首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究还原条件下铁负载生物质炭固定三价砷[As(Ⅲ)]的能力及其自身稳定性,首先探究了铁负载生物质炭介导铁还原菌(Shewanella oneidensis MR-1)还原含As(Ⅲ)的水铁矿[As(Ⅲ)-FH]时对As(Ⅲ)的释放和固定能力;其次评估了铁还原菌的还原作用对铁负载生物质炭固定As(Ⅲ)稳定性的影响。研究表明,400~700℃制备的铁负载生物质炭在好氧条件下可以吸附0.94~1.63 mg·g-1的As(Ⅲ)。在As(Ⅲ)-FH还原体系中,随着铁负载生物质炭制备温度的提升:0~400 h时,铁负载生物质炭加速S.oneidensis MR-1还原As(Ⅲ)-FH释放二价铁和As(Ⅲ)的能力也逐渐提升;在400~646 h,分别加速溶液中的Fe2+沉淀生成蓝铁矿和菱铁矿,以及As(Ⅲ)的部分固定,在646 h时As(Ⅲ)的固定量为0.211~0.676 mg·g-1。在铁负载生物质炭固定As(Ⅲ)稳定性评估体系中:铁还原菌的还原作用虽然会导致铁负载生物质炭中磁铁矿还原转化生成蓝铁矿和菱铁矿,但却可以在342 h内提升固定As(Ⅲ)的能力,达到2.16~2.29 mg·g-1。因而在铁还原菌构建的还原生境中,铁负载生物质炭的As(Ⅲ)固定能力在342 h的短期内呈现增加的趋势,而在646 h的长时间培养条件下As(Ⅲ)的固定能力逐渐降低。通过构建简单的铁还原生境,评估了铁负载生物质炭在还原环境中固定As(Ⅲ)的潜能,为稻田土壤砷污染阻控材料的筛选提供了一种评估方法。  相似文献   

2.
以餐厨垃圾为原材料,通过高温热解法和共沉淀法制备了餐厨垃圾生物质炭(Natural kitchen waste biochar,NKB)和磁性餐厨垃圾生物质炭(Magnetic kitchen waste biochar,MKB),研究了热解温度、热解时间、吸附剂量、吸附时间和溶液pH值等条件对生物质炭吸附水中亚甲基蓝(MB)性能的影响。结果发现,在热解温度450℃、热解时间1 h条件下制备的NKB对MB吸附性能最好;在生物质炭投加量1.0 g·L-1、吸附时间20 min、pH值为9的条件下,MKB对MB的去除率和吸附量分别为97.94%和9.2 mg·g-1,分别比NKB提高18.54个百分点和1.6 mg·g-1;经过多次再生后,MKB对MB的吸附去除率仍在90%以上;吸附过程符合Langmuir等温吸附模型。研究表明,餐厨垃圾生物质炭经过赋磁可提高对亚甲基蓝的吸附性能,碱性条件下吸附性能较好,且能多次循环再生。  相似文献   

3.
为筛选对重金属具有高效吸附能力的叶用黄麻种质,以36个栽培黄麻种质为研究对象,将黄麻干叶制成粉末,研究其对水体中重金属离子Cu(Ⅱ)、Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅵ)的去除特性。结果表明:不同黄麻种质干叶对同种重金属的去除效果不同;且同种黄麻种质干叶对不同重金属的去除效果也有明显差异。黄麻叶对重金属阳离子具有一定的选择吸附特性,且选择性吸附顺序为Cu(Ⅱ) < Pb(Ⅱ) < Cd(Ⅱ),其中对Cd(Ⅱ)和Pb(Ⅱ)的最高吸附容量分别为20.62、14.19 mg·g-1,对Cu(Ⅱ)的吸附容量最高则为9.53 mg·g-1,而黄麻叶对络阴离子Cr(Ⅵ)的去除效果受种质的影响较大,吸附容量最高可达25.79 mg·g-1,最低仅为1.46 mg·g-1。黄麻种质HMG-2对Cd(Ⅱ)有较好的吸附效果,吸附等温线符合Langmuir模型,最大理论吸附容量可达30.29 mg·g-1。研究表明,黄麻种质HMG-1和HMG-2可考虑作为吸附重金属阳离子的专用种质,而黄麻种质竹昌麻和HMG-4则可考虑作为吸附络阴离子的专用种质;不同黄麻种质干叶对同种重金属的吸附容量不同,主要与黄麻叶片中的富含活性官能团的物质(如纤维素、半纤维素和木质素等)含量有关。  相似文献   

