首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to evaluate the methane (CH4) emission of Santa Inês sheep fed cottonseed by-products, verifying if the gossypol content of these feedstuffs affects CH4 emission. Twelve late-lactating Santa Inês sheep (44.8?±?7.5 kg body weight (BW)) were allocated in metabolic cages for an experimental period of 19 days, 14 days for adaptation and 5 days for measuring CH4 emission and dry matter intake (DMI). The animals were divided into four treatments, established in accordance with the cottonseed by-product used in concentrate formulation: Control (CON - no cottonseed by-product), Whole cottonseed (WCS), Cottonseed cake (CSC), and Cottonseed meal (CSM). The free gossypol level of the concentrates were 0, 1,276, 350, and 190 ppm for CON, WCS, CSC, and CSM, respectively. Also, the animals received Cynodon dactylon cv. Coast Cross hay, water, and mineral salt ad libitum. The ether extract content of the diets was balanced between treatments by including soybean oil in concentrates. The technique used to measure the CH4 emission was the sulfur hexafluoride (SF6) tracer technique, and the gas samples collected were quantified by analysis in gas chromatography system. The CH4 emission was evaluated considering the daily emission (g CH4/day); DMI (g CH4/kg DMI); and BW (g CH4/kg BW). No statistical difference was found (P?>?0.05) between treatments for DMI and CH4 parameters. In the regression analysis, no significant relation (P?>?0.05) between gossypol content and CH4 emission was observed. These results suggest that gossypol does not affect rumen methanogenesis.  相似文献   

2.
The study assessed the effect of Acacia mearnsii tannin extract supplementation grazing dairy cows on dry matter (DM) intake, enteric methane (CH4) emission, and performance. Twelve Holstein cows were divided into two groups and subjected to two treatments that consisted of millet pasture (Pennisetum glaucum L.) plus supplementation with 6 kg of concentrate (750-g/kg ground corn and 250-g/kg soybean meal) including or excluding 120-g tannin extract. The trial design was a double reversal using three periods of 28 days each, with 21 days for the adaption period, and 7 days for sample collection. Herbage intake was measured using the n-alkane technique, and daily CH4 emission was measured with the sulfur hexafluoride tracer gas technique. Individual total DM intake (mean = 17.1 kg/day), herbage DM intake (mean = 11.8 kg/day), and milk production (mean = 19.2 kg/day) were similar between treatments. CH4 emission significantly decreased (32%, P < 0.05) in the animals supplemented with tannin extract, compared to non-supplemented animals. On the other hand, as proportion of DM intake or milk production, methane emission tended to decrease in tannin-supplemented animals. Supplementing dairy cows grazing a millet pasture with 120-g tannin extract reduced daily CH4 emission without affecting animal performance.  相似文献   

3.
We conducted a meta‐data analysis to develop prediction equations to estimate enteric methane (CH4) emission from beef cattle in Southeast Asia. The dataset was obtained from 25 studies, which included 332 individual observations on nutrient intakes, digestibilities, and CH4 emissions. Cattle were provided tropical forage or rice straw, with or without concentrates in individual pens equipped with indirect open‐circuit head hood apparatus. The simplest and best equation to predict daily CH4 emission was CH4 (g/day) = 22.71 (±1.008) × dry matter intake (DMI, kg/day) + 8.91 (±10.896) [R2 = 0.77; root mean square error (RMSE) = 19.363 g/day]. The best equation to predict CH4 energy as a proportion of gross energy intake (CH4‐E/GEI, J/100 J) was obtained using DMI per body weight (DMIBW, kg/100 kg), content (g/100 g DM) of ether extract (EE) and crude protein (CP), and DM digestibility (DMD, g/100 g); CH4‐E/GEI = ?0.782 (±0.2526) DMIBW ? 0.436 (±0.0548) EE ? 0.073 (±0.0218) CP + 0.049 (±0.0097) DMD + 8.654 (±0.6517) (R2 = 0.39; RMSE = 1.3479 J/100 J GEI). It was indicated that CH4 emissions from beef cattle in Southeast Asia are predictable using present developed models including simple indices.  相似文献   

