首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
OBJECTIVE: To assess the effectiveness of cholecalciferol (D3) doses for maintaining adequate vitamin D status in crias and adult female alpacas at pasture. DESIGN: A field experiment during winter and early spring in a herd on a farm in South Australia. ANIMALS AND PROCEDURE: Crias, usually less than 6 months of age and female alpacas, aged 2 to 6 years, were given a single subcutaneous dose of 0, 1000 or 2000 IU D3/kg body weight. Plasma concentrations of 25-hydroxycholecalciferol (25-OH D3), phosphorus, calcium and vitamins A and E and alkaline phosphatase activity were measured at intervals over a period of 16 weeks after treatment. RESULTS: Crias not given a vitamin D supplement had reduced growth rate during winter and one animal showed clinical signs of rickets. Vitamin D treatment had no effect on the body weight of mature females. Vitamin D supplements increased the 25-OH D3 and phosphorus concentrations in plasma of both crias and adult females; alkaline phosphatase activity was not affected by treatment. CONCLUSION: It is suggested that for alpacas in southern Australia a subcutaneous dose of 1000 IU D3/kg body weight to crias in late autumn and again in mid winter and to adult females in mid winter should prevent vitamin D inadequacy.  相似文献   

2.
The effect of exposure to different UVb compact lamps on the vitamin D status of growing bearded dragons (Pogona vitticeps) was studied. Forty‐two newly hatched bearded dragons (<24 h old) were allocated to six treatment groups (n = 7 per group). Five groups were exposed to different UVb compact lamps for two hours per day, with a control group not exposed to UVb radiation. At 120 days of age, blood samples were obtained and concentrations of 25(OH)D3, Ca, P and uric acid were determined. In addition, plasma 25(OH)D3 concentration was determined in free‐living adult bearded dragons to provide a reference level. Only one treatment resulted in elevated levels of 25(OH)D3 compared to the control group (41.0 ± 12.85 vs. 2.0 ± 0.0 nmol/L). All UVb‐exposed groups had low 25(OH)D3 plasma levels compared to earlier studies on captive bearded dragons as well as in comparison with the free‐living adult bearded dragons (409 ± 56 nmol/L). Spectral analysis indicated that all treatment lamps emitted UVb wavelengths effective for some cutaneous vitamin D synthesis. None of these lamps, under this regime, appeared to have provided a sufficient UVb dose to enable synthesis of plasma 25(OH)D3 levels similar to those of free‐living bearded dragons in their native habitat.  相似文献   

3.
Background Elevated concentrations of 25‐hydroxyvitamin D (25(OH)‐D) were diagnosed in captive short‐beaked echidnas (Tachyglossus aculeatus) from three different zoological facilities within Australia. Results The mean serum 25(OH)‐D concentration in the wild echidnas was 24.7 nmol/L and was significantly higher in captive echidnas from all three facilities: Facility 1, mean 335.5 nmol/L (P < 0.001); Facility 2, mean 187.2 nmol/L (P = 0.003); Facility 3, mean 194 nmol/L (P = 0.005). Animals did not appear to have clinical manifestations of vitamin D toxicosis. The increased serum 25(OH)‐D concentration was attributed to excessive dietary intake and a reduction in the amount of vitamin D3 in the diet of echidnas from Facility 1 resulted in a marked decrease in the serum 25(OH)‐D concentrations (mean 33 nmol/L). The reduction in serum 25(OH)‐D concentration was statistically significant (P = 0.002) and the resulting concentrations were similar to those of wild echidnas (P = 0.212). Conclusion It is not known what effect an elevated serum 25(OH)‐D concentration has on echidnas.  相似文献   

