首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asian rice (Oryza sativa L.) is widely cultivated in Asia, where it has been classified into Indica and Japonica Group, the latter is further classified into Tropical and Temperate Japonica Subgroup. O. rufipogon is believed to be the closest ancestor to O. sativa, but it remains unclear whether the two groups arose from a single ancestor or different ancestors. Therefore, here, we investigated the matrilineal ancestors of O. sativa using markers for organelle (chloroplast and mitochondrial) genomes, and 119 O. sativa landraces, 10 O. glaberrima Steud., 115 O. rufipogon Griff. from Asia, and 39 accessions from other wild rice species with AA genomes. We screened 18 organelle markers developed based on polymorphic loci in the organelle genomes. In addition, we used the open reading frame 100 of a chloroplast marker. The results indicated that O. rufipogon first differentiated into two lineages and then further differentiated into Indica and Japonica Group, respectively. Accessions of O. rufipogon (R-1f and R-2d types) from Myanmar appear to be the closest ancestors of Tropical Japonica Subgroup and Indica Group, respectively. Therefore, these wild strains may have made a strong contribution to the domestication of rice landraces in Myanmar.  相似文献   

2.
In this study, ecological, morphological and genetic diversity in 11 surviving populations of Oryza rufipogon Griff. from Hainan Island, China were investigated. These data served to provide much needed data in support of conservation strategies. The results divided O. rufipogon into six ecotypes. The cluster analysis based on 19 morphological features showed clear differentiation among populations or within populations. The cluster analysis based on SSR also revealed similar results. The ecological, morphological and genetic diversity observed in O. rufipogon resulted in the following conservation recommendations: (1) the four currently protected O. rufipogon localities should be maintained, due to the different ecological communities represented at these sites; (2) some populations, such as HL (Hele county, Hainan Island), should be protected, but some populations, such as FC (Fucheng county, Hainan Island) and DL (Dalu county, Hainan Island), might not be protected. (3) An isolation zone should be established to avoid possible introgression between O. sativa L. and O. rufipogon; and human activities that impact O. rufipogon should be reduced or eliminated.  相似文献   

3.
Maize (Zea mays L.) and Asian rice (Oryza sativa L.), two most important cereals for human nutrition, have undergone strong artificial selection during a long period of time. Currently, a number of genes with stronger signals of selection have been identified through combining genomic and population genetic approach, but research on artificial selection of maize and Asian rice is scarcely done from the perspective of phenotypic difference of a number of agronomic traits. In this study, such an investigation was carried out on the basis of 179 published studies about phenotypic quantitative trait locus (QTL) mapping of Zea and Oryza species via QTL sign test. At the overall level, the proportions of antagonistic QTLs of Zea and Oryza species were 0.2446 and 0.2382 respectively, deviating significantly from neutrality. It indicated that these two genera have undergone similar selection strength during their evolutionary process. A previous study showed that 4 traits undergoing the directional selection during domestication were identified in Asian rice via QTL sign test, and 16 individual traits in Asian rice and 38 ones in maize that newly detected in this study deviated significantly from neutrality as well, demonstrating the dominant influence of artificial selection on them. Moreover, analysis of different categories of cross type including O. sativa × Oryza rufipogon (perennial and annual forms) crosses, maize × teosinte (Zea mays subsp. parviglumis) crosses, O. sativa × O. sativa crosses, and maize × maize crosses showed that their proportions of antagonistic QTLs were 0.1869, 0.1467, 0.2649, and 0.2618 respectively. These results revealed that selection strength of domestication is significantly stronger than that of modern genetic improvement. However, interestingly, the proportion of antagonistic QTLs (0.1591) in maize × maize with long-term selection was very similar to that (0.1467) in the maize × teosinte (Zea mays subsp. parviglumis) crosses. It suggested that some favorable traits could be cultivated within a few decades if we carry out strong selection. In addition, the proportions of antagonistic QTLs of the widely cultivated hybrids of rice (Minghui 63 × Zhenshan 97) and maize (Zheng 58 × Chang 7-2) in China were 0.309 and 0.3472 respectively. It suggested that selection during modern genetic improvement has significantly acted on them.  相似文献   