4.
Providing supplements that enhance the efficiency of feed utilization can reduce methane (CH4) emissions from ruminants. Protein supplementation is widely used to increase intake and digestion of low-quality forages, yet little is known about its impact on CH4 emissions. British-cross steers (n = 23; initial body weight [BW] = 344 ± 33.9 kg) were used in a three-period crossover design to evaluate the effect of protein supplementation to beef cattle consuming low-quality forage on ruminal CH4, metabolic carbon dioxide (CO2) emissions, forage intake, and ruminal fermentation. Steers individually had ad libitum access to low-quality bluestem hay (4.6% crude protein [CP]) and were provided supplemental protein based on (dry matter basis): cottonseed meal (CSM; 0.29% of BW daily; 391 g/d CP), dried distillers grains with solubles (DDGS; 0.41% of BW daily 563 g/d CP), or none (CON). Urea was added to DDGS to match rumen degradable protein provided by CSM. Ruminal CH4 and metabolic CO2 fluxes were obtained 2.4 ± 0.4 times per steer daily using an automated open-circuit gas quantification system (GreenFeed emission monitoring system; C-Lock Inc., Rapid City, SD). Forage intake increased (P < 0.01) with protein supplementation; however, no difference in forage intake (P = 0.14) was observed between CSM and DDGS treatments. Flux of CO2 (g/d) was greater (P < 0.01) for steers fed CSM and DDGS than for steers fed CON. Steers supplemented with CSM had greater (P < 0.01) CH4 emissions (211 g/d) than DDGS (197 g/d) both of which were greater (P < 0.01) than CON (175 g/d). Methane emissions as a proportion of gross energy intake (GEI) were lowest (P < 0.01) for DDGS (7.66%), intermediate for CSM (8.46%) steers, and greatest for CON (10.53%). Steers fed DDGS also had the lowest (P < 0.01) ruminal acetate:propionate ratio (3.60), whereas CSM (4.89) was intermediate, and CON (5.64) steers were greatest. This study suggests that the common practice of supplementing protein to cattle consuming low-quality forage decreases greenhouse gas emissions per unit of GEI.  相似文献   

5.
Two trials were conducted to determine the effect of energy source (ENG) and ruminally degradable protein (RDP) on lactating cow performance and intake and digestion in beef steers. In Trial 1, 78 cow-calf pairs were used in a 2 x 2 factorial design to determine the effect of ENG (corn or soyhulls; SH) and RDP (with our without sunflower meal) to a forage diet for lactating beef cows. The basal diet consisted of 75% grass hay (11.5% CP) and 25% wheat straw (7.4% CP). Supplement treatments and predicted RDP balances were corn (-415 g of RDP/d); SH (-260 g of RDP/d); corn plus RDP (0 g of RDP/d); or SH plus RDP (0 g of RDP/d). Data were analyzed as a split-plot in time, with pen as the experimental unit (two pens per treatment). No interaction between ENG and RDP was present (P > 0.08) for any response variable. No differences (P > 0.39) due to ENG or RDP were noted for BW, BCS, or milk yield; however, final calf weight tended to increase with ENG (P = 0.06). In Trial 2, a 5 x 5 Latin square was used to determine effects of ENG and RDP on intake and digestion in steers (686 +/- 51 kg BW). Treatments were arranged as a 2 x 2 plus one factorial and comprised a control (CON; grass hay, 7% CP), grass hay plus 0.4% BW SH, grass hay plus 0.4% BW SH and 0.15% BW sunflower meal, grass hay plus 0.4% BW corn, and grass hay plus 0.4% BW corn and 0.2% BW sunflower meal. Preplanned contrasts included main effects of ENG and RDP, ENG x RDP interaction, and CON vs. supplemented (SUP) treatments. Supplementation increased total DMI compared with CON (P = 0.001), but forage DMI was greater (P = 0.001) for CON than for SUP. An ENG x RDP interaction occurred for forage DMI (P = 0.02); addition of RDP to corn decreased forage intake, whereas addition of RDP to SH had no effect. There was an ENG x RDP interaction (P = 0.001) for ruminal pH; pH tended to increase with RDP addition to SH (P = 0.07), but decreased with RDP addition to corn (P = 0.001). Supplementation increased ruminal ammonia compared with CON (P = 0.001). Likewise, RDP increased ruminal ammonia (P = 0.001). An interaction occurred for OM disappearance (OMD; P = 0.01). The RDP addition to SH numerically decreased OMD (P = 0.23), whereas RDP addition to corn numerically increased OMD (P = 0.14). Intake and digestion seem to respond differently to RDP addition depending on supplemental energy source. Both corn or SH seem to be suitable supplements for the quality of forage used in this trial. Addition of supplemental protein did not improve cow or calf performance.  相似文献   