4.
This study investigated the effects of maternal canthaxanthin (CX, 6 mg/kg) and 25‐hydroxycholecalciferol (25‐OH‐D3, 0.069 mg/kg) supplementation on the performance of Cherry Valley ducklings under two different vitamin regimens. A total of 780 duck breeder females and 156 males were randomly allotted to two diets with or without the addition of the mixture of CX and 25‐OH‐D3 (CX+25‐OH‐D3) for 32 weeks. Ducklings (males and females separately) hatched from eggs laid at 24 weeks of the duck breeder trial were fed with a NRC vitamin regimen, and ducklings (males and females separately) hatched from eggs laid at 32 weeks of the duck breeder trial were fed with a HIGH vitamin regimen (had higher levels of all vitamins except biotin than NRC vitamin regimen), for 14 days. The results showed that, maternal CX+25‐OH‐D3 supplementation increased the shank pigmentation for 7‐days post hatch in ducklings under a NRC vitamin regimen, and for 14‐days post hatch in ducklings under a HIGH vitamin regimen. Growth performance, antioxidant status and serum phosphorus of ducklings under a NRC vitamin regimen were increased by maternal CX+25‐OH‐D3 supplementation; however, these positive effects were not observed in ducklings under a HIGH vitamin regimen. Males revealed increased growth performance in ducklings under both NRC and HIGH vitamin regimens. Sexual differences in shank pigmentation, antioxidant status, tibia strength and serum phosphorus were not consistent as they were dependent on maternal CX+25‐OH‐D3 status or dietary vitamin regimens. Data suggest that maternal CX+25‐OH‐D3 supplementation is important for starter ducklings under a NRC vitamin regimen, but not HIGH vitamin regimen.  相似文献   

5.
Forty‐eight, cross‐bred (GL × LW × P) piglets were used in a 42‐day tolerance trial to assess the effects of feeding diets supplemented with vitamin D or increasing levels of 25‐hydroxyvitamin D3 (25‐OH‐D3). Six‐week‐old piglets (24 castrate males, 24 females) were used. Two replicate groups of 6 piglets were randomized by weight and allocated to four dietary treatments. The control group (T1) was supplemented with 50 μg vitamin D3/kg feed. The experimental groups received 25‐OH‐D3 at the recommended dose (T2: 50 μg/kg = 1x), at 250 μg/kg (T3: 5x) or at 500 μg/kg (T4: 10x) respectively. Feed intake and daily weight gain were measured weekly, and the animals were examined by a veterinarian daily. After 42 days, body mass, blood, urine, bone and tissue samples were analysed and a pathology examination conducted. Dietary treatments had no significant effect on final body mass or daily weight gain. The 25‐OH‐D3 plasma concentration in T1 was 17 ± 3 ng/ml (mean ± SD) while the respective values of the experimental groups were significantly increased in T2, T3 and T4. Tissue concentrations of 25‐OH‐D3 were higher in liver and muscle for T3 and T4 and in skin for T4 than in T1. However, neither gross pathology nor histology, nor blood and urine characteristics, nor bone parameters were affected by dietary treatments. Weight of organs as well as dry matter, ash and calcium content of kidneys remained unaffected by dietary 25‐OH‐D3 intake. Furthermore, no changes were observed for general indicators of health. The results of this study demonstrated that feeding piglets with 25‐OH‐D3 at 5 or 10 times the recommended level had no adverse effects on any of the biological parameters measured. It was concluded that 25‐OH‐D3 can be regarded as a supplement with a very high safety margin when used at the recommended level.  相似文献   

6.
Serial vitamin D3 (D3) and 25-hydroxyvitamin D3 (25 OH D3) concentrations of plasma were measured in confined, shorn sheep that had either been supplemented with vitamin D3 (50 micrograms/d) or exposed daily to ultraviolet irradiation (UVI). In the sheep administered D3 orally, plasma D3 increased continuously until d 35. This was followed by small fluctuations of the plasma D3 concentrations until a plateau was reached after 56 d of supplementation (.94 ng/ml plasma). Plasma 25 OH D3 concentrations increased continuously and plateaued between d 65 to 75 at about 21 ng/ml plasma. In the UVI sheep, plasma D3 and 25 OH D3 concentrations increased continuously for the first 49 d, then plateaued at 2.03 ng D3 and 29.6 ng 25 OH D3/ml. When a plateau was reached in plasma 25 OH D3 concentrations in both treatment groups, a 3H-labeled tracer dose of 25 OH D3 was given i.v., and disappearance of the 3H-labeled 25 OH D3 was followed. The UVI group had a faster decline in specific activities during the first exponential phase but a slower decline during the prolonged terminal elimination phase. These differences are reflected in the intercompartmental transfer rates. Our data indicate that UVI is as effective as oral vitamin D3 supplementation for improving vitamin D status of confined sheep.  相似文献   

