accurately determined from only one oxidized hydrolysate preparation by using this particular procedure.  相似文献   

13.
Lipid hydroperoxides are important factors in lipid oxidation due to their ability to decompose into free radicals. In oil-in-water emulsions, the physical location of lipid hydroperoxides could impact their ability to interact with prooxidants such as iron. Interfacial tension measurements show that linoleic acid, methyl linoleate, and trilinolein hydroperoxides are more surface-active than their non-peroxidized counterparts. In oil-in-water emulsion containing surfactant (Brij 76) micelles in the continuous phase, linoleic acid, methyl linoleate, and trilinolein hydroperoxides were solubilized out of the lipid droplets into the aqueous phase. Brij 76 solubilization of the different hydroperoxides was in the order of linoleic acid > trilinolein > or = methyl linoleate. Brij 76 micelles inhibited lipid oxidation of corn oil-in-water emulsions with greater inhibition of oxidation occurring in emulsions containing linoleic acid hydroperoxides. Surfactant solubilization of lipid hydroperoxides could be responsible for the ability of surfactant micelles to inhibit lipid oxidation in oil-in-water emulsions.  相似文献   

14.
The effects of salt and pH on copper-catalyzed lipid oxidation in structured lipid-based emulsions were evaluated. Ten percent oil-in-water emulsions were formulated with a canola oil/caprylic acid structured lipid and stabilized with 0.5% whey protein isolate. alpha-Tocopherol and citric acid were added to the emulsions to determine how changes in pH or the addition of NaCl affected their antioxidant activity. The peroxide values and anisidine values of emulsions stored at 50 degrees C were measured over an 8-day period. Increased lipid oxidation occurred in the pH 7.0 emulsions and when 0.5 M NaCl was added to the pH 3.0 samples. Adding alpha-tocopherol, citric acid, or a combination of the two compounds slowed the formation of hydroperoxides and their subsequent decomposition products in pH 3.0 emulsions.  相似文献   

15.
Polyphenols are widely regarded as antioxidants, due in large part to their free radical scavenging activities and their ability to disrupt radical chain propagation. However, recent studies have demonstrated that the oxidation of some polyphenolic compounds, such as the tea-derived compound (-)-epigallocatechin-3-gallate (EGCG), results in the generation of reactive oxygen species that can potentially compromise the oxidative stability of food lipids under some conditions. In this present study, the rate of hydrogen peroxide (H(2)O(2)) generation and its stability, resulting from EGCG oxidation in Tween 80- and sodium caseinate-stabilized oil-in-water (O/W) emulsions in the presence of iron (25 μM Fe(3+) from FeCl(3)), were examined. Observed H(2)O(2) levels in protein-stabilized emulsions were significantly lower across all treatments as compared to surfactant-stabilized emulsions. The lower observed H(2)O(2) concentrations seen in the protein system are likely due to the antioxidant effects of the added proteins, which either prevented the generation of or more likely scavenged the peroxide. All protein-stabilized emulsions containing EGCG showed increases in carbonyl concentrations, a marker of protein oxidation, throughout the study. The H(2)O(2) scavenging activity of aqueous phase and interfacial caseinate and whey protein isolate (WPI) was also evaluated. Both proteins showed concentration-dependent scavenging of H(2)O(2) with caseinate displaying significantly higher scavenging abilities at all concentrations. These results suggest that food proteins may play an important role in mitigating the pro-oxidant effects of polyphenols.  相似文献   

16.
Hydroxytyrosol acetate was synthesized, and the antioxidant activity of this olive oil component was assessed in comparison with that of other olive oil components, namely hydroxytyrosol, oleuropein, 3,4-DHPEA-EA, and alpha-tocopherol in bulk oil and oil-in-water emulsions. The activity of the compounds was also assessed by scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. Hydroxytyrosol acetate had a weaker DPPH radical scavenging activity than hydroxytyrosol, oleuropein, or 3,4-DHPEA-EA but it had a radical scavenging activity similar to that of alpha-tocopherol. In oil, the antioxidant activity of hydroxytyrosol acetate was much higher than that of alpha-tocopherol or oleuropein, but in an emulsion 3,4-DHPEA-EA and alpha-tocopherol were more effective as antioxidants than hydroxytyrosol acetate. The antioxidant activity of hydroxytyrosol acetate was rather similar to that of hydroxytyrosol in oil and emulsions despite the difference in DPPH radical scavenging activity.  相似文献   