6.
The aim of this work was to evaluate the effect of quebracho tannins extract (QTE) on feed intake, dry matter (DM) digestibility, and methane (CH4) emissions in cattle fed low-quality Pennisetum purpureum grass. Five heifers (Bos taurus × Bos indicus) with an average live weight (LW) of 295 ± 19 kg were allotted to five treatments (0, 1, 2, 3, and 4% QTE/kg DM) in a 5 × 5 Latin square design. Intake, digestibility, and total methane emissions (L/day) were recorded for periods of 23 h when cattle were housed in open-circuit respiration chambers. Dry matter intake (DMI), organic matter intake (OMI), dry matter digestibility (DMD), and organic matter digestibility (OMD) were different between treatments with 0 and 4% of QTE/kg DM (P < 0.05). Total volatile fatty acid and the molar proportion of acetate in the rumen was not affected (P < 0.05); however, the molar proportion of propionate increased linearly (P < 0.01) for treatments with 3 and 4% QTE. Total CH4 production decreased linearly (P < 0.01) as QTE increased in the diet, particularly with 3 and 4% concentration. When expressed as DMI and OMI by CH4, production (L/kg) was different between treatments with 0 vs 3 and 4% QTE (P < 0.05). It is concluded that the addition of QTE at 2 or 3% of dry matter ration can decrease methane production up to 29 and 41%, respectively, without significantly compromising feed intake and nutrients digestibility.  相似文献   

7.
The present study evaluated enteric CH4 production, dry matter (DM) intake (DMI), and rumen fermentation in feedlot cattle supplemented with increasing concentrations of 3-nitrooxypropanol (3-NOP). A total of 100 crossbred steers (body weight, 421 ± 11 kg) was randomly assigned to one of four treatments (n = 25/treatment): control (no 3-NOP) or low (100 mg/kg DM), medium (125 mg/kg DM), and high (150 mg/kg DM) doses of 3-NOP. The study was comprised of 28 d of adaptation followed by three 28-d periods, with CH4 measured for 7 d per period and cattle remaining on their respective diets throughout the 112-d study. Each treatment group was assigned to a pen, with the cattle and diets rotated among pens weekly to allow the animals to access the GreenFeed emission monitoring (GEM) system stationed in one of the pens for CH4 measurement. Measured concentration (mg/kg DM) of 3-NOP in the total diet consumed (basal diet + GEM pellet) was 85.6 for low, 107.6 for medium, and 124.5 for high doses of 3-NOP. There was a treatment × period interaction (P < 0.001) for DMI; compared with control, the DMI was less for the low and high doses in period 1, with no differences thereafter. Compared with control (10.78 g/kg DMI), CH4 yield (g/kg DMI) was decreased (P < 0.001) by 52%, 76%, and 63% for low, medium, and high doses of 3-NOP, respectively. A treatment × period effect (P = 0.048) for CH4 yield indicated that the low dose decreased in efficacy from 59% decrease in periods 1 and 2 to 37% decrease in period 3, while the efficacy of the medium and high doses remained consistent over time. Irrespective of dose, hydrogen emissions increased by 4.9-fold (P < 0.001), and acetate:propionate ratio in rumen fluid decreased (P = 0.045) with 3-NOP supplementation, confirming that other hydrogen-utilizing pathways become more important in the CH4-inhibited rumen. The study indicates that supplementation of corn-based finishing diets with 3-NOP using a medium dose is an effective CH4 mitigation strategy for commercial beef feedlots with a 76% decrease in CH4 yield. Further research is needed to determine the effects of 3-NOP dose on weight gain, feed conversion efficiency, and carcass characteristics of feedlot cattle at a commercial scale.  相似文献   