7.
A study was conducted to determine the circadian rhythms and trends of vitamin D metabolites including 25‐hydroxyvitamin D3, 25‐hydroxyvitamin D2, 1,25‐dihydroxyvitamin D and parathyroid hormone, in addition to serum calcium, phosphorus and magnesium concentrations in horses over 48 h on the shortest and longest days of the year in 2013. Five healthy adult horses (Equus caballus) were on a constant pasture feeding regimen, and blood samples were collected from each horse every 3 h over a 48‐h period, starting at 07:00 PM on day one and finishing at 07:00 PM on day three, for the measurement of calciotropic hormones and electrolytes. There was a significant difference between the serum concentration of calciotropic hormones, iCa, tCa, P and tMg between the shortest (winter) and longest (summer) days of the year in horses. Serum concentration of 25OHD3 was very low and mostly undetectable. Serum iCa, 1,25(OH)2D and PTH concentrations clearly showed a circadian rhythm on the longest days of the year and serum tCa, P and tMg concentrations showed a diurnal pattern on the longest days (summer) of the year. None of the analytes showed any circadian rhythm on the shortest days (winter) of the year. The result of this study could have significant relevance to equine athletes travelling to international equestrian competitions and facing a huge time and seasonal differences that might affect their ability to adjust their circadian rhythms to new time zones.  相似文献   

8.
Vitamin D is essential in calcium and phosphorus regulation, bone physiology, cell proliferation and epithelial integrity. Literature on vitamin D in growing horses is sparse, and the effect of age on vitamin D has not been evaluated in equids in the United States or in tropical countries. The goal of this study was to determine if there was an effect of age on serum 25(OH)D3 concentrations in equids in the US (Ohio/Kentucky) and Thailand (Chiang Rai and Kanchanaburi) during the same time of the year. Blood samples were collected from healthy ponies (n = 21) and Thoroughbred foals (n = 13), yearlings (n = 10), and horses (n = 20) in Thailand and from Thoroughbred foals (n = 10) and horses (n = 17) in the US. Serum concentrations of 25(OH)D3, calcium and phosphorus were measured.In both countries, serum 25(OH)D3 concentrations were lower in foals than in yearlings and adult horses. Serum 25(OH)D3 concentrations were higher in horses than in ponies in Thailand, but were not different between horses from either country. Calcium concentrations were not different between groups or location. In both countries, phosphorus concentrations were higher in foals than in older groups; however, were not different between ponies and horses. This study shows that independent of geography there are age-related differences in 25(OH)D3 concentrations in horses and further confirms that 25(OH)D3 concentrations are lower in horses compared to other species. The information will serve as the basis for future clinical studies and to help understand better the pathophysiology of equine disorders associated with calcium and phosphorus dysregulation.  相似文献   

9.
OBJECTIVE: To evaluate temporal changes in bone mineral density associated with seasonal variation in serum vitamin D, calcium, and phosphorus concentrations in alpacas. ANIMALS: 5 healthy mature neutered male alpacas. PROCEDURE: Metacarpal bone mineral density was measured at 4 times during a year. Each time alpacas were weighed, blood was collected for determination of serum calcium, phosphorus, and vitamin D concentrations, and samples of feed were analyzed for nutrient content. Vitamin D status was determined by use of an assay that measured serum 25-hydroxycalciferol concentration. Effects of changes in serum vitamin D, calcium, and phosphorus concentration and body weight with season on bone mineral density were determined. RESULTS: Bone mineral density, body weight, and serum vitamin D and phosphorus concentrations varied with season. Bone mineral density, serum vitamin D concentration, and body weight also varied among individual alpacas. Serum vitamin D concentration was lower in January than the previous October and increased from May to the following September. The decrease in bone mineral density lagged behind the decrease in serum vitamin D concentration and was lower in May, compared with the previous October. Body weight was lower in May than the previous October or following September. Solar radiation was highest in July and lowest in December. CONCLUSIONS AND CLINICAL RELEVANCE: Seasonal changes in bone mineral density are associated with changes in serum vitamin D concentrations in alpacas. Changes in bone mineral density associated with a decline in serum vitamin D concentration may predispose some alpacas to developing fractures minimal trauma.  相似文献   

