首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Length, life history and ecological characteristics of landed fish communities were studied over a 10‐year period to test theories of fishing disturbance during a time of increased gear and closure management in heavily utilised fisheries. It was predicted that with greater management restrictions: (1) the earliest and fastest responses in the fishery will be seen in those species with faster turnovers, or relatively lower vulnerabilities to fishing; (2) the fishery would transition to a landed catch with higher mean trophic levels, and greater mean body lengths. In addition, the removal of a non‐selective, small‐mesh seine nets should benefit the catch of gears that previously had the greatest species selectivity overlap with the seine net. Many predictions were supported, although maximum lengths and lengths at maturity responded more rapidly than anticipated. The response to eliminating the non‐selective seine net was a more rapid increase in sizes caught by gears with a larger overlap in size (hook and lines) than species selectivity (gill nets). The simultaneous comparison of management systems over time indicates that open‐access fishing grounds can benefit from restrictions imposed in adjacent fishing grounds. The study indicated that multi‐species coral reef fisheries management objectives of maximising yields, as well as maintaining the fish community’s life‐history diversity, require management trade‐offs that balance local socio‐economic and biodiversity needs.  相似文献   

2.
Ecosystem‐based fishery management requires considering the effects of actions on social, natural and economic systems. These considerations are important for forage fish fisheries, because these species provide ecosystem services as a key prey in food webs and support valuable commercial fisheries. Forage fish stocks fluctuate naturally, and fishing may make these fluctuations more pronounced, yet harvest strategies intended to ameliorate these effects might adversely affect fisheries and communities. Here, we evaluate trade‐offs among a diverse suite of management objectives by simulating outcomes from several harvest strategies on forage fish species. We demonstrate that some trade‐offs (like those between catches and minimizing collapse length) were universal among forage species and could not be eliminated by the use of different control rules. We also demonstrate that trade‐offs vary among forage fish species, with strong trade‐offs between stable, high catches and high‐biomass periods (“bonanzas”) for menhaden‐ and anchovy‐like fish, and counterintuitive trade‐offs for sardine‐like fish between shorter collapses and longer bonanzas. We find that harvest strategies designed to maintain stability in catches will result in more severe collapses. Finally, we show that the ability of assessments to detect rapid changes in population status greatly affects control rule performance and the degree and type of trade‐offs, increasing the risk and severity of collapses and reducing catches. Together, these results demonstrate that while default harvest strategies are useful in data‐poor situations, management strategy evaluations that are tailored to specific forage fish may better balance trade‐offs.  相似文献   

3.
Abstract – The life history traits of breeding size, clutch size, egg size and relative clutch mass were examined for evidence of plasticity within a set of six annual samples of threespine stickleback, Gasterosteus aculeatus L., females from south-central Alaska, USA. Three samples (from 1992, 1996 and 1999) were of stickleback native to, and living within, a stream environment, while three (from 1995, 1996 and 1999) represented fish living within a pond environment recently colonized by the stream stickleback. Significant differences between stream and pond fish were found for all four traits. For most traits, pond-living females showed greater variation both across and within years than did stream-living females. Although extremely rapid evolution within the pond, or genetic drift caused by low founding population size, could not be completely ruled out, trait changes across years in both environments were interpreted as representing adaptive plasticity.  相似文献   

4.
To predict recreational‐fishing impacts on freshwater fish species, it is important to understand the interplay between fish populations, anglers and management actions. We use an integrated bioeconomic model to study the importance of fish life‐history type (LHT) for determining (i) vulnerability to over‐exploitation by diverse angler types (generic, consumptive and trophy anglers), who respond dynamically to fishing‐quality changes; (ii) regulations [i.e., minimum‐size limits (MSLs) and licence densities] that maximize the social welfare of angler populations; and (iii) biological and social conditions resulting under such socially optimal regulations. We examine five prototypical freshwater species: European perch (Perca fluviatilis), brown trout (Salmo trutta), pikeperch (Sander lucioperca), pike (Esox lucius) and bull trout (Salvelinus confluentus). We find that LHT is important for determining the vulnerability of fish populations to overfishing, with pike, pikeperch, and bull trout being more vulnerable than perch and brown trout. Angler type influences the magnitude of fishing impacts, because of differences in fishing practices and angler‐type‐specific effects of LHT on angling effort. Our results indicate that angler types are systematically attracted to particular LHTs. Socially optimal minimum‐size limits generally increase with LHT vulnerability, whereas optimal licence densities are similar across LHTs. Yet, both regulations vary among angler types. Despite this variation, we find that biological sustainability occurs under socially optimal regulations, with one exception. Our results highlight the importance of jointly considering fish diversity, angler diversity and regulations when predicting sustainable management strategies for recreational fisheries. Failure to do so could result in socially suboptimal management and/or fishery collapse.  相似文献   