4.
Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at Osmanthus fragrans with little work to develop markers for other species and cultivars. The objectives of this study were to (1) determine cross-transferability of O. fragrans and Chionanthus retusus derived SSRs in diverse Osmanthus taxa, (2) quantify the influence of locus-specific factors on cross-transferability, and (3) determine the genetic relationships between accessions. We tested 70 SSR markers derived from O. fragrans and C. retusus in 24 accessions of Osmanthus. Sixty-seven markers showed transfer to at least one other Osmanthus species with an overall transfer rate of 84% of loci across taxa. Genotyping with 42 microsatellite markers yielded a total of 367 loci. Number of alleles per locus ranged from 2 to 17 with a mean of 8.7 ± 4.8. Mean observed and expected heterozygosities were 0.560 ± 0.225 and 0.688 ± 0.230, respectively. Percent of polymorphic loci ranged from 40% in Osmanthus delavayi to 100% in O. fragrans. Osmanthus fragrans had the highest mean number of alleles per locus (4.2) while O. delavayi had the lowest (1.1). A reduced suite of eight-markers can distinguish between accessions with non-exclusion probabilities of identity from 3.91E?04 to 2.90E?07. The SSR markers described herein will be immediately useful to characterize germplasm, identify hybrids, and aid in understanding the level of genetic diversity and relationships within the cultivated germplasm.  相似文献   

5.
Comparative studies of two cultivated and sixteen wild species of the genus Oryza were carried out using one- and two-dimensional gel electrophoresis for variation in their seed proteins for interrelationships of these species. A number of polypeptides in the range of molecular weight 13–110 kDa were seen to vary. Under reducing conditions, polypeptides spread over the regions of mol. wt. 33–40.5, 25–27 and 19–21.5 kDa exhibited maximum variation in their patterns. Two-dimensional gel electrophoresis revealed the occurrence of disulphide-linked glutelin polypeptide pairs of mol. wt. 60, 58, 52 and 25 kDa breaking into a large and a small subunit each in the range of mol. wt. 18–40.5 and 16–25 kDa respectively in Oryza sativa. The number of such polypeptide pairs varied from 2 to 6 in different species and also in O. sativa showed variation in mol. wts. of their constituent subunits. The UPGMA dendrogram revealed that most of the Oryza species occurred in different clusters and subclusters and thus did not share very close relationships. The undisputed and closest relationship observed was that of cultivated rice O. sativa with the O. rufipogon followed by that with O. nivara. The African cultivated O. glaberrima occurring on the nearest branch of the same subcluster, thereby, supporting the phylogenetic of these species suggested in earlier studies. Eight diploid species and seven tetraploid species were included in one part of the dendrogram while the remaining two species with AA genome i.e. O. glumaepatula and O. meridionalis and one with FF i.e. O. brachyantha stood separately from these as scattered in the group of seven tetraploid species with BBCC, CCDD and HHJJ genomes. The tetraploids O. alta, O. latifolia and O. grandiglumis with CCDD genomes which occurred on the farthest part were distantly related with O. sativa. The cyanogen bromide peptide maps and two dimensional gel electrophoresis also supported the closest relationship between O. sativa and O. rufipogon.  相似文献   