10.
A pilot study was performed to investigate the impact of dietary vitamin D on circulating 25-hydroxyvitamin D (25[OH]D) metabolite concentrations in sugar gliders (Petaurus breviceps). The study with diets containing 0, 0.2 (low), or 0.4 (moderate) International Units vitamin D3 per gram of dry matter and fed to adults at 2 locations. Serum 25[OH]D concentrations did not differ between animals fed produce only (no added vitamin D–either D2 or D3) for 3 weeks (8.83 ± 0.98 nmol/L), n?=?6, or low dietary levels (7.86 ± 3.80 nmol/L), n?=?7, continuously for multiple years. Conversely, animals consuming diets containing moderate vitamin D3 levels displayed increased circulating concentrations (15.00 ± 3.59), n?=?8, after 3 weeks. Despite the response to diets supplemented with vitamin D, overall metabolite levels were low and may indicate minimal metabolic dependence on this nutrient in sugar gliders, similar to processes documented in other hindgut fermenters.  相似文献   

11.
Two experiments were conducted to investigate the effects of 1,25(OH)2D3 to stimulate Na+-dependent phosphate uptake in Caco-2 cells, and the effects of dietary vitamin D supplementation to vitamin D-deficient nursery pigs on Na+-dependent nutrient uptake and mRNA expression of NaPi-IIb cotransporter and calbindin D9k in the jejunum. In Exp. 1, 250,000 Caco-2 cells were seeded on Costar 12 mm Snapwell inserts with a 0.40 µm polycarbonate filter and a seeding density of 0.25 × 106 and studied at 15 d postconfluence. Cells were treated with 10 nM of either 1,25(OH)2D3 or vehicle for 48 h and then mounted in modified Ussing chambers for transepithelial measurements. In Exp. 2, pigs (n = 32) were removed from sows at 3 d of age, placed on a vitamin D-deficient milk replacer diet and housed in a room devoid of sunlight and UV light in the range of 280 to 300 nm. On day 28, serum 25(OH)D3 concentrations were measured to verify low vitamin D status. Pigs (BW 10.10 ± 0.38 kg) were then individually housed day 28 postweaning and allotted to 1 of 2 dietary treatments. Dietary treatments consisted of corn-soybean-based diets with vitamin D supplementations of 0 or 1,500 IU/kg diet for 12 d. Blood samples were taken from the brachiocephalic vein on the initial (day 0) and final day (day 10, 11, or 12) of the study for analysis of serum 25(OH)D3, P, and Ca. Pigs were euthanized and jejunal segments were harvested and used in modified Ussing chambers and for RNA isolation and subsequent quantitative RT-PCR analysis. In Exp. 1, treating Caco-2 cells with 10 nM 1,25(OH)2D3 resulted in a 52% increase (P < 0.005) in Na+-dependent phosphate uptake compared with cells treated with a vehicle. In Exp. 2, Na+-dependent phosphate and glucose transport did not differ (P > 0.10) among treatment groups. Additionally, NaPi-IIb and calbindin D9k mRNA expression were not different (P > 0.10) between treatment groups. No differences (P > 0.10) were detected in final serum P or 25(OH)D3 concentrations between treatments. However, serum Ca linearly increased (P < 0.05) as the concentration of supplemental vitamin D increased in the diet. Overall, while 1,25(OH)2D3 stimulated Na+-dependent phosphate uptake in Caco-2 cells, supplementing diets with 1,500 IU/kg vitamin D3 from cholecalciferol did not increase jejunal Na+-dependent phosphate uptake or NaPi-IIb mRNA expression over that of pigs fed diets with no supplemental cholecalciferol.  相似文献   