4.
以甘蔗渣为原材料,在限氧条件下经600℃碳化制备生物炭RC,经800℃碳化制备生物炭HC,分别研究两者对Cr (Ⅵ)的吸附-还原反应。采用扫描电子显微镜-能谱(SEM-EDS)、比表面积和孔隙分析(BET)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)和拉曼光谱(RS)等对甘蔗渣生物炭表面性质进行表征,从吸附等温线、吸附动力学等角度探讨甘蔗渣生物炭对Cr (Ⅵ)的吸附-还原反应特征及其机理。结果表明:甘蔗渣生物炭具有丰富的孔隙结构和表面活性基团,且随着碳化温度升高,甘蔗渣生物炭表面孔隙度和芳香化程度增加,而含氧官能团OH、C O等相对含量则降低。HC对Cr (Ⅵ)的吸附-还原去除效果最好,总去除量高达117.28 mg·g-1,较RC增加了82.42 mg·g-1,其中吸附反应的去除量为76.00 mg·g-1,比RC增加了67.99 mg·g-1。随着碳化温度升高,生物炭缺陷程度降低,电子传递能力增强。HC对Cr (Ⅵ)的还原量为87.40 mg·g-1,较RC增加了57.03 mg·g-1。吸附等温线和吸附动力学拟合结果显示,甘蔗渣生物炭对Cr(Ⅵ)的吸附更符合拟二级动力学模型。Langmuir模型适用于HC对Cr(Ⅵ)的吸附,Freundlich模型适用于RC对Cr (Ⅵ)的吸附。XPS和FTIR分析结果显示,甘蔗渣生物炭对Cr (Ⅵ)的去除机理为静电吸附、还原和络合作用,其中RC、HC吸附作用的相对贡献率分别为22.98%、64.80%,还原反应的相对贡献率分别为87.12%、74.52%,表明甘蔗渣生物炭对Cr (Ⅵ)的去除过程以还原为主。  相似文献   

5.
以浙江缙云天然沸石为原料, 分别用摇床和吸附柱实验研究了天然沸石对氨氮的静态和动态吸附特性。结果显示, 在10、25、40 ℃温度下沸石吸附氨氮有显著差异(P<0.05)。在25 ℃、氨氮初始浓度为50 mg·L-1的条件下, 1~2 mm沸石对氨氮的360 min吸附容量为4.05±0.02 mg·g-1。沸石对氨氮的吸附过程遵循二级吸附动力学方程, 沸石对氨氮的等温吸附可用Langmuir和Freundlich等温吸附方程拟合, 相关性分析结果表明Langmuir方程达到极显著相关(P<0.01), 可以更好地描述沸石吸附氨氮的热力学过程。随着沸石粒径与投加量的减小, 沸石对氨氮的吸附量显著增加。在pH值6.0~8.0时, 沸石对氨氮去除效果最好。动态试验显示, 当氨氮浓度为50 mg·L-1时, 沸石的穿透时间约96 h, 动态饱和吸附量为18.8 mg·g-1。  相似文献   

6.
为了全面识别湖南石门雄黄矿区环境的As污染现状,为矿区环境修复和生态健康提供依据,系统分析了该矿区矿渣、农田土壤与地表水体中As污染的空间分布、形态组成和酸雨溶出特性。结果表明:石门雄黄矿区矿渣As浓度高达10.3~389.3 g·kg-1,XRD分析表明As主要以其矿物晶体As2S3形态存在,SPLP模拟酸雨浸提矿渣As溶出浓度达到16.5~84.0 mg·L-1;矿渣上层覆土As浓度高达3.8~27.3 g·kg-1,超出国家土壤环境质量三级标准95~682倍,覆土的酸雨浸出液中As浓度达到0.1~0.6 mg·L-1,超出国家Ⅴ类地表水质量阈值1~6倍。由于矿渣渗滤液污染,矿区黄水河As含量峰值达到765 μg·L-1;矿区农田土壤As含量为43~2268 mg·kg-1,其中水溶态、表面吸附态、Fe/Al结合态和碳酸盐结合态As分别占总As 的1.0%、1.6%、27.0%和11.5%,高As值集中分布于果树种植区;在模拟酸雨淋溶与施用磷肥条件下,农田土壤As浸出浓度达到0.03~4.6 mg·L-1。根据以上结果,高浓度含As矿渣是石门雄黄矿区农田土壤和河流发生持久性严重As污染的重要贡献源,可进一步通过食物链造成人体As暴露。  相似文献   