6.
7.
The main goal of this study is to gain insight into the relationship between the genetic profile of cultivated rice (Oryza spp.) accessions and their resistance to rice blast. Therefore, the genetic and phenotypic variability of a set of 350 cultivated rice accessions originating from Africa (Benin, Mali and Nigeria, Ivory Coast etc.) was examined. Seventy-seven fluorescent amplified fragment polymorphism (AFLP) markers were used to gain insight into the genetic variation and to classify the germplasm collection. In addition, the rice germplasm was assessed for its resistance to blast disease caused by Pyricularia oryzae in upland field conditions. Huge differences in responses of rice accessions to P. oryzae were observed, ranging from highly susceptible to highly resistant. Twelve percent of all accessions were highly resistant to P. oryzae. Based on their AFLP marker profile these highly resistant accessions could be separated from the other accessions. Stepwise regression revealed that the best prediction of the blast resistance level was achieved with a maximum number of 13 AFLP markers. Marker CTA22 was the most important for accurate prediction of blast resistance, this marker was present in all highly resistant accessions. It can be concluded that AFLP markers are a valuable tool to screen rice accessions for their susceptibility towards blast disease and that, based on a subset of markers, it is possible to predict the resistance to rice blast.  相似文献   

8.
The wild progenitor species (Oryza rufipogon) of Asian cultivated rice (O. sativa L.) is located in Dongxiang county, China which is considered its the northernmost range worldwide. Nine ex situ and three in situ populations of the Dongxiang wild rice (DXWR) and four groups of modern cultivars were genotyped using 21 SSR markers for study of population structure, conservation efficiency and genetic relationship. We demonstrated that the ex situ conservation of the DXWR failed to maintain the genetic identity and reduced genetic diversity. Therefore, in situ conservation is absolutely necessary to maintain the genetic identity, diversity and heterozygosity. Also, in situ conservation is urgently needed because natural populations in DXWR have decreased from nine to three at present due to farming activity and urban expansion. In DXWR, the three surviving in situ populations had greater expected heterozygosity than any cultivated rice, and were genetically closer to japonica than either the male-sterile maintainer or restorer lines, or indica. Japonica has the lowest genetic diversity of cultivated rice. As a result, DXWR is a rich gene pool and is especially valuable for genetic improvement of japonica rice because these O. rufipogon accessions are most closely related to the japonica as compared to O. rufipogon collected anywhere else in the world.  相似文献   

9.
Recent advances in next generation sequencing technologies make genotyping-by-sequencing (GBS) more feasible for molecular characterization of plant germplasm with complex and unsequenced genomes. Here we applied the GBS technology to assess the genetic diversity of 275 hexaploid oat wild relative (Avena sterilis) plants collected from 24 natural populations in Jordan. Total genomic DNAs were extracted and digested with restriction enzymes PstI and MspI. Three Illumina MiSeq sequencing runs generated 556 paired-end FASTQ files with 127,128,438 raw sequences. Bioinformatics analysis identified an informative matrix of 275 samples × 12,999 SNP markers. Analysis revealed 52.4% of SNP variation residing among 24 populations and eight major genetic clusters of the samples. Most samples were grouped together within their original populations. A significant association of pairwise population genetic distances was found with latitudinal or longitudinal differences. Two natural populations were highly differentiated from the others, and 30 highly distinct A. sterilis samples were identified from seven populations. These findings are useful for understanding genetic variability and conservation of natural A. sterilis populations, and they demonstrate the advances of the GBS application for germplasm characterization of crop wild relatives with complex genomes.  相似文献   

10.
Setaria viridis (L.) P. Beauv. and its domesticated form, S. italica (L.) P. Beauv., have been developed over the past few years as model systems for C4 photosynthesis and for the analysis of bioenergy traits. S. viridis is native to Eurasia, but is now a ubiquitous weed. An analysis of the population structure of a set of 232 S. viridis lines, mostly from North America but also comprising some accessions from around the world, using 11 SSR markers, showed that S. viridis populations in the US largely separate by latitude and/or climatic zone. S. viridis populations from the Northern US and Canada (north of 44°N) group with accessions from Western Europe, while populations in the Mid and Southern US predominantly group with accessions from Turkey and Iran. We hypothesize that S. viridis in the US was most likely introduced from Europe, and that introductions were competitive only in regions that had climatic conditions that were similar to those in the regions of origins. This hypothesis is supported by the fact that Canadian S. viridis lines were fast cycling and undersized when grown in the Mid-Western and Southern US compared to their morphology in their native environment. A comparison of the population structure obtained with 11 SSR markers and ~40,000 single nucleotide polymorphisms (SNPs) in a common set of S. viridis germplasm showed that both methods essentially yielded the same groupings, although admixture was identified at a higher frequency in the SNP analysis. Small numbers of SSR markers can thus be used effectively to discern the population structure in this inbreeding species.  相似文献   