17.
Proteins can be used to produce cationic oil-in-water emulsion droplets at pH 3.0 that have high oxidative stability. This research investigated differences in the physical properties and oxidative stability of corn oil-in-water emulsions stabilized by casein, whey protein isolate (WPI), or soy protein isolate (SPI) at pH 3.0. Emulsions were prepared with 5% corn oil and 0.2-1.5% protein. Physically stable, monomodal emulsions were prepared with 1.5% casein, 1.0 or 1.5% SPI, and > or =0.5% WPI. The oxidative stability of the different protein-stabilized emulsions was in the order of casein > WPI > SPI as determined by monitoring both lipid hydroperoxide and headspace hexanal formation. The degree of positive charge on the protein-stabilized emulsion droplets was not the only factor involved in the inhibition of lipid oxidation because the charge of the emulsion droplets (WPI > casein > or = SPI) did not parallel oxidative stability. Other potential reasons for differences in oxidative stability of the protein-stabilized emulsions include differences in interfacial film thickness, protein chelating properties, and differences in free radical scavenging amino acids. This research shows that differences can be seen in the oxidative stability of protein-stabilized emulsions; however, further research is needed to determine the mechanisms for these differences.  相似文献   

18.
Two series of combinatorial tripeptide libraries were constructed, based on an antioxidative peptide isolated from a soybean protein hydrolysate. One was a library of 108 peptides containing either His or Tyr residues. Another was a library of 114 peptides related to Pro-His-His, which had been identified as an active core of the antioxidative peptide. The antioxidative properties of these libraries were examined by several methods, such as the antioxidative activity against the peroxidation of linoleic acid, the reducing activity, the radical scavenging activity, and the peroxynitrite scavenging activity. Two Tyr-containg tripeptides showed higher activities than those of two His-containing tripeptides in the peroxidation of linoleic acid. Tyr-His-Tyr showed a strong synergistic effects with phenolic antioxidants. However, the tripeptide had only marginal reducing activity and a moderate peroxynitrite scavenging activity. Cysteine-containing tripeptides showed the strong peroxynitrite scavenging activity. Change of either the N-terminus or C-terminus of Pro-His-His to other amino acid residues did not significantly alter their antioxidative activity. Tripeptides containing Trp or Tyr residues at the C-terminus had strong radical scavenging activities, but very weak peroxynitrite scavenging activity. The present results allow us to understand why protein digests have such a variety of antioxidative properties.  相似文献   

19.
A combinatorial chemistry approach was employed for the design and systematic synthesis of antioxidant-emulsifier bioconjugates to improve antioxidant activity in the interface between oil and water. A combinatorial library of 12 bioconjugates was synthesized from the phenolic antioxidants Trolox (a water-soluble alpha-tocopherol analogue), dihydroferulic acid, dihydrocaffeic acid, and gallic acid in combination with serine ethyl ester, serine lauryl ester, and lauroyl serine by esterification of the serine side chain or amidation, respectively. The bioconjugates were characterized by NMR and mass spectrometry, and each was tested for antioxidant activity by measuring the radical scavenging rate of 2,2-diphenyl-1-picrylhydrazyl (DPPH (*)) in methanol, the radical scavenging rate of DPPH (*) in a heterogeneous solvent system, the rate of oxygen consumption in an oil-in-water emulsion with metmyoglobin initiated oxidation, and the lag phase for diene formation in unilamellar liposomes with free radical initiation in the aqueous phase; each case was compared to the antioxidant activity of the parent antioxidant. In general, the conjugates with longer chain derivatives exhibited improved antioxidative activity in heterogeneous systems, whereas no improvement was observed in homogeneous solution. The rate of oxygen consumption in oil-in-water emulsion was found to decrease with increasing octanol/water partition coefficient, which is suggested to correspond to a saturation of the water/oil interface with antioxidant bioconjugate to approach maximal protection.  相似文献   

20.
Hydroxycinnamic acids are natural antioxidants found in fruits, vegetables, and cereals. In this study, the antioxidant activity of various types of hydroxycinnamoyl glycoside esters that mimic the structure of polymeric carbohydrates was studied in different model systems prone to oxidation, namely, liposomes and emulsions. In addition, radical scavenging activity against the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical was tested. It was found that the esterification in the primary hydroxyl group of the glycoside resulted in the improved radical scavenging activity of both sinapoyl and feruloyl glycosides compared to conjugation to the secondary hydroxyl group. Increased activity was also observed, particularly in the case of feruloyl glucosides in inhibiting the oxidation of liposomes emulsions. The results showed that sinapic and ferulic acid glycoside esters were as effective or more efficient antioxidants than their free forms. In conclusion, the strength of their antioxidant effect depends on the nature of conjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号