12.
In this study, the effect of ultraviolet (UV) light and dietary vitamin D on calcium metabolism in permanently indoor‐housed gentoo penguins (Pygoscelis papua ) was investigated. The study consisted of three periods, each completed with blood samples to analyse plasma concentrations of 25‐OH‐D, 1,25‐(OH)2‐D, ionized (iCa) and total calcium (tCa). During the first study period (D), animals were housed under routine conditions without UV‐light and fed a diet of different fish species, supplemented with 1,000 IU vitamin D per animal and day. The following study period (Baseline) of 28‐day duration consisted of the same diet without any vitamin D supplementation and without UV‐light. During the study period (UVB) artificial UV‐light was added for 3 weeks. The vitamin D content of fish was measured by high‐performance liquid chromatography. It varied between fish species and between facilities, ranging from no measurable content in capelin (Mallotus villosus ) to 7,340 IU vitamin D/kg original matter (OM) in herring (Clupea spp). The average dietary vitamin D content was 311 IU/kg OM at facility 1 and 6,325 IU/kg OM at facility 2, resulting in a vitamin D intake per animal and day without supplementation of 130 IU (25.5 IU/kg body weight BW) and 2,454 IU (438.2 IU/kg BW) respectively. The supplementation of vitamin D elevated significantly the plasma concentrations of 25‐OH‐D by an intraindividual difference of 15 (range ?2 to 59) nmol/L and tCa by 0.1 (0.0–0.3) mmol/L only at facility 2. The exposure to UV‐light raised the blood concentrations of tCa at facility 2 by 0.15 (0.1–0.2) mmol/L, and of iCa and tCa for females at facility 1 by 0.23 (0.13–0.41) mmol/L and 1.8 (1.1–2.5) mmol/L respectively. No significant influence of the study periods (D) and (UVB) was found for the concentrations of 1,25‐(OH)2‐D at both facilities.  相似文献   

13.
OBJECTIVES: To survey the vitamin D status of a population of Greyhounds in New South Wales, and to establish a reference range for plasma 25(OH)D. To investigate whether any seasonal fluctuation in vitamin D status is detectable in these animals. DESIGN: Vitamin D status was assessed in Greyhounds and crossbred dogs presented to the University of Sydney for teaching purposes over a 24 month period. PROCEDURES: Plasma 25(OH)D concentration was measured as an estimate of vitamin D status. Physical examination and plasma calcium concentration were used to verify the health of the animals, particularly with respect to metabolic bone disease. RESULTS: A plasma 25(OH)D concentration range of 10 to 76 nmol/L was found in healthy adult Greyhounds. There was no sex- or season-dependent variation in vitamin D status in Greyhounds. Concentrations in crossbred dogs did not differ significantly from those in Greyhounds. CONCLUSION: The reference range for plasma 25(OH)D concentration in Greyhound dogs is similar to that previously reported for humans. It would seem that healthy dogs in the Sydney region do not exhibit a seasonal fluctuation in their vitamin D status.  相似文献   

14.
Rickets was diagnosed in two weaner alpacas from a flock showing ill thrift and lameness during the winter of 1992. Both animals had abnormally shaped ribs with occasional healing fractures, irregular thickening of growth plates and metaphyseal haemorrhages. The mean serum phosphorus concentrations of the alpacas fell during June and July, even though lambs grazing the same pasture had normal serum phosphorus concentrations and the phosphorus concentration of the pasture was considered adequate. Vitamin D deficiency may also have contributed to the osteodystrophy. The alpacas had a thick fleece during the winter, and diurnal Vitamin D3, synthesis resulting from solar irradiation is likely to have been minimal, especially considering the reduced sunshine hours recorded during the 1992 winter. Surviving alpacas recovered after treatment with monosodium phosphate and an oral Vitamin D supplement. It is possible alpacas are more susceptible to deficiencies of phosphorus and Vitamin D than other grazing animals in New Zealand.  相似文献   