5.
  1. The porbeagle shark Lamna nasus is a large highly migratory shark distributed in cold and temperate marine waters of the North Atlantic and Southern Hemisphere (SH). According to the International Union for Conservation of Nature, the porbeagle is assessed globally as Vulnerable and regionally as Critically Endangered in the North Atlantic and the Mediterranean Sea. This study explored, for the first time, the population genetics of L. nasus at a regional (south-east Pacific Ocean) and global scale.
  2. In this study, the null hypotheses of no genetic discontinuities among populations (i) within the SH, and (ii) between the SH and Northern Hemisphere (NH) were tested. Also, the demographic history of L. nasus in different ocean basins was assessed. Two mitochondrial markers (Control Region [CR] and cox1) well suited for population genetics inferences in sharks were used.
  3. Spatial–genetic analyses suggested two genetic clusters co-occurring in the south-eastern Pacific Ocean. A two-way ANOVA using the cox1 but not the CR mtDNA fragment detected an effect of genetic identity on shark body size. Phylogeographic analyses, haplotype networks, and analyses of molecular variance demonstrated genetic differences between populations from the NH and SH but not among populations in the SH.
  4. Migration estimates indicated limited current maternal gene flow between the two hemispheres but high gene flow within hemispheres. Two well-defined haplotype groups with star-like shapes inhabited all ocean basins in the SH. These results could reflect a historical scenario of reproductive isolation and more recent mixture among previously isolated populations in the SH. A Bayesian skyline plot analysis indicated sudden population expansion in the SH occurring ~100–125 kya.
  5. This study highlights the need for additional studies focusing on the population genomics (using nuclear markers, i.e. single nucleotide polymorphisms) and the general biology of L. nasus to explore the existence of genetically dissimilar populations in the SH. Such studies will help implementing efficient genetic monitoring programmes.
  相似文献   

6.
Chinook salmon (Oncorhynchus tshawytscha, Salmonidae) are foundational to social-ecological systems of the Northeast Pacific Rim and exhibit a rich diversity of life histories including in their adult migration timing, age at critical life-history transitions and marine feeding distributions. In recent decades Chinook have experienced declines across much of their native range; however, changes in productivity and abundance have rarely been evaluated in relation to life-history variation. To understand trends in Chinook salmon production, and how they are related to life history, we compiled time series data from the Fraser River to the Sacramento River on total run size (pre-fishery abundance) and escapement (post-fishery spawner abundance) and fit time series models to estimate trends across this bioregion. Our analysis revealed that most Chinook populations are declining, with negative trends in escapement (57 of 79) and total run (16 of 23) size. Trends were most acutely negative for interior spring Chinook in the Fraser, Columbia and Snake Rivers and most populations in California. Summer and fall Chinook had mixed trends, with several summer and fall upriver bright populations in the interior Columbia and Fraser exhibiting increases in abundance from the 1990s to 2019. Our research reveals widespread declines of this important species, but local complexity in trends that are mediated by population-level life history, migratory behaviours and watershed-scale restoration actions. Understanding linkages between life histories and resilience should inform rebuilding efforts for Chinook salmon and highlight the need to conserve intraspecific biodiversity.  相似文献   