11.
Citrus depressa Hayata is an indigenous mandarin species on the Ryukyu Islands located in the subtropical region of Japan. We deduced its phylogenetic relationships by evaluating accessions grown on various Ryukyu Islands via cleaved amplified polymorphic sequence analysis of cpDNA and sequence-related amplified polymorphism (SRAP). The cpDNA results indicated that C. depressa could be classified into two types. SRAP revealed patterns of diversity within C. depressa consistent with our cpDNA results. These results indicate that maternal origin may influence or is correlated with the constitution of the nuclear genome of C. depressa. Another Japanese mandarin species, Citrus tachibana (Makino) Tanaka was distinguished from C. depressa by SRAP markers. Moreover, both C. depressa and C. tachibana could be distinguished from other Citrus species. Our results suggest that Japanese mandarin possesses a characteristic genome with the genus Citrus.  相似文献   

12.
Forty-four Asparagus officinalis cultivars, gene bank accessions and breeding lines as well as thirty-four accessions of wild relatives of Asparagus were evaluated for resistance to Asparagus virus 1. Three different test strategies were developed for the assessment of individual plants: (1) natural infection under field conditions, or two vector-mediated infection assays using the green peach aphid Myzus persicae (2) in an insect-proof gauze cage or (3) in a climate chamber. The AV-1 infections were verified by DAS-ELISA and RT-PCR approaches. All tested 660 individual plants of A. officinalis germplasm were susceptible to AV-1 infection. In contrast, in 276 plants of 29 Asparagus wild accessions no virus infection could be detected. These resistant accessions comprised of nineteen diploid, tetraploid and hexaploid species of both the Eurasian clade and the African clade of the asparagus germplasm. Data of the AV-1 resistance evaluation are discussed in relation to the genetic distance of the resistance carrier and potential application in breeding.  相似文献   

13.
DNA sequences of nuclear gene Got2 was studied in 60 accessions of Aegilops tauschii, 29 of subsp. tauschii and 31 of subsp. strangulata. It was found that Got2 allozyme polymorphism in Ae. tauschii is due to a single, unique, mutation which led to replacement of glutamic acid by isoleucine in residue 256 of the enzyme molecule, encoded by Got2. As revealed by Got2 DNA sequences variation, initially in its history Ae. tauschii was presented by subsp. strangulata, and among phylogenetic lineages of subsp. strangulata, the lineage “t-91s” (TauL3) is the most ancient, a relict one. Subspecies tauschii is relatively “young”. Initially it was presented by the lineage marked by combination of allozyme alleles Got2 105 and Acph1 100. In the past it inhabited the Continental area from Caucasia to Pakistan, but later on it was forced out by newly originated, now—a major lineage of subsp. tauschii, marked by Got2 100. This lineage extended the Continental area of the species up to Kirgizstan, but actually failed to penetrate into pre-Caspian area, occupied by subsp. strangulata. These results essentially differ from those obtained previously, using chloroplast DNA (cpDNA) sequences polymorphism. As revealed by cpDNA, the major, “usual”, subsp. strangulata (TauL2) is “younger” than subsp. tauschii, which resided on phylogenetic tree between relict lineage “t-91s”of subsp. strangulata—and major subsp. strangulata. But both cpDNA and Got2 DNA sequences indicate that the level of genetic variation in subsp. tauschii is much lower than in subsp. strangulata. According to Got2 DNA sequences variation, it was Ae. tauschii subsp. strangulata lineage “k-109″ which donated genome D to Triticum aestivum L. This lineage includes accessions: k-109 from South-Eastern Precaspian Azerbaijan; KU-2105, KU-2159 from Western Precaspian Iran; KU-2080 from Eastern Precaspian Iran.  相似文献   

