首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Significant genetic diversity was observed in 218 out of a total of 1309 accessions of amaranth (Amaranthus hypochondriacus L.) and its seven wild relatives, A. spinosus L., A. dubius Mart. ex Thell., A. hybridus L., A. tricolor L., A. cruentus L., A. caudatus L., A. retroflexus L. for 24 nutritional parameters including total oil content, fatty acid profile, total protein content and amino acid profile. Diversity for total oil content (6.42–12.53%), linoleic acid (25.68–54.34%), oleic acid (21.97–42.01%) of the total fatty acids, total protein content (7.84–18.01%), among important essential amino acids; lysine content (0.66–11.12 g/16 g N), methionine (0.35–4.80 g/16 g N) and half cystine and (0.12–8.32 g/16 g N) was reported. The un-weighted pair-group method using arithmetic average cluster analysis based on pair wise Euclidean genetic distance grouped the accessions into seven major clusters. Histidine, half cystine, tyrosine, essential amino acids, total oil content, linoleic acid and oleic acid content were the major parameters contributing significantly to genetic diversity. Present findings indicate that significant diversity exists for nutritional parameters in amaranth germplasm. The promising accessions with higher multiple nutritive traits; protein content (>16%), oil content (>11%), lysine content (>7.5 g/16 g N) and EAA higher than the FAO reported values, were identified. This is the first report on detailed nutritional analysis of diversity collected worldwide. These could be used as potential breeding material for nutritional enhancement through genetic improvement. This will help in overcoming the “triple burden” of malnourishment, hidden hunger, and obesity.  相似文献   

2.
Aegilops geniculata Roth, a wild relative of wheat (2n = 4x = 28, genome UUMM), is distributed over the Mediterranean basin and nearby areas. The species consists of two subspecies, subsp. geniculata and subsp. gibberosa (Zhuk.) Hammer. The former is distributed over the whole species area and has been genetically analyzed, and the latter is endemic to Spain and North Africa and has not been genetically evaluated. In this study, to clarify the genetic variation and delineation of the two subspecies from a biosystematic viewpoint, morphological variation among 23 accessions of subsp. geniculata and three of subsp. gibberosa and chromosome pairing at meiosis and fertility in their intra- and inter-subspecific F1 hybrids were examined. A principal component analysis based on the 11 spike characteristics clearly divided the 26 accessions into two groups representing the two subspecies. The inter-subspecific F1 hybrids showed significantly lower frequencies of chromosome pairing, significantly higher frequencies of multivalents, and significantly lower fertilities relative to those of the intra-subspecific F1 hybrids. It was concluded that wide-ranging cytogenetic variation is included in subsp. geniculata, that subsp. gibberosa, the intra-subspecific variation of which is small, is morphologically and cytogenetically differentiated from subsp. geniculata beyond the range of the intra-subspecific variation of subsp. geniculata, and that the two subspecies are effectively isolated reproductively by hybrid sterility. The results strongly suggested that western North Africa is one of the important diversity centers of Ae. geniculata, where two subspecies were differentiated in the past and grow together in the present.  相似文献   

3.
Wild crop relatives are of considerable interest in plant breeding and significant efforts have been made to transfer their genetic variation into modern crops. Of the three diploid progenitors of bread wheat (Triticum aestivum L.), only Aegilops tauschii Coss. has been explored and exploited and only for some above ground characteristics. The three wild progenitors (Aegilops speltoides Tausch., Triticum urartu Tumanian ex Gandilyan, and Aegilops tauschii) have never been assayed for root traits. Here we report such a root study, and include Triticum monococcum L. subsp. boeoticum (Boiss.) Hayek and T. turgidum L. subsp. dicoccoides (Koern. ex Asch. et Graebn.) Thell. Fifteen accessions were selected from the above wild species and tested in the presence of one bread wheat cultivar Pavon F76. Significant variation was observed between and within the taxa. Of all accessions tested, cv. Pavon F76 had the smallest root system at maturity while A. speltoides had the largest root system. Moreover, Aegilops spp. had larger mean values for root biomass when compared with Triticum spp. These results suggest there is significant unexplored potential for the use of wheat wild relatives in wheat breeding to improve the root system, or to develop synthetic mapping populations to study root traits.  相似文献   

4.