7.
The transplanting of oysters from one ground to another is a common practice in the oyster industry. In Delaware Bay, for instance, oysters are typically transplanted from upper-bay low-salinity seed beds onto lower-bay leased grounds for growth and conditioning before market. The higher salinity on the leased grounds, however, also favours higher losses to predation and disease. A coupled oyster–Perkinsus marinus–predator model was used to investigate how varying the timing of transplant affects the ultimate yield of Eastern oysters, Crassostrea virginica, in Delaware Bay. Simulations were run in which oysters were moved from seed beds to leased grounds in November, January, March, April and May. The number of market-size (≥ 76 mm) adults available for harvest in the following July to November was compared for populations undergoing mortality from predation (crabs, oyster drills) and/or disease (Perkinsus marinus). In all simulations, the abundance of market-size oysters declined between July and November. However, transplanting oysters in November resulted in the largest yield of market-size oysters for all harvest times; transplanting in May resulted in the smallest yield. The autumn transplant allows oysters to benefit from the larger spring phytoplankton bloom over the leased grounds in the lower estuary. The effect of varying the season of transplant was most noticeable if oysters were harvested early (July or August). In all simulations, transplanting resulted in a higher abundance of market-size oysters than direct harvest from the seed beds. Direct harvest would rarely be advantageous if the cost of transplant were insignificant and the relative rates of mortality were as stipulated. However, a May transplant is only moderately better than a direct harvest and the economic benefits of either option are likely to be determined by the cost of transplanting and the mortality associated with the process. In the same vein, the decision as to when to harvest relies on balancing the increased price obtained for oysters in the autumn with the increased loss owing to predation and disease. Awaiting an autumn harvest is clearly much riskier if the principal source of mortality is disease rather than predation, because disease mortality is concentrated on the market-size oysters and is greatest in the autumn.  相似文献   

8.
Abstract  The contraction of Tenualosa macrura (Bleeker) to the Sarawak coast and a small part of Sumatra, and the decline in its fishery mirror what has happened to three other species in the genus. Little was known of this species in its last stronghold in Sarawak where it is important for management and conservation reasons to understand its biology and life history. It forms part of a multispecies fishery where effort is uniform, but catches follow a lunar cycle. Tenualosa macrura is protandrous, but low numbers of small females suggest diandry. In Sumatra Tenualosa macrura spawn throughout the year, but in Sarawak have a seasonal peak in the NE monsoon (December). This has management implications because the Sarawak fishery ceases at this time because of adverse weather, hence reducing fishing pressure on spawning T. macrura . Management measures introduced in Sarawak for Tenualosa toli (Valenciennes) may therefore not be required for T. macrura .  相似文献   

9.
Gear-based management for coral reef fisheries is often overlooked in the scientific literature. Empirical studies have demonstrated the conservation benefits of gear-restricted areas (i.e. prohibiting fishing gears), which can support greater biomass than unrestricted areas and protect species that play key functional roles. However, population dynamics of functional feeding groups of reef fishes under specific gear-restriction regimes remains uncertain. Here, we constructed a multi-species, length-based fisheries model to observe relative biomass and catch of reef fishes under various gear-restriction management scenarios. We used fishery-dependent and fishery-independent data to determine the catchability of functional groups and selectivity of size classes for hook-and-line, net and spear fishing, which are widely used gear types on coral reefs globally. Our model revealed trade-offs involved with gear-restriction management such that no single management strategy was able to maximize biomass or catch of all functional groups simultaneously. Also, we found that spear fishing (i.e. prohibiting hook-and-line and net fishing) maintained the highest total biomass summed across functional groups, whilst hook-and-line fishing (i.e. prohibiting net and spear fishing) and a ban on spears maintained the lowest biomass. However, hook-and-line fishing generated the highest catch-per-unit-effort. Our model results were primarily driven by differential growth rates, maximum per capita production of recruits, and catchability of functional groups targeted by each fishing gear. We demonstrate that gear restrictions can be a critical management tool for maintaining biomass and catch of certain functional groups but will likely require additional management to protect all key functional feeding groups of coral reef fishes.  相似文献   

10.
The Caribbean spiny lobster, Panulirus argus, Latreille, is the main source of income for the communities in the Sian Ka'an Biosphere Reserve Mexico. The fishery has recently been certified as sustainable by the Marine Stewardship Council provided that further stock assessment is carried out. A total of 379 lobsters were tagged in an unfished area offshore from the Bahía del Espíritu Santo fishing grounds to assess whether lobsters remained within these areas and were thus fully protected. The lobsters recaptured in the shallow area (5.3%) were sufficient to develop a multistate mark recapture model, which takes into account fishing and natural mortality, tag reporting rate and tag loss. This estimated that between 15 and 20% of all adult lobsters dwelling in the unfished area moved into the fishery and were subjected to exploitation. This study suggests that the offshore unfished area provides protection to the majority of the stock in this area while adding to and maintaining fishing yields within the inshore commercial fishery.  相似文献   