8.
The aim of this study was to evaluate the nutritional and feeding value of peanut hay (Arachis hypogaea L.) produced under tropical environment as an alternate forage resource for sheep. Peanut hay was appreciably high in crude protein [CP; 105 g/kg dry matter (DM)] and lower in neutral detergent fiber (NDF; 466 g/kg DM). Moreover, peanut hay was rich in Ca (12 g/kg DM) and P (1.7 g/kg DM). A feeding trial was conducted to investigate the effect of substituting wheat straw with peanut hay on nutrient intake, digestibility, and N utilization. Four adult Ramghani (Kaghani × Rambouillet) wethers (60?±?2.5 kg body weight) were randomly assigned to the four dietary treatments according to a 4?×?4 Latin square design. The four rations were formulated on isonitrogenous and isocaloric bases and differed in the proportion (in grams per kilogram DM) of wheat straw/peanut hay, i.e., 700:0, 460:240, 240:460, and 0:700. The replacement of wheat straw with peanut hay increased the intakes of DM (P?<?0.001), NDF (P?<?0.01), and N (P?<?0.001). Moreover, apparent in vivo digestibility of DM, NDF, and CP increased (P?<?0.001) with the increasing proportion of peanut hay in the ration. Nitrogen retention in the body increased (P?<?0.01; 3.2 to 8.1 g/day) with the replacement of wheat straw with peanut hay. These findings showed that substitution of wheat straw with peanut hay can improve DM and nutrients intake, digestibility, and N retention in sheep.  相似文献   

9.
Abstract

A data-set with 47 treatment means (N = 211) was compiled from research institutions in Denmark, Norway, and Sweden in order to develop a prediction equation for enteric methane (CH4) emissions from dairy cows. The aim was to implement the equation in the Nordic feed evaluation system NorFor. The equation should therefore be based on input variables available in NorFor. The best equation to predict CH4 (MJ/d) was based on dry matter intake (DMI, kg/d), and content of (g/kg DM) fatty acids (FA), crude protein (CP), and neutral detergent fiber (NDF). The equation was CH4 = 1.36 (±0.10) × DMI – 0.125 (±0.039) × FA – 0.02 (±0.012) × CP + 0.017 (±0.005) × NDF (RMSE = 3.00 MJ CH4/d; CV = 13.8%; R2 = 0.77), where RMSE is the root mean square error and CV is the coefficient of variation. However, CP was on the borderline of being significant and did not quantitatively explain much variation in CH4 emission. Based on the present research, we concluded, therefore, that the equation CH4 = 1.23 (±0.08) × DMI – 0.145 (±0.039) × FA + 0.012 (±0.005) × NDF (RMSE = 3.10 MJ CH4/d; CV = 14.3%; R2 = 0.75) is most suited for being implemented in NorFor. However, the ability of the proposed equation to predict enteric methane emissions is uncertain until evaluated on an independent data-set.  相似文献   