Purpose

The deposition of phenolic acids in soils is of ecological and environmental importance for growth of trees and nutrient cycling of soil. The objective of this study was to investigate the relationship between environmental behaviors of phenolic acids and their rhizodeposition in forest soils. The results could provide more information regarding the ecological process of root exudates at the plant-soil interface.

Materials and methods

The amounts of four types of phenolic acids (i.e., p-hydroxybenzoic acid, benzoic acid, cinnamic acid, and vanillin acid) in the rhizosphere and bulk soils of two plantation forests were measured and compared using HPLC (Thermo Electron Corp., USA). The root exudates of poplar saplings under three nutrient conditions (normal (CK), nitrogen stress (low-N), and phosphorus stress (low-P)) were collected via adsorption resins (Amberlite XAD-16, USA). The phenolic acids in root exudates were then quantified by external standards. The adsorption and degradation dynamics of the phenolic acids in soils were monitored by exogenous application in the lab. Several models were employed to reveal the environmental behavior properties of phenolic acids after they entered into soils. Meanwhile, the enumeration of the culturable bacteria and fungi was conducted using soil dilution plate method to measure the abundance variation of the microbial community along with the degradation of the phenolic acids.

Results and discussion

More phenolic acids deposited in the rhizosphere soils than in the bulk soils of the poplar plantations. The difference was significant (p?<?0.05). Under normal nutrient conditions, poplar roots could secrete phenolic acids. However, in low-N and low-P conditions, poplar roots would significantly increase the secretion (p?<?0.05). Phenolic acids were quickly adsorbed by the soil within 24 h. These four phenolic acids showed varied adsorption capacities by soil, but they are generally more than 1500 μg g soil?1. Phenolic acids were degraded over time with half-lives around 1.29–4.24 days. Among them, p-hydroxybenzoic acid showed the highest secretion capability and the longest persistence, indicating that p-hydroxybenzoic acid had higher deposition potential in soils. Environmental behaviors should be responsible for the rhizodepostion of phenolic acids in poplar plantations.

Conclusions

Roots could release a certain amount of phenolic acids into the rhizosphere soil, especially under nutrient stress. Phenolic acids could be easily adsorbed onto soil colloids. However, the degradation amount of phenolic acids was positively related with the abundance of the fungi community. Thus, the rhizodeposited phenolic acids were the trade-off between those produced by root exudation and those consumed by microbial degradation.
  相似文献   

5.
6.
Secondary metabolites (SMs), such as alkaloids and raffinose oligosaccharides (RFOs), play important roles in plant physiology. Although alkaloid and RFO phenotypic variation has been reported for yellow lupin (Lupinus luteus L.), most evaluations have used a reduced number of accessions; thus, limiting the understanding of accumulation patterns and variation ranges. The main goal of this research was to assess alkaloid and RFO content in a diverse L. luteus sample to understand possible SM accumulation patterns across this legume species. Eighteen yellow lupin accessions were analyzed using high performance thin layer chromatography to provide insights on seed and leaf RFO and alkaloid phenotypic variation. Co-dominant markers (170) were used to examine genetic relationships among L. luteus accessions and possible accumulation patterns across closely related genotypes. Significant differences were observed for seed and leaf RFOs. Total seed RFO accumulation ranged from 79.738 to 131.079 mg g?1. Raffinose, stachyose, and verbascose were observed in all genotypes’ seeds, but at different RFO concentrations. Raffinose was the only RFO detected in leaves (2.793–0.4224 mg g?1). Total alkaloid accumulation ranged from 0.22 to 15.12 and 0.00 to 8.007 mg g?1 for seeds and leaves, respectively. Lupinine, sparteine, and gramine were observed in seeds and leaves, and showed a wide range of variation. Neighbor-Joining (NJ) analysis showed an apparent pattern of seed alkaloid accumulation, most likely due to domestication events. However, high RFO accumulating accessions were scattered across the NJ tree. Alkaloid and RFO significant phenotypic variation will not only help to understand the roles of these SMs in L. luteus, but also to uncover the genetic basis behind their accumulation.  相似文献   