15.
Feedlot steers (n = 36) from three biological types (Bos indicus, Bos taurus-Continental, and Bos taurus-English) were used to determine the Ca, P, and vitamin D3 status of feedlot cattle. The USDA yield and quality grade traits were measured at slaughter, and the concentrations of vitamin D3 (VITD) and the metabolites 25-hydroxyvitamin D3 (25-OH D) and 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D) were determined in LM, liver, kidney, and plasma. Plasma and muscle Ca and P concentrations also were determined. Biological type of cattle affected a number of carcass traits. Carcasses from Bos taurus-English cattle had more marbling, resulting in higher quality grades (P < 0.05). Carcasses from Bos taurus-Continental cattle had lower calculated yield grades (P < 0.05) than did carcasses from cattle in the other biological types. In general, differences in carcass traits resulting from biological type were consistent with other reports. Plasma and LM Ca and P concentrations were not affected (P = 0.06) by biological type of cattle, indicating that Ca and P homeostasis is a conserved trait across the different types of cattle. Plasma VITD and 25-OH D concentrations were not affected (P = 0.41) by biological type, whereas plasma 1,25-(OH)2 D concentration was lower (P < 0.05) in Bos taurus-English cattle than in Bos taurus-Continental and Bos indicus cattle. Liver VITD and 25-OH D were not affected by biological type (P = 0.76), but liver 1,25-(OH)2 D concentration was greater (P < 0.05) in Bos indicus cattle than in Bos taurus-Continental cattle. Kidney vitamin D metabolite concentrations were not affected by biological type of cattle (P = 0.21). Muscle VITD concentration was greater (P < 0.05) in Bos taurus-English cattle than in the other two biological types, and muscle 25-OH D concentrations were greater (P < 0.05) in Bos taurus-English cattle than in Bos indicus cattle. Muscle 1,25-(OH)2 D concentration was less (P < 0.05) in the Bos taurus-Continental cattle than in the other two biological types. Cooking eliminated vitamin D metabolite differences among the biological types. Our results suggest that Bos indicus cattle had greater 1,25-(OH)2 D (the biologically active form) in tissues, and greater 1,25-(OH)2 D plasma concentrations than Bos taurus cattle. Thus, the need for VITD supplementation and optimal levels of Ca and P in feedlot diets might differ between Bos indicus and Bos taurus cattle.  相似文献   

16.

Background

Dogs are a unique model for examining the effects of exercise on vitamin D status because of their lack of vitamin D synthesis by UV exposure. In addition, the inflammatory response may be associated with hypovitaminosis D.

Objectives

To investigate the effects of several days of endurance exercise on plasma vitamin D (25‐(OH)D3, 24,25‐(OH)D3 and 1,25(OH)D3) and serum C‐reactive protein (CRP) concentrations in stage‐stop racing sled dogs.

Animals

12 racing sled dogs and 8 control dogs.

Methods

Blood was collected before the race and immediately after racing on days 2 and 8. Plasma vitamin D metabolites and serum CRP concentrations were measured.

Results

Racing dogs showed a significant increase in 25(OH)D3 on day 2 (P = .027) and day 8 of the race (P < .001), whereas no increases were observed in control dogs. The plasma concentration of 24,25(OH)D3 showed a significant increase by day 8 (P < .001). There were no significant changes in 1,25(OH) D3 concentrations across all time points and groups. Racing dogs had significantly increased CRP concentrations by day 2 (39.3 ± 30.1 μg/mL; P < .001).

Conclusions and Clinical Importance

Increases in vitamin D metabolites as well as increases in CRP concentrations were observed in racing sled dogs. This finding was contrary to the hypothesis that decreases in vitamin D status in athletes may be related to the acute phase inflammatory response during exercise. In addition, the increased 24,25(OH)D3 concentrations compared to what is observed in other species suggests metabolic variations in dogs that lead to enhanced disposal of vitamin D.  相似文献   

17.
OBJECTIVE: To evaluate the interaction of season and age on serum calcium, phosphorus, and vitamin D3 concentrations in llamas and alpacas. ANIMALS: 23 clinically normal llamas and 7 alpacas. PROCEDURES: Animals were assigned to 1 of the 3 following groups on the basis of age at the start of the study: adult (age, > or = 24 months; n = 8), yearling (> 12 but < 20 months; 5), and neonate (< 6 months; 17). Twelve serum samples were obtained at monthly intervals. Calcium, phosphorus, and vitamin D3 concentrations were measured, and the calcium-to-phosphorus concentration (Ca:P) ratio calculated. Effect of season and age on each of these variables was determined. RESULTS: Vitamin D3 concentrations varied significantly as a function of season; the highest and lowest concentrations were detected September through October and February through March, respectively. The seasonal decrease in vitamin D3 concentration was significantly greater in neonates and yearlings, compared with adults. Serum phosphorus concentration decreased as a function of age, with the most significant seasonal change detected in the neonate group. The Ca:P ratio in neonates varied between 1.1 and 1.3 except during winter months when it increased to > or = 2.0. CONCLUSIONS AND CLINICAL RELEVANCE: Mean vitamin D3 concentration varied by > 6 fold in neonatal and yearling llamas and alpacas and > 3 fold in adult animals as a function of season. These results support the hypothesis that seasonal alterations in vitamin D3 concentrations are a key factor in the development of hypophosphatemic rickets in llamas and alpacas.  相似文献   