11.
Mass mortality events are ubiquitous in nature and can be caused by, for example, diseases, extreme weather and human perturbations such as contamination. Despite being prevalent and rising globally, how mass mortality in early life causes population-level effects such as reduced total population biomass, is not fully explored. In particular for fish, mass mortality affecting early life may be dampened by compensatory density-dependent processes. However, due to large variations in year-class strength, potentially caused by density-independent variability in survival, the impact at the population level may be high in certain years. We quantify population-level impacts at two levels of mass mortality (50% and 99% additional mortality) during early life across 40 fish species using age-structured population dynamics models. The findings from these species-specific models are further supported by an analysis of detailed stock-specific models for three of the species. We find that population impacts are highly variable between years and species. Short-lived species that exhibit a low degree of compensatory density dependence and high interannual variation in survival experience the strongest impacts at the population level. These quantitative and general relationships allow predicting the range of potential impacts of mass mortality events on species based on their life history. This is critical considering that the frequency and severity of mass mortality events are increasing worldwide.  相似文献   

12.
Forage fish occupy a central position in marine food‐webs worldwide by mediating the transfer of energy and organic matter from lower to higher trophic levels. The lesser sandeel (Ammodytes marinus) is one of the ecologically and economically most important forage fish species in the North‐east Atlantic, acting as a key prey for predatory fish and sea birds, as well as supporting a large commercial fishery. In this case study, we investigate the underlying factors affecting recruitment and how these in turn affect productivity of the North Sea sandeel using long‐term data and modelling. Our results demonstrate how sandeel productivity in the central North Sea (Dogger Bank) depends on a combination of external and internal regulatory factors, including fishing and climate effects, as well as density dependence and food availability of the preferred zooplankton prey (Calanus finmarchicus and Temora longicornis). Furthermore, our model scenarios suggest that while fishing largely contributed to the abrupt stock decline during the late 1990s and the following period of low biomass, a complete recovery of the stock to the highly productive levels of the early 1980s would only be possible through changes in the surrounding ecosystem, involving lower temperatures and improved feeding conditions. To that end, we stress the need for ecosystem‐based management accounting for multiple internal and external factors occurring within the broader context of the ecosystem in which forage fish species, such as sandeel, play an important and integral part.  相似文献   

13.
We used modified Leslie matrix models to explore the life history of Atlantic menhaden ( Brevoortia tyrannus ). By examining the sensitivity of long-term population growth rates to changes in vital rates, we identified those life history components which can cause large population level responses. Our models subdivide the first year of life into five stages (eggs, early larvae, late larvae, juveniles, and 'peanuts' or subadults), and population growth rate responds most strongly to changes in juvenile and late larval stages. The relative ranking between these stages is dependent on the magnitude of mortality during the prejuvenile stages relative to juvenile mortality. An examination of low-level model parameters indicates that the population growth rate is influenced by the growth and mortality rates during the time when young-of-the-year menhaden are gaining access to and residing in the estuaries. Sensitivity to changes in many adult metrics, such as fishing mortality, were relatively low. We conclude that a better understanding of biotic and abiotic factors that influence the late larval and juvenile stages will further our understanding of population dynamics in this species.  相似文献   

14.
15.

文章利用线粒体细胞色素b (cytochrome b, cytb)基因全序列作为分子标记,分析了中国近海和陆架的花斑蛇鲻(Saurida undosquamis)的遗传结构特征。从8个采样点266尾样本中共检测到142种单倍型,各采样点均表现出很高的单倍型多样性(0.925 1~0.992 9)和较低的核苷酸多样性(0.003 145~0.003 852)。单倍型的中间连接网络图呈现以4个优势共享单倍型为中心的星状发散结构,未发现与地理群体对应的谱系结构。分子方差分析表明花斑蛇鲻的遗传变异绝大部分(99.79%)来自种群内的个体之间,而群体之间几乎没有贡献遗传变异。成对遗传分化系数(FST)显示花斑蛇鲻群体间基因交流频繁,不存在明显的遗传差异,是一个随机交配群。中性检验表明种群历史动态显著偏离稳定种群模型,核苷酸错配分布表明花斑蛇鲻历史上曾经历过种群的快速扩张,扩张时间推算约在距今4万~10万年之前。研究结果表明,中国近海和陆架的花斑蛇鲻遗传分化不显著,在渔业上可以作为一个单元来管理。