7.
C-banded pattern in two accessions of Thinopyrum bessarabicum (Save ex Rayss) A. Löve (2n = 2x = 14, EbEb) and their idiogram was established. C-banding analysis was further used to identify the chromosomes of Tritipyrum amphiploid (2n = 6x = 42, AABBEbEb) and a BC1F2 genotype from wheat and Tritipyrum. Two 18S-26S rDNA loci were detected on Th. bessarabicum chromosomes by in situ hybridization using an 18S-26S rDNA probe. Eb chromosomes in Tritipyrum generally were identified by their distinctive C-banding patterns which reflected heterochromatin regions. C-banding procedure resulted in sharp and distinct bands in one or both ends of Eb chromosomes without interval bands. Observed C-bands in Eb genome mainly reflected the telomeric and subtelomeric sequences which also showed more strong signals in genomic in situ hybridization. Results showed the importance of the C-banding technique as a screening tool in identification of addition and substitution lines in the progenies of wheat and Tritipyrum crosses during segregating generations.  相似文献   

8.
DNA sequences of nuclear gene Got2 was studied in 60 accessions of Aegilops tauschii, 29 of subsp. tauschii and 31 of subsp. strangulata. It was found that Got2 allozyme polymorphism in Ae. tauschii is due to a single, unique, mutation which led to replacement of glutamic acid by isoleucine in residue 256 of the enzyme molecule, encoded by Got2. As revealed by Got2 DNA sequences variation, initially in its history Ae. tauschii was presented by subsp. strangulata, and among phylogenetic lineages of subsp. strangulata, the lineage “t-91s” (TauL3) is the most ancient, a relict one. Subspecies tauschii is relatively “young”. Initially it was presented by the lineage marked by combination of allozyme alleles Got2 105 and Acph1 100. In the past it inhabited the Continental area from Caucasia to Pakistan, but later on it was forced out by newly originated, now—a major lineage of subsp. tauschii, marked by Got2 100. This lineage extended the Continental area of the species up to Kirgizstan, but actually failed to penetrate into pre-Caspian area, occupied by subsp. strangulata. These results essentially differ from those obtained previously, using chloroplast DNA (cpDNA) sequences polymorphism. As revealed by cpDNA, the major, “usual”, subsp. strangulata (TauL2) is “younger” than subsp. tauschii, which resided on phylogenetic tree between relict lineage “t-91s”of subsp. strangulata—and major subsp. strangulata. But both cpDNA and Got2 DNA sequences indicate that the level of genetic variation in subsp. tauschii is much lower than in subsp. strangulata. According to Got2 DNA sequences variation, it was Ae. tauschii subsp. strangulata lineage “k-109″ which donated genome D to Triticum aestivum L. This lineage includes accessions: k-109 from South-Eastern Precaspian Azerbaijan; KU-2105, KU-2159 from Western Precaspian Iran; KU-2080 from Eastern Precaspian Iran.  相似文献   

9.
The genus Zanthoxylum, belonging to Rutaceae, has a long history of cultivation both for economic and chemical values in China. To effectively conserve and sustainably utilize this genus resource, a study on genetic diversity and relationships of Zanthoxylum germplasms was carried out by employing SRAP markers. We used 16 primer combinations to assess genetic variations and relationships among 175 accessions from eight cultivated provenances, including Shandong, Henan, Shanxi, Shaanxi, Gansu, Sichuan, Guizhou and Yunnan. A total of 145 clear repetitive and intense bands were yielded, and the percentage of polymorphic bands was 100 % for per primer combination, indicating a relatively high diversity among Zanthoxylum germplasms. From a geographic perspective, the highest genetic diversity level was observed within Guizhou provenance (N a  = 1.97, Ne = 1.52, H = 0.31, I = 0.46) while Henan provenance had the lowest genetic diversity (N a  = 1.68, Ne = 1.45, H = 0.25, I = 0.37). Based on AMOVA results, the abundant genetic variation was mainly caused by variation of intra-provenances (84.96 %), rather than among provenances (15.038 %). The results indicated low genetic differentiation (G st  = 0.133) and high gene flow (N m  = 3.2605) among provenances. The neighbor-joining tree revealed that the 175 accessions could be divided into four groups, and groupings indicated a divergence between the cultivated accessions of Zanthoxylum bungeanum Maxim. and Z. armatum DC. Moreover, three accessions of Z. piperitum DC. var. inerme without prickles introduced from Japan gathered one cluster. Cluster IV is composed of accessions of different geographical origin, including 11 wild species and 10 cultivated accessions of Z. bungeanum. The cluster analysis also reflected a relatively close relationship between the geographical origins and the classification of accessions in cluster I. Structure analysis indicated that collected Zanthoxylum accessions could be divided into two major groups. The information obtained from our research would benefit to make use of Zanthoxylum germplasms and assist the management of a Zanthoxylum germplasms collection.  相似文献   