7.
氧化老化玉米秸秆生物炭吸附镉机理研究   总被引:1,自引:1,他引:0  
为研究玉米秸秆生物炭在经过模拟自然界老化后对Cd2+的吸附响应,本文利用H2O2对玉米秸秆生物炭进行氧化老化1、2、3次,利用元素分析仪、扫描电镜、红外光谱及碳谱等分析方法,分析老化前后生物炭对Cd2+的吸附及响应机理。结果表明:玉米秸秆生物炭氧化老化过程中形成硅酸盐沉淀;经过H2O2老化后H/C、O/C和(O+N)/C的原子比逐渐升高,使得生物炭含氧官能团上升、芳香性减弱、极性增强;老化1次(OYM1)、2次(OYM2)、3次(OYM3)后玉米秸秆生物炭碱性元素逐步被释放,碱性元素较未氧化玉米秸秆生物炭(YM)分别降低了48.23%、95.04%、95.74%;不同处理生物炭对Cd2+的最大吸附量表现为: YM(12.42 mg·g-1) >OYM1(5.98 mg·g-1) >OYM3(3.88 mg·g-1) >OYM2(3.61 mg·g-1),说明老化作用抑制了其对Cd2+的吸附。在玉米秸秆生物炭长期利用过程中,生物炭的老化促进无机组分发挥作用,吸附性能减弱,在进行土壤及水污染修复时应合理使用。  相似文献   

8.
为综合利用农林废弃物,以白果壳为植物模板、羟基磷灰石(HAP)为改性材料,制备了白果壳遗态HAP/C复合材料(PBGC-HAP/C-G),并通过X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)和扫描电镜(SEM)等对其进行了表征,同时研究了溶液pH、初始浓度、吸附剂投加量等对其去除水中氨氮的影响。结果表明,PBGC-HAP/C-G是一种大孔材料,孔径主要介于35~200 μm之间。在溶液pH=5时,吸附效果最佳;吸附剂投加量的增加有利于氨氮的去除;粒径大小不是影响吸附效果的主要因素。准二级动力学模型和Freundlich等温吸附模型能很好地描述该吸附过程,吸附过程以化学吸附为主。在氨氮初始浓度为20、50、100 mg·L-1时,拟合计算得到的理论平衡吸附量分别为0.45、1.10、2.15 mg·g-1,与实验测定值0.46、1.15、2.18 mg·g-1相近,可见PBGC-HAP/C-G可用作去除氨氮的吸附剂。  相似文献   

9.
以花生壳为原料、KOH为改性剂,考察碱改性工艺流程中的参数(热解温度、碱炭比和碱处理方式)对改性生物炭吸附盐酸四环素(TCH)的影响。通过吸附实验,以原状生物炭(BC600)为对照,探讨改性工艺参数的变化对吸附性能的影响。对生物炭进行扫描电镜(SEM)、能谱(EDS)、比表面积与孔径分析、傅里叶红外光谱(FTIR)、pHPZC等表征,探究生物炭对TCH的吸附机理。结果表明:碳化温度600℃、碱炭比2∶ 1、使用碱后处理-熔融法制备的改性生物炭(Post-MBC)对TCH去除能力最强。在25℃、pH=4的环境下,0.1 g的Post-MBC对40 mL 0.06 mg·mL-1的TCH去除率可达99.07%,Post-MBC对TCH的理论最大吸附量可达240.94mg·g-1(45℃)。Post-MBC的比表面积和微孔体积可达863.56 m2·g-1和0.26 cm3·g-1,KOH改性使生物炭的亲水性降低、表面带有负电荷,提高了对疏水性污染物和带正电荷污染物的吸附能力。生物炭的动力学模型更符合McKay方程,三种等温吸附模型的相关系数均较高。改性后的生物炭对TCH的吸附以化学吸附为主导,吸附过程吸热且自发进行。吸附机理包括孔隙填充作用、π-π相互作用、氢键作用、静电相互作用和疏水相互作用。  相似文献   

10.
为改善稻壳炭对Cd2+的吸附能力,分别选用壳聚糖、硝酸铁与高锰酸钾对稻壳生物炭进行改性,成功制备了壳聚糖改性稻壳炭(C-BC)和铁锰改性稻壳炭(FM-BC),表征了各稻壳炭的基础理化性质,包括比表面积分析(BET)、傅里叶变换红外光谱(FTIR)、X射线衍射表征(XRD),进行了动力学吸附实验和等温吸附实验,并在不同pH和投加量条件下,研究了改性生物炭对Cd2+的吸附量和去除率。结果表明:两种改性方式均减小了稻壳炭的比表面积和总孔隙体积; FM-BC含有Mn-O、Fe-O的特征官能团,此外改性前后稻壳炭的官能团类型基本不变;两种改性方式均使稻壳炭产生了对应的晶体结构变化。两种改性炭对Cd2+动力学吸附特征均符合准二级动力学模型,颗粒内扩散模型均分为3个阶段,对Cd2+等温吸附特征均符合Langmuir模型; C-BC和FM-BC的最大吸附量分别为25.51 mg·g-1和16.25 mg·g-1,是BC (14.97 mg·g-1)的1.7倍和1.08倍。随着溶液pH增加,C-BC和FMBC的吸附量和去除率逐渐增加,且始终高于BC;随着投加量的增加,C-BC和FM-BC的Cd2+去除率逐渐增加,而吸附量逐渐降低。两种改性方式均能够在一定程度上提高稻壳炭对Cd2+的吸附能力,均以单分子层化学吸附占主导,C-BC的最大吸附量明显高于FM-BC,适度调整溶液pH和投加量可改善改性稻壳炭的Cd2+吸附效果。  相似文献   