14.
Avocado (Persea americana Mill.) is a subtropical domesticated fruit tree indigenous to Mesoamerica. It is a member of the Lauraceae family and is separated into three horticultural races (Guatemalan, Mexican, and West Indian) mainly corresponding to their ecological adaptation, botanical, and physiological traits. Main objectives of this study were to characterize the population structure, genetic diversity, and horticultural race of a total of 354 Persea spp. trees whose origin is as follow: 221 trees [P. americana, (218), P. nubigena (2) and P. krugii (1)] from the USDA-ARS-Subtropical Horticultural Research Station, Miami; 105 trees from the Fairchild Farm [P. americana (104) and P. schiedeana (1)], and 28 trees collected in Mexico [P. schiedeana (23) and P. americana (5)]. The complexity of their interracial admixture; as well as mislabeling frequency was also evaluated. Molecular marker analysis utilizing a set of 55 simple sequence repeat (SSR) markers amplified a total of 869 alleles with a mean number of alleles per locus of 15.8 and average polymorphism information content value of 0.71, indicating a high variability in the allele frequency for the collection. Significant deviations from Hardy–Weinberg equilibrium were identified after Bonferroni correction for a large number of loci (48; 87%) due to the presence of null alleles. The main source of variation for this population was found to be within individuals (66.84%), with 19.30% variation among populations, and 13.86% variation among individuals within populations. Moreover, population specific inbreeding indices (F IS ) were calculated for West Indian, Guatemalan, and Mexican [(0.1918; p value 0.0000), (0.1879; p-value 0.0000), (0.0925; p-value 0.0022)], respectively. Bayesian analysis divided the individual genotypes into groups associated with the Guatemalan, Mexican, West Indian races; interracial admixture; complex hybrids and P. schiedeana species. Also, results of the multivariate clustering method (PCA) and genetic distance analyses calculated among all possible individual combinations within the SSR diversity data agreed with Bayesian or Structure analyses results. The 55 SSRs provided complete resolution of all individuals and the estimated mislabeling error was approximately 0.28%.  相似文献   

15.
Here, two Punica species, viz., P. protopunica Balf. fil., reported as native to Socotra, and P. granatum L., were compared for the first time. Analysis of one P. protopunica and eleven P. granatum accessions was performed using three molecular markers, i.e., sequence related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), and intron targeted amplified polymorphism (ITAP), along with analysis of pgWD40 sequences, a gene involved in anthocyanin biosynthesis. All markers revealed the relationship between the two species and placed them at 33% similarity. SRAP, TRAP, and ITAP generated a total of 299, 260, and 160 bands, respectively. Of these, 78, 74, and 41 bands were specific for P. protopunica, and 92, 85, and 57 bands, respectively, were shared between both species. Sequence analysis of pgWD40~870 bp amplicons exhibited 100% identity among P. granatum accessions and 98% identity to that of P. protopunica. Phylogenetic analysis of WD40 sequences from monocot and dicot species, including both Punica species confirmed the relation between P. protopunica and P. granatum, supporting earlier reports that P. protopunica could be an ancestral species of P. granatum. Furthermore, the genetic diversity among and within P. granatum accessions from Egypt (3), Mexico (5), and Yemen (3) was assessed. Molecular marker-based relationships among region-bulked accessions was approximately the same (~90% similarity), whereas the degree of genetic variation was altered within each region. Specific bands (alleles) for accessions of each region along with those shared among them were identified. Thus, these bands could be used for pomegranate genotyping and breeding programs.  相似文献   