10.
Three types of plasmon (A, B and G) are present for genus Triticum. Plasmon B is detected in polyploid species - Triticum turgidum L. and Triticum aestivum L. By now, 21 complete sequences of chloroplast DNA of the genus Triticum is published by different authors. Many inaccuracies can be detected in the sequenced chloroplast DNAs. Therefore, we found it necessary to study of plasmon B evolution to use only those sequences obtained by our method in our laboratory. Complete nucleotide sequences of chloroplast DNA of 11 representatives of Georgian wheat polyploid species were determined. Chloroplast DNA sequencing was performed on an Illumina MiSeq platform. Chloroplast DNA molecules were assembled using the SOAPdenovo computer program. Using T. aestivum L. subsp. macha var. palaeocolchicum as a reference, 5 SNPs were identified in chloroplast DNA of Georgian indigenous polyploid wheats. 38 and 56 bp inversions were observed in paleocolchicum subspecies. The phylogeny tree shows that subspecies macha, durum, carthlicum and palaeocolchicum occupy different positions. According the simplified scheme based on SNP and indel data the ancestral, female parent of all studied polyploid wheats is an unknown X predecesor, from which four lines were formed.  相似文献   

11.
The present study was carried out in order to investigate the removal of soluble Mn2+ from an aqueous solution using Bacillus cereus. A manganese aqueous solution at 50 mg L?1 was treated, and the product was less than 1 mg L?1 of residual concentration, which complied with environmental regulations. Before the optimization, B. cereus was able to remove Mn2+ ions from an aqueous solution; however, the residual content was around 2.5 mg L?1. Screening experiments aiming at defining the effects of the growth medium composition indicated that both casamino acid-peptone and yeast extract contributed to manganese removal. These experiments also showed the interaction between these two components of the culture media, nevertheless the use of glucose did not prove significant. Considering these observations, the Doehlert design was used to generate a response surface. The model was significant with the p value lower than 0.05 and the lack-of-fit not significant (p > 0.05). The optimized composition of the growth medium was defined as 0.5 g L?1 of casamino acid-peptone and 0.25 g L?1 of yeast extract, whereas glucose could be removed from the original growth medium. When the optimized condition of the growth medium was used, the time required for manganese removal was reduced from 21 to 8 days. After optimization, B. cereus was capable of producing high manganese removal, reducing the residual concentration to levels below 1.0 mg L?1.  相似文献   

12.
Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at Osmanthus fragrans with little work to develop markers for other species and cultivars. The objectives of this study were to (1) determine cross-transferability of O. fragrans and Chionanthus retusus derived SSRs in diverse Osmanthus taxa, (2) quantify the influence of locus-specific factors on cross-transferability, and (3) determine the genetic relationships between accessions. We tested 70 SSR markers derived from O. fragrans and C. retusus in 24 accessions of Osmanthus. Sixty-seven markers showed transfer to at least one other Osmanthus species with an overall transfer rate of 84% of loci across taxa. Genotyping with 42 microsatellite markers yielded a total of 367 loci. Number of alleles per locus ranged from 2 to 17 with a mean of 8.7 ± 4.8. Mean observed and expected heterozygosities were 0.560 ± 0.225 and 0.688 ± 0.230, respectively. Percent of polymorphic loci ranged from 40% in Osmanthus delavayi to 100% in O. fragrans. Osmanthus fragrans had the highest mean number of alleles per locus (4.2) while O. delavayi had the lowest (1.1). A reduced suite of eight-markers can distinguish between accessions with non-exclusion probabilities of identity from 3.91E?04 to 2.90E?07. The SSR markers described herein will be immediately useful to characterize germplasm, identify hybrids, and aid in understanding the level of genetic diversity and relationships within the cultivated germplasm.  相似文献   