10.
The aim of the study was to evaluate the effect of graded levels of Enterolobium cyclocarpum pods in the ration on feed intake and digestibility by Pelibuey lambs. Five dietary treatments were imposed where ground pods replaced concentrate diet at 0, 20, 30, 40 and 50 % of dry matter (DM), respectively. The concentrate portion was composed of ground sorghum, soybean meal, cane molasses and minerals. Five entire Pelibuey lambs with initial bodyweight 34?±?2 kg were allocated in the treatments in a 5?×?5 Latin square design. Values of dry matter intake (DMI) and dry matter (DMD) and organic matter (OMD) digestibility were measured and metabolisable energy intake (MEI) estimated. Rumen degradation constants for E. cyclocarpum were also measured. There were no differences (P?>?0.05) in average DMI (86.6 g/kg0.75) and OMI (81.2 g/kg0.75) among treatments. As the level of incorporation of E. cyclocarpum pods increased, voluntary DMI and OMI increased, whereas apparent DMD and OMD decreased linearly. Average digestible DM (65 g/kg0.75) and OM (61 g/kg0.75) intakes were similar (P?>?0.05) among treatments. Similarly, MEI (0.976 MJ ME kg0.75/day) was not different (P?>?0.05) among treatments. The potential rumen degradation (A?+?B) of ground pods of E. cyclocarpum was 866.4 g/kg DM. Ground pods of E. cyclocarpum can be employed for lamb feeding up to 50 % of the ration, without affecting DMI, DM apparent digestibility and MEI.  相似文献   

11.
Methane emission by Nellore cattle subjected to different nutritional plans   总被引:1,自引:1,他引:0  
The objective was to evaluate the emission of enteric methane by Nellore cattle subjected to different nutritional plans, as well as the intake and digestibility of nutrients from the diets supplied. Forty-seven animals in a confinement system (feedlot) were fed a corn silage-based diet for 35 days. Afterwards, these animals were evaluated in a grazing system during the rainy periods, in Urochloa brizantha cv Marandu paddocks, for 44 days. Chromic oxide was used as external marker to estimate the fecal production of animals. Samples of feces, ingredients, and pasture were collected and sampled for subsequent chemical analyses. The SF6 tracer gas technique was adopted to quantify the methane gas emitted by the animals. The experimental design was completely randomized, using procedure GLM of software SAS (9.2), including the fixed effects of sex and nutritional plan and the linear effect of the co-variable weights. Means were analyzed by Tukey’s test at 5 % probability. The intakes of total dry matter and organic matter were greater for the animals subjected to the feedlot diet (P?P?P?4/day (104.01 g) by the animals fed the feedlot diet (P?4/CEB) and methane emission per dry matter consumed were lower in relation to the grazing treatment (3.75 vs 4.23 % and 11.67 vs 15.71 g/kg). The better quality of the diet in the feedlot promoted lower energy losses as methane.  相似文献   

12.
Replacing commercial concentrate with mulberry foliage was evaluated in a feeding trial lasting 126 days. Forty-eight weaned male Pelibuey lambs (20.6?±?0.80 kg of BW) were randomly allocated to four groups: (1) supplementing the basal diet with mulberry at 1% (DM basis; M-1), (2) mulberry at 0.75% plus 0.1 kg concentrate fresh matter basis (M-0.75), (3) mulberry at 0.50% plus 0.2 kg concentrate (M-0.50) and (4) basal diet plus 0.3 kg concentrate (control; M-0). During the first 90 days, the basal diet was Pennisetum purpureum forage which was substituted by a mixture of guinea grass and sugarcane from 90 days. Average daily gain (ADG, g/day), dry matter intake (DMI) and feed conversion rate (FCR; DMI/ADG) were determined. The ADG was affected (P?<?0.01) by the diet, with the lowest obtained in M-1 lambs (71?±?6.4 g/day), whereas no differences among the other groups were observed (94?±?6.4 g DM/lamb). The DMI was higher (P?<?0.01) in M-0 (937 g DM/lamb) which concomitantly affected differences in FCR (11.9, 9.9, 10.5 and 9.7 kg DMI/kg BW gain for M-1, M-0.75, M-0.50 and M-0 lambs, respectively). Final BW at slaughtering and hot or cold carcass yields were coherent with growth rate findings. Biological yield (cold carcass weight/empty BW) was higher (P?<?0.01) in M-0.75. Without compromising animal productivity, replacing imported concentrate with mulberry reduced the feeding cost. Optimum results were obtained with M-75 diet. Further studies must be conducted for optimizing energy/protein ratios with different ingredients while increasing DMI and lamb growth rates in this tropical genotype.  相似文献   