16.
Genetic diversity of 139 accessions of diploid Triticum species including Triticum urartu, Triticum boeoticum and Triticum monococcum was studied using 11 SSR (simple sequence repeats) markers. A total of 111 alleles with an average of 10 alleles per locus were detected. The polymorphism information content (PIC) of each SSR marker ranged from 0.30 to 0.90 with an average value of 0.62. Among the three Triticum species T. urartu had the highest number of total alleles (Na?=?81), private alleles (Npa?=?15) and showed higher genetic diversity (Hex?=?0.58; PIC?=?0.54). The genotypes from Turkey exhibited the highest genetic diversity (PIC?=?0.6), while the least diversity was observed among 4 Georgian accessions (PIC?=?0.11). Cluster analysis was able to distinguish 139 wheat accessions at the species level. The highest genetic similarity (GS) was noted between T. boeticum and T. monococcum (GS?=?0.84), and the lowest between T. urartu and T. monococcum (GS?=?0.46). The grouping pattern of the PCoA analysis corresponded with cluster analysis. No significant differences were found in clustering of T. urartu and T. monococcum accessions with respect to their geographic regions, while within T. boeoticum species, accessions from Iran were somewhat associated with their geographical origin and clustered as a close and separate group. The results from our study demonstrated that SSR markers were good enough for further genetic diversity analysis in einkorn wheat species.  相似文献   

17.
The parasitic weed, Striga gesnerioides, is a major threat to cowpea productivity throughout the savannas of West and Central Africa. The identification of sources of S. gesnerioides resistance and their incorporation into breeding programs would be a beneficial strategy to combat the devastation caused by the parasite in cowpea fields. In this study we examined one hundred and ninety-four (194) accessions, four commercial varieties and two controls collected from a mini core collection of cowpea held at the International Institute of Tropical Agriculture genebank for resistance to S. gesnerioides race 3 (SG3), the most prevalent race in Nigeria, using phenotypic screening and molecular marker analysis. Our studies identified two cowpea accessions, Tvu-1272 and Tvu-16514, that are resistant to S. gesnerioides SG3. Resistance in these lines is associated with the molecular marker SSR1, known to segregate with the gene conferring resistance to SG3 in the cultivar B301. Phenotypically, resistance in Tvu-1272 and Tvu-16514 is expressed as a hypersensitive response at the site of infection on the roots. Allelism tests indicated that the gene that conferring SG3 resistance in Tvu-1272 is independent of that conferring resistance in B301. Tvu-1272 and Tvu-16514 will provide additional new sources of resistance to Striga and races prevalent in Nigeria.  相似文献   

18.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

19.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

20.
A number of genes that contribute to the domestication traits of cultivated rice have been identified. These include Sh4, Rc, PROG1 and LABA1, which are associated with non-shattering rachis, white pericarp, erect growth and barbless awns, respectively. The mutations giving rise to the “domestication alleles” of these genes are either invariable in cultivated rice, or have variability that is strictly associated with the phenotypic trait. This observation forms the basis to those current rice domestication models that envisage a single origin for the domesticated phenotype. Such models assume that the domestication alleles are absent or rare in wild rice, emerged under cultivation and spread across all rice groups by introgressive hybridization. We examined whole-genome sequencing datasets for wild and cultivated rice to test the former two assumptions. We found that the rc and laba1 alleles occur in wild rice with broad geographical distribution, and reach frequencies as high as 13 and 15%, respectively. These results are in agreement with previous observations of the prog1 and sh4 domestication alleles in wild populations. We also show that the diversity of the genomic regions surrounding the rc, laba1, prog1 and sh4 alleles in wild accessions is greater than that in cultivated rice, suggesting that these alleles emerged prior to domestication. Our findings indicate that the possibility that independent rice groups obtained identical domestication alleles directly from the wild population needs to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号