13.
Four perennial wheat genotypes derived from crosses between Triticum aestivum and Thinopyrum elongatum, Th. intermedium or Th. ponticum were grown in Central Italy over 2 years of testing, and compared for their agronomical, biochemical, nutritional and technological traits with three commercial common wheat cultivars. Perennial wheat derivatives were characterized by post-harvest regrowth, small kernels, high number of tillers, high protein content and reduced sodium dodecyl sulphate sedimentation volume. Lines 11955 and OK72 exhibited soft kernel texture due to wild-type alleles at the puroindoline loci, whereas lines 235A and 280B produced medium-hard kernels for the presence of novel puroindolines A and B inherited from Th.elongatum and Th. intermedium, respectively. In addition, perennial wheat genotypes presented a high content of carotenoids and 5-n-alkylresorcinols compared with their annual counterparts. AR composition of line 235A, as determined by gas chromatography-mass spectrometry, was characterized by a high percentage (64.7 %) of long-chain (C21:0 + C23:0 + C25:0) homologues, which are claimed to prevent cardiovascular diseases and cancer. In addition, line OK72 was unique in having a C17/C21 homologue ratio as high as 0.34, likely inherited from Th. ponticum. This line along with line 280B also showed a high content of total dietary fiber. Finally, peculiar storage protein composition and kernel texture were observed in some perennial durum wheat derivatives obtained from crosses between T. turgidum subsp. durum and Th. junceiforme. This wheatgrass species was found to contain the 10-mer QQPQDAVQPF peptide, which is able to prevent prolamins from triggering inflammatory responses in celiac patients.  相似文献   

14.
Perception of farmers’ about the use of pesticides and genetic erosion of tetraploid wheat landraces of Ethiopia was assessed through focus group discussions with farmers, on-farm observations, personal interviews with farmers, by using structured questionnaires of temporal and spatial methods. A total of 1496 farmers from seven provinces in the country were interviewed. Farmers’ knowledge about pesticide increases suggests that they are not happy on using chemicals because of their negative impact on farm land. About 75 % of the farmers believe that, although the use of pesticides may increase the production of wheat, it has a negative impact on (human) health and environment. Women showed a higher concern for pesticides’ harmfulness than men. Farmers’ valuation of genetic erosion was estimated as reduced importance of landraces, as shown by a the lower proportion of landraces either grown or sold on the market. The four most important factors cited for loss of landraces were reduction in land area per capita, displacement by released/modern varieties of hexaploid wheat and teff, reduced benefit from landraces, and displacement by other crops and chat. Genetic erosion of 100 % was observed for Triticum dicoccon in the provinces of Gojam and Gonder and for T. polonicum in Tigray and Gojam. Overall, genetic erosion in the country was 32.0, 35.3, 55.9, 84.4 and 84.4 % for T. durum Desf., T. turgidum L., T. aethiopicum Jakubz., T. polonicum L. and T. dicoccon Schrank, respectively.  相似文献   

15.
Since the development of effective N2O mitigation options is a key challenge for future agricultural practice, we studied the interactive effect of tillage systems on fertilizer-derived N2O emissions and the abundance of microbial communities involved in N2O production and reduction. Soil samples from 0–10 cm and 10–20 cm depth of reduced tillage and ploughed plots were incubated with dairy slurry (SL) and manure compost (MC) in comparison with calcium ammonium nitrate (CAN) and an unfertilized control (ZERO) for 42 days. N2O and CO2 fluxes, ammonium, nitrate, dissolved organic C, and functional gene abundances (16S rRNA gene, nirK, nirS, nosZ, bacterial and archaeal amoA) were regularly monitored. Averaged across all soil samples, N2O emissions decreased in the order CAN and SL (CAN?=?748.8?±?206.3, SL?=?489.4?±?107.2 μg kg?1) followed by MC (284.2?±?67.3 μg kg?1) and ZERO (29.1?±?5.9 μg kg?1). Highest cumulative N2O emissions were found in 10–20 cm of the reduced tilled soil in CAN and SL. N2O fluxes were assigned to ammonium as source in CAN and SL and correlated positively to bacterial amoA abundances. Additionally, nosZ abundances correlated negatively to N2O fluxes in the organic fertilizer treatments. Soils showed a gradient in soil organic C, 16S rRNA, nirK, and nosZ with greater amounts in the 0–10 than 10–20 cm layer. Abundances of bacterial and archaeal amoA were higher in reduced tilled soil compared to ploughed soils. The study highlights that tillage system induced biophysicochemical stratification impacts net N2O emissions within the soil profile according to N and C species added during fertilization.  相似文献   