13.
The research aimed to evaluate the effect of replacing soybean meal with soybean grain on the nutritional parameters and productivity of heifers grazing on Urochloa decumbens in the rainy-dry transition period. Forty crossbred heifers with the initial age and weight of 18 months and 292?±?6.1 kg, respectively, were used. The experimental design was a completely randomized design, with five treatments and eight replications. The evaluated treatments were as follows: SM0.5—supply of 0.5 kg/animal/day of soybean meal supplement; SG0.5—supply of 0.5 kg/animal/day of soybean grain supplement; SM1.0—supply of 1.0 kg/animal/day of soybean meal supplement; SG1.0—supply of 1.0 kg/animal/day of soybean grain supplement; MM—only mineral mix ad libitum. The supplement was isoprotein with 350 g of crude protein/kg of dry matter. Supplementation improved the performance of the heifers and this fact can be verified by the higher average daily gain (ADG) and final BW (fBW) of the supplemented animals (P?<?0.10). The two supplemented treatments with 1 kg/day demonstrated similar performance (P?>?0.10), the same happens for the two treatments receiving 0.5 kg/day (P?>?0.10). However, animals receiving 1 kg/day of supplementation had an ADG and final BW higher than animals receiving 0.5 kg/day (P?<?0.10). Supplementation (P?<?0.10) affected the intake of dry matter (DM), organic matter, crude protein, ether extract, non-fiber carbohydrates, total digestible nutrients, and neutral detergent fiber corrected for ash and protein (apNDF). Supplementation improved DM digestibility and all constituents of the diet (P?<?0.10), except for apNDF (P?>?0.10). In summary, it is concluded that multiple supplementations improve the performance of grazing heifers in the rainy-dry transition period and the total replacement of soybean meal by soybean grain does not alter the performance of the animals.  相似文献   

14.
The experiment was conducted to determine the supplementary feeding value of ground Prosopis juliflora pod (Pjp) and cottonseed meal (CSM) and their mixtures on feed intake, body weight gain and carcass parameters of Afar sheep fed a basal diet of pasture hay. Twenty-five yearling fat-tailed Afar rams with mean initial live weight 17.24?±?1.76 kg (mean ± SD) were used in a randomized complete block design. Animals were blocked on their initial body weight. The experiment was conducted for 12 weeks and carcass evaluation followed. Treatments were hay alone ad libitum (T 1) or with 300 g CSM (T 2), 300 g Pjp (T 5), 2:1 ratio (T 3) and 1:2 ratio of CSM : Pjp (T 4). The CP contents of the hay, CSM and Pjp were 10.5, 44.5 and 16.7 %, respectively. Hay DM intake was higher (P?<?0.05) for non-supplemented and total DM intake was lower in non-supplemented. Average daily weight gain (ADG) was lower (P?<?0.05) for T 1 compared to all supplemented treatments except T 5. Hot carcass weight and rib-eye muscle area also followed the same trend like that of ADG. Compared with feeding hay alone, supplementing with CSM or a mixture of CSM and Pjp appeared to be a better feeding strategy, biologically, for yearling Afar rams.  相似文献   