  相似文献   

16.
紫菜的生殖与生活史研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
紫菜(Porphyra sp.)是目前世界上人工养殖海藻中经济价值较高的种类。紫菜通过不同的生殖方式来完成生活史,从而达到繁衍后代的目的。紫菜的生殖主要有无性生殖和有性生殖,单性生殖是一种特殊的有性生殖。紫菜生殖方式的多样性决定了生活史的多样性,这是进化过程中对不同环境做出的不同反应。紫菜的生殖和生活史受基因控制属遗传基础研究,它对紫菜的育种应用起着重要的指导作用。本文对紫菜生殖和生活史的研究状况以及研究中存在的问题进行评述,旨为紫菜的育种的研究和应用提供理论参考。  相似文献   

17.
18.
Abstract  Interlocked use of multiple inland vendace, Coregonus albula (L.), stocks is a relatively new strategy to exploit asynchronous fluctuations in abundance of natural fish stocks between waterbodies. It combines vendace stocks from different lakes or parts of lakes into one interlocked stock to be managed across waterbody ownership boundaries. Management of interlocked stocks can be regarded as one form of portfolio management. Exploitation of interlocked stocks should reduce the interannual variation in yield, and thus ensuring fishers more constant income and the market more constant material flow. The strategy requires fishers to increase their mobility, to benefit from asynchronous fluctuations in abundance of vendace stocks between exploitable waters. A postal inquire addressed to Finnish commercial inland fishers examined whether existing property rights institutions' and fishers' harvesting policies were appropriate to establish interlocked use of multiple vendace stocks. Almost half of fishers had, to some extent, reaped benefit from a fishing strategy that included small-scale mobility, which is consistent with the proposed strategy. By harvesting three or four lakes and stocks, fishers increased their yield compared with exploiting one fishing ground and one vendace stock. Public ownership provided fishers access to stocks nearer their place of residence than other ownership types.  相似文献   

19.
The Negombo estuary brush park fishery in Sri Lanka was investigated from June 1998 to March 1999. The mean fish yield (all species) in the fishery was 12.46 t ha−1 yr−1. Fin fish species formed about 91% of the yield and the rest was formed by penaeid shrimps and crabs. Fish yield and the twig density in the brush park exhibited a second order polynomial relationship indicating a minimum yield at an intermediate value of twig density in the brush parks. The relationship between fish yield and duration of implantation of brush parks showed an optimal period of 30–40 days for high fish yields. Income levels of fishermen, availability of construction material and suitable sites for implantation of brush parks are some of the factors determining size and number of brush parks per fisherman and duration of installation. Indigenous knowledge within the fishing community about the effect of salinity variations, twig density and mangrove species used on the harvests greatly contribute to effective operation of this fishing practice. Cultivation of mangroves to obtain twigs and branches is a unique feature in this estuary. Indigenous knowledge on mangroves has led to the adoption of sound silvicultural practices. Although cultivating mono-specific mangrove stands may not increase diversity of mangrove forests, it reduces denudation of naturally occurring mangrove forests because of brush park construction, and retains habitats for other organisms. Mangrove management plans in the Negombo estuary should therefore be viewed and treated in an integrated manner that takes into account both resource and social components.  相似文献   

20.
Recruitment dynamics are challenging to assess or predict because of the many underlying drivers that vary in their relevance over time and space. Stock size, demographic and trait composition, condition and distribution of spawning fish and the spatio‐temporal dynamics of trophic and environmental interactions all influence recruitment processes. Exploring common patterns among stocks and linking them to potential drivers may therefore provide insights into key mechanisms of recruitment dynamics. Here, we analysed stock‐recruitment data of 64 stocks from the north‐east Atlantic Ocean for common trends in variation and synchrony among stocks using correlation, cluster and dynamic factor analyses. We tested common trends in recruitment success for relationships with large‐scale environmental processes as well as stock state indicators, and we explored links between recruitment success and demographic, environmental and ecological variables for a subset of individual stocks. The results revealed few statistically significant correlations between stocks but showed that underlying common trends in recruitment success are linked to environmental indices and management indicators. Statistical analyses confirmed previously suggested relationships of environmental–ecological factors such as the subpolar gyre and Norwegian coastal current with specific stocks, and indicated a large relevance of spawning stock biomass and demographics, as well as predation, whereas other suggested relationships were not supported by the data. Our study shows that despite persistent challenges in determining drivers of recruitment due to poor data quality and unclear mechanisms, combining different data analysis techniques can improve our understanding of recruitment dynamics in fish stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号