16.
Dihydrochalcones, beneficial phenolic compounds, are abundant in Malus Mill. species, particularly in vegetative tissues and seeds. Phloridzin (phloretin 2′-O-glucoside) is the primary dihydrochalcone in most Malus species including cultivated apple, Malus?×?domestica Borkh. A few species contain sieboldin (3-hydroxyphloretin 4′-O-glucoside) or trilobatin (phloretin 4′-O-glucoside) in place of phloridzin, and interspecific hybrids may contain combinations of phloridzin, sieboldin, and trilobatin. Proposed health benefits of phloridzin include anti-cancer, antioxidant, and anti-diabetic properties, suggesting the potential to breed apples for nutritional improvement. Sieboldin and trilobatin are being investigated for nutritional value and unique chemical properties. Although some of the biosynthetic steps of dihydrochalcones are known, little is known about the extent of variation within Malus germplasm. This research explores the genetic diversity of leaf dihydrochalcone content and composition in Malus germplasm. Dihydrochalcone content was measured using high performance liquid chromatography (HPLC) from leaf samples of 377 accessions, representing 50 species and interspecific hybrids from the USDA-Agricultural Research Service (ARS) National Plant Germplasm System Malus collection. Within the accessions sampled, 284 accessions contained phloridzin as the primary dihydrochalcone, one had only trilobatin, two had phloridzin and trilobatin, 36 had sieboldin and trilobatin, and 54 had all three. Leaf phloridzin content ranged from 17.3 to 113.7 mg/g with a heritability of 0.76 across all accessions. Beyond the potential of dihydrochalcones for breeding purposes, dihydrochalcone composition may be indicative of hybridization or species misclassification.  相似文献   

17.
Pyrene is a dominant PAH in urban environments. It can combine with airborne particulates and accumulate on plant leaves. To investigate pyrene’s biodegradation potential, this study initially monitored the abundance of airborne and phyllosphere bacteria. The number of airborne pyrene-degrading bacteria ranged from 22 to 152 CFU m?3 air, and more bacteria were found in the proximity of the ornamental plant swath than along the roadside. Pyrene-degrading bacteria averaged 5 × 104 CFU g?1 on the leaves of all tested plant species and accounted for approximately 7% of the total population. Four pyrene-degrading bacteria were isolated from I. coccinea to use as model phyllosphere bacteria. To increase the bioavailability of pyrene, a lipopeptide biosurfactant was applied. Kocuria sp. IC3 showed the highest pyrene degradation in the medium containing biosurfactant. The removal of deposited pyrene at 30 μg g?1 leaf was monitored in a glass chamber containing I. coccinea twigs. After 14 days, leaves containing both Kocuria sp. IC3 and 0.1× CMC biosurfactant showed 100% pyrene removal with the most abundant bacteria. The system with biosurfactant alone also enhanced the activities of phyllosphere bacteria with 94% pyrene removal. Consequently, the bioremediation of deposited pyrene could be achieved by spraying biosurfactant on ornamental shrubs.  相似文献   

18.
The genus Crataegus known as hawthorns, is the largest genus among the Maloideae, which comprises 265 species. Turkey is one of the genetic centers of Crataegus and there are more than 20 species found in Turkey. The fruits of Crataegus are used as food and have high flavonoid, vitamin C, glycoside, anthocyanidin, saponin, tannin, and antioxidant levels. In this study, we attempted to characterize 15 Crataegus accessions sampled from Hatay, located in Eastern Mediterranean region of Turkey. The accessions belonged to several species; C. aronia (L.) DC. var. aronia, C. aronia var. dentata Browicz, C. aronia var. minuta Browicz, C. monogyna Jacq. subsp. azarella (Griseb.) Franco, and C. orientalis Pall. ex M. Bieb. var. orientalis. Fruit characteristics of the accessions exhibited considerable variation. The multivariate, principle component and cluster analyses indicated that the accessions belonged to three groups: (1) C. aronia var. arona accessions; (2) C. aronia var. dentata accessions; and, (3) C. monogyna subsp. azarella and C. orientalis var. orientalis accessions. The principle component analysis results also revealed that the first three components explained 46, 21, and 14% of the variation, comprising a total of 81%. The fruit length and width, leaf area, and soluble solids contents were highly correlated characteristics for the first three components. The 19 RAPD primers generated a total of 107 bands, where 76 of these were polymorphic. The molecular data analyses by principle coordinate and clustering showed similar results to those of pomological characteristics. There were three groups, (1) C. aronia var. arona accessions; (2) C. aronia var. dentata accession; and, (3) C. monogyna subsp. azarella. C. orientalis var. orientalis accession grouped with C. aronia var. arona accessions. Therefore, it can be concluded that, overall, the diversity patterns of pomological and molecular data, generated by RAPD, for Crataegus are in good agreement and the accessions of C. aronia var. aronia, C. aronia var. minuta, C. monogyna subsp. azarella and C. orientalis var. orientalis accessions.  相似文献   