15.
A 4?×?3 factorial experiment was carried out to evaluate the effects of age at entry to feedlot (AEF) and levels of concentrate feeding (LCF) on body weight gain, feed utilization and killing out characteristics of Tanzanian long-fat-tailed castrate sheep. The AEF points were 9, 12, 15 and 18 months, designated as AEF9, AEF12, AEF15 and AEF18, and the LCF were 50, 75 and 100 % of ad libitum concentrate intake designated as LCF50, LCF75 and LCF100, the last representing ad libitum concentrate intake with 10 % refusal rate. Grass hay as basal diet was offered ad libitum to each sheep. Daily feed intake and weekly live weight were recorded for a period of 84 days. Animals were slaughtered and carcass and non-carcass parameters were recorded. Dry matter intake (DMI) of hay decreased while DMI of concentrate increased (p?<?0.01) with increasing LCF. Daily gain in high level (LCF100) was 93.1 g/day, almost twofold higher than that in low level (LCF50) of feeding (39 g/day). Overall dressing percentage ranged from 40.7 to 46.5 % and increased with increasing AEF. The proportion of carcass bone decreased (p?<?0.05) with increasing AEF while that of fat increased (p?<?0.05) with increasing LCF. Age at entry × level of concentrate feeding interaction was detected for DMI, feed conversion ratio (FCR), slaughter body weight (SBW), muscle/bone ratio and bone (as % cold carcass weight (CCW)), but the effect was not regular. Entering fattening at 18th month seems too late, hence to get in the shortest time the highest output slaughter and carcass weights, fattening should start latest at 15 month.  相似文献   

16.
The relationship between in vitro rumen CH4 production of grass silages, using the gas production technique, and in vivo data obtained with the same cows and rations in respiration chambers was investigated. Silages were made from grass harvested in 2013 on May 6th, May 25th, July 1st and July 8th. The grass silages were used to formulate four different rations which were fed to 24 cows in early and late lactation, resulting in a slightly different dry matter intake (DMI; 16.5 kg/day vs. 15.4 kg/day). The experimental rations consisted of 70% grass silage, 10% maize silage, and 20% concentrates on a dry matter basis. Cows were adapted to the rations for 17 days before rumen fluid was collected via oesophageal tubing, and in vitro gas and CH4 production were analysed. In vitro total gas and CH4 production of the (ensiled) grass expressed as ml/g OM decreased with advancing maturity of the grass. The in vitro CH4 production after 48 hr of incubation expressed in ml/g OM did not correlate with the in vivo CH4 production expressed in g/kg organic matter intake or g/kg DMI (R2 = .00–.18, p ≥ .287). The differences in CH4 emission per unit of intake observed in vivo were rather small between the different rations, which also contributed to the observed poor relationship. Utilizing stepwise multiple regression improved the correlation only slightly. In vitro gas and CH4 production varied based on whether donor cows were previously adapted to the respective ration or not, suggesting that careful adaption to the experimental diet should be envisaged in in vitro gas and CH4 production experiments.  相似文献   

17.
Two experiments were conducted to determine effects of oilseeds or soybean hulls on growth and reproductive performance of heifers and utilization of corn silage diets by growing beef cattle. In Exp. 1, 96 beef heifers (249 kg of BW) were used in a randomized complete block design. Treatments were as follows: 1) corn and soybean meal (CON) at 56% of the DMI; 2) whole linted cottonseed at 15% of the DMI (COT); 3) whole raw soybeans at 15% of the DMI (SB); or 4) pelleted soyhulls at 30% of the DMI (SH). Diets were formulated to be isonitrogenous (13.8% CP) and fed to achieve target weights equal to 65% of expected mature BW at the time of AI. Estrus was synchronized and heifers were inseminated by AI in response to detected estrus. Because the energy value for SH was underestimated, cumulative ADG for SH (1.03 kg/d) was greater (P < or = 0.03) than for CON (0.89 kg/d), COT (0.87 kg/d), or SB (0.86 kg/d). Treatment did not affect (P > 0.10) the proportion of pubertal heifers at the beginning of the breeding season: CON (60%), COT (53%), SB (69%), SH (71%), or first-service conception rates: CON (37%); COT (38%); SB (57%); SH (42%). In Exp. 2, crossbred steers (387 kg) were used in a 6 x 6 Latin square design to evaluate the effects of supplemental nutrient source on utilization of corn silage diets. Treatments included diets used in Exp. 1, plus a negative control (soybean meal at 10% of the DMI; SIL) and whole raw soybeans at 25% of the DMI (SB25). Diets were formulated to be isonitrogenous (13.8% CP) except SB25 (17% CP), and were fed twice daily at 1.8 x NEm. Oilseed inclusion decreased (P < 0.10) acetate:propionate ratios and (P < 0.10) apparent ruminal OM and ruminal and total tract NDF digestibilities. The CON and SH diets had the greatest (P < 0.10) total-tract OM digestibilities. Microbial efficiencies were greatest (P < 0.10), and long chain fatty acid flow to the duodenum increased (P < 0.10) with oilseeds. Biohydrogenation averaged 90.4% and increased slightly (P < 0.10) when oilseeds were added to the diet. Adding oilseeds or soybean hulls to corn silage-based diets did not affect reproductive performance of heifers. Although oilseed additions increased total fatty acid flow to the duodenum, a high degree of biohydrogenation occurred, greatly increasing C18:0, with only marginal increases in unsaturated fatty acid flow. Depending on diet and feeding conditions, inclusion of whole oilseeds may not be an effective means of increasing linoleic acid supply for ruminant animals.  相似文献   