18.
OBJECTIVE: To evaluate the effects of exogenous insulin on clearance of exogenous glucose in alpacas. ANIMALS: 7 adult castrated male alpacas. PROCEDURE: Prior to each of 2 trials, food was withheld for 8 hours. Glucose (0.5 g/kg of body weight) was then administered by rapid IV infusion. During 1 of the trials, regular insulin (0.2 U/kg, IV) was also administered 15 minutes later. Blood was collected immediately before (0 minutes) and 15, 20, 25, 30, 45, 60, 90, 120, 180, and 240 minutes after glucose administration. Plasma concentrations of glucose and lactate were determined, and glucose fractional turnover rate and plasma half-life were calculated. RESULTS: Insulin treatment caused a significant increase in fractional turnover rate of glucose and plasma lactate concentration. Plasma glucose concentrations were less in insulin-treated alpacas from 30 minutes after glucose administration (15 minutes after insulin administration) until the conclusion of each trial, compared with nontreated alpacas. In addition, plasma glucose concentration in insulin-treated alpacas returned to baseline values 1 hour sooner than in the nontreated group. CONCLUSIONS AND CLINICAL RELEVANCE: Glucose uptake in alpacas improves after insulin treatment, suggesting that administration of exogenous insulin will increase the therapeutic and decrease the pathologic effects of exogenous glucose administered to hypoglycemic alpacas. However, alpacas and other New World camelids should be monitored carefully during treatment with glucose or insulin, because these species appear to be partially insulin resistant.  相似文献   

19.
Background: Bearded dragons are one of the most popular pet lizard species, and biochemical reference values are useful for health management of these reptiles. Objectives: The objectives of this study were to measure plasma biochemical values in healthy captive bearded dragons, determine reference values, and evaluate the effects of sex and season on the results. Methods: Blood samples were collected from 100 captive healthy bearded dragons in Tokyo during the summer and winter. Plasma biochemical measurements were performed using a dry‐slide automated biochemical analyzer. The data were then compared based on sex and season using 2‐way ANOVA. Results: Globulin, cholesterol, and calcium concentrations of females were higher in both summer and winter compared with the values obtained for males. Both males and females had higher uric acid concentrations in winter than in summer. When compared with males, females had a higher chloride concentration in summer and a higher total protein concentration and aspartate aminotransferase activity in winter. Potassium concentration in males was lower in winter than in summer, whereas in females cholesterol concentration was lower in winter than in summer. Conclusions: Biochemical values that differed based on sex and season in bearded dragons were similar to those in other lizards. These differences reflect physiologic differences in reproductive status in females and seasonal changes in temperature and hydration status. Plasma biochemical values established for bearded dragons in this study will be useful in the diagnostic assessment of captive animals.  相似文献   

20.
Vertebrates have 2 methods of acquiring vitamin D: through the diet and/or secondary to exposure to ultraviolet B (UVB) radiation. Although some species (e.g., dogs) can only acquire vitamin D through their diet, many others also utilize UVB radiation to generate vitamin D. Prior to their extirpation, guinea pigs were naturally exposed to varying levels of sunlight (UVB) in their native habitat; however, in captivity we do not routinely recommend UVB radiation for these animals. Recently, it has been shown that captive guinea pigs can synthesize 25-hydroxyvitamin D (25-OHD3) after exposure to UVB lightbulbs. However, it is not known how natural sunlight impacts 25-OHD3 concentrations in this species. The purpose of this study was to determine whether 25-OHD3 concentrations in female guinea pigs exposed to natural sunlight would increase as a result of UVB exposure. Eight adult female guinea pigs were used for this study. The animals were held indoors during winter months and then placed outside in the spring when temperatures were appropriate. Blood samples were collected before the animals were placed outdoors (baseline) and 30 days after being exposed to natural sunlight. There was a significant difference in 25-OHD3 concentrations over time (P = 0.006) and values collected after the guinea pigs were housed outdoors were 1.8 times higher than baseline. This study confirmed that female guinea pigs can increase 25-OHD3 concentrations after exposure to natural sunlight. This suggests that these animals have conserved this pathway despite domestication, and supplementation should be considered to optimize captive guinea pig habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号