19.

Purpose

Soil organic carbon (SOC) and its labile fractions are strong determinants of physical, chemical and biological properties. The objective of the present work was to evaluate the effects of organic amendments (technosol made of wastes and biochar) and Brassica juncea L. on the soil C fractions in a reclaimed mine soil.

Materials and methods

The studied soil was from a former copper mine that was subsequently partially reclaimed with vegetation and wastes. A greenhouse experiment was carried out to amend the mine soil with different proportions of technosol and biochar mixture and planting B. juncea. B. juncea plants can tolerate high levels of metals and can produce a large amount of biomass in relatively short periods of time.

Results and discussion

The results showed that with the addition of biochar and wastes, soil pH increased from 2.7 to 6.18, SOC from undetectable to 105 g kg?1 and soil total nitrogen (TN) from undetectable to 11.4 g kg?1. Amending with wastes and biochar also increased dissolved organic carbon (DOC) from undetectable to 5.82 g kg?1, carbon in the free organic matter (FOM) from undetectable to 30.42 g kg?1, FAP (carbon in fulvic acids removed with phosphoric acid) from undetectable to 24.14 g kg?1 and also increased the humification ratio, the humification index, the polymerisation rate and the organic carbon in the humified fractions (humic acids, fulvic acids and humin). Soils amended and vegetated with B. juncea showed lower FOM values and higher humification index values than the soils amended only with biochar and wastes.

Conclusions

This study concludes that the combined addition of wastes and biochar has a greater potential for both increasing and improving organic carbon fractions in mine soils. The authors recommend the application of biochar and technosol made of wastes as a soil amendment combined with B. juncea on soils that are deficient in organic matter, since they increased all of the SOC fractions in the studied copper mine soil.
  相似文献   

20.

Purpose

Detonation synthesis nanodiamonds (ND) are among the most widely applied nanoparticles due to their low cost of production and broad scope of applications. However, the fate and behavior of NDs in the environment are largely unknown. The behavior of NDs is greatly affected by humic substances (HSs), which comprise 50 to 80 % of natural organic matter in water and soil ecosystems. The uptake of detonation NDs by wheat seedlings and its toxicity were evaluated in the presence of seven HSs of different origins, including humic acids (HA, HS fraction soluble in alkali and insoluble in acid) and fulvic acids (FA, soluble in both alkali and acid).

Materials and methods

To monitor the uptake of NDs by plants, tritium-labeled NDs were produced. Liquid scintillation spectrometry and autoradiography were used to determine the amount of NDs absorbed by plants. The photosynthetic activity of the plants was measured using light response curves.

Results and discussion

After a 24-h exposure period, the ND content in the plant roots was 1720 μg g?1. The introduction of HSs decreased the ND contents in the plant roots to 680–1570 μg g?1 (except for peat FA, for which the ND content did not differ from the blank value). The observed phenomenon was probably related mainly to the influence of HSs on the zeta potential of the NDs, which shifted from positive to negative. Based on chlorophyll fluorescence evaluation, the toxicity of NDs did not inhibit photosynthesis during illumination in the physiological range. However, NDs were slightly toxic to wheat plants under excessive light, likely due to the inhibition of electron transport between Q A and Q B and the disruption of the formation of a thylakoid transmembrane potential.

Conclusions

The introduction of HA in a suspension of NDs obviously reduced the inhibiting effect of the NDs; however, the mitigating activities of FA were not so apparent. Our results demonstrate the urgent need for further studies of the influences of NDs on plant growth and development.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号