18.
This study evaluated the performance and carcass characteristics of lambs fed diets with increasing levels of Mimosa tenuiflora (Willd.) hay replacing Buffel grass (Cenchrus ciliaris). Twenty-eight Santa Inês male lambs with an average body weight (BW) of 20.3 ± 1.49 kg(mean ± SD) were allocated in individual stalls and distributed in a completely random design with four treatments (0, 20, 40, and 60 g/100 g total DM M. tenuiflora hay replacing Buffel grass hay in diet) with seven replications. M. tenuiflora hay at the level of 20% dry matter (DM) total replacing Buffel grass hay increased final weight (P = 0.006), total weight gain (P < 0.001), average daily weight gain (ADWG; P < 0.001), DM intake (P < 0.001), and feed efficiency (P < 0.001). Intake of crude protein, NDFap, ADFap, ash, ether extract, total and non-fibrous carbohydrates, and total digestible nutrients presented a positive quadratic effect with M. tenuiflora hay replacing Buffel grass hay and 40 g/100 g total DM level presented greater intake. There were positive quadratic effects by M. tenuiflora hay inclusion at 20 g/100 g total DM level on slaughtering weight (P = 0.005), hot carcass weight (P = 0.002), cold carcass weight (P = 0.002), empty body weight (P = 0.001), hot carcass yield (P = 0.002), cold carcass yield (P = 0.003), and increase linear on biological yield (P = 0.003). There was no influence on cooling weight loss (P = 0.284). M. tenuiflora hay may be included in lamb diets at amounts up to 20 g/100 g total DM substitution of Buffel grass hay because increase in the nutrients intake, growth performance, and carcass characteristics.  相似文献   

19.
The objective of this study was to develop a prediction equation for methane‐related traits in beef cattle and evaluate this equation using datasets with different cattle breeds and roughage rates. Enteric methane emission (CH4, l/day) was measured using open‐circuit respiration chambers. Dry matter intake (DMI, kg/day), body weight (BW, kg), daily gain (DG, kg), total digestible nutrients (TDN, %DMI), and roughage rate (Rrate, %) were used as independent variables, and methane‐related traits—CH4, CH4 per DMI (CH4/DMI, l/kg), and methane conversion factor (MCF, %)—were used as dependent variables. The best‐fit equations to predict methane‐related traits using a total of 76 records were CH4 = –676.7 + 0.04194 × BW + 29.88 × DMI + 7.883 × TDN + 4.367 × Rrate, CH4/DMI = –52.24 – 1.193 × 10–3 × BW – 5.905 × DG + 1.077 × TDN + 0.5008 × Rrate, and MCF = –11.43 – 5.308 × 10–4 × BW – 1.223 × DG + 0.2336 × TDN + 0.1157 × Rrate. The predictive ability of the developed equations differed between roughage rates but not between breeds. For CH4, the predictive ability of the developed equations was better compared with previously reported equations in the low roughage rate dataset, but not in the high roughage rate dataset. Our results suggest that the developed equations of methane‐related traits can be applied in beef cattle fed with low roughage diets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号