11.
为解决目前抗生素与重金属复合污染问题,采用紫根水葫芦基活性炭(Long-root Eichhornia crassipes-activated carbon,LREC-AC)吸附水溶液中的氧氟沙星(Ofloxacin,OFL)和Cu2+,并对其吸附特性和机理等进行研究。结果表明,LREC-AC对OFL和Cu2+的吸附均符合Langmuir模型及拟二级动力学方程。LREC-AC对OFL的吸附机理包括电子供体-受体相互作用、氢键作用和静电引力作用,而对Cu2+的吸附机理则包括静电引力作用,以及电子交换或共价键等作用。在此基础上,考察OFL-Cu2+复合体系中LREC-AC对OFL和Cu2+吸附特性和机理。在复合体系中,LREC-AC对OFL和Cu2+的饱和吸附量分别为59.34 mg·g-1和37.46 mg·g-1。在OFL浓度为10 mg·L-1、Cu2+浓度<2 mg·L-1时,Cu2+可与OFL络合,从而促进LREC-AC对OFL的吸附。研究表明,LREC-AC可通过多种吸附机理共同作用有效去除水体中OFL和Cu2+,同时其对重金属和抗生素复合污染也具有良好的吸附性能。  相似文献   

12.
猕猴桃木生物质炭对溶液中Cd2+、Pb2+的吸附及应用研究   总被引:2,自引:1,他引:1  
为探讨生物质炭对废水中重金属的吸附性能,以猕猴桃修剪枝为原料制备生物质炭,通过静态吸附法研究了其对复合溶液中Cd2+、Pb2+的吸附,探究了溶液初始浓度、吸附时间、pH值及生物质炭投加量对溶液中Cd2+、Pb2+吸附效果的影响,同时采用扫描电镜(SEM)和傅里叶红外光谱(FTIR)对吸附前后的生物质炭结构进行了表征,并讨论了其对养殖废水和垃圾渗滤液中Cd2+和Pb2+的吸附能力。结果表明:猕猴桃木生物质炭具有多孔结构和多种表面官能团。Cd2+、Pb2+的最优吸附条件是pH为4~6,120 min吸附达到平衡,最佳投加量分别为4.0、3.0 g·L-1,最大吸附量分别为9.35、65.9 mg·g-1。生物质炭对Cd2+、Pb2+的吸附过程用准二级动力学方程能较好地描述;在25℃条件下,生物质炭对Cd2+的吸附用Langmuir方程能更好地描述,其理论最大吸附量达13.1 mg·g-1,而生物质炭对Pb2+的吸附过程用Freundlich方程能更好地描述。猕猴桃木生物质炭可作为处理轻度重金属复合污染废水的吸附剂。  相似文献   

13.
通过微宇宙实验,探究厌氧条件下不同硫酸盐还原菌(Desulfovibrio vlugaris Miyazaki,SRB)活性、外源氮添加量和有机物对膨润土固-液体系中砷(As)和氮(N)形态及浓度的影响,以及二者间的联系。结果表明:与超纯水环境相比,在适宜SRB生长的标准培养液中,As (Ⅴ)从第0天就开始还原成As (Ⅲ),在第7天时As (Ⅲ)达到1 947 μg·L-1,明显高于超纯水环境中的As (Ⅲ)浓度(1 341 μg·L-1)。同时,生物还原作用下3种不同细菌生长环境中的NO2-和NH4+都有升高的趋势。在没有外源N添加的控制组,几乎检测不到As (Ⅲ),而在低氮和高氮两种N水平的实验组中,As (Ⅲ)浓度分别高达427 μg·L-1和1 341 μg·L-1,成铵作用和反硝化作用随着N源的输入也变得明显。高低两种水平乙酸钠的添加极大地提高了As (Ⅴ)的还原量,得到的平均As (Ⅲ)浓度分别为控制组的2.0倍和2.5倍。但腐植酸的加入使得As(Ⅴ)还原量减少。进一步实验探究NO2-和As(Ⅲ)的关系,其实验结果显示:亚硝酸钠直接加入As (Ⅴ)溶液共存体系后,可在5 h内将As (Ⅲ)的浓度由低于检测范围提高至14.6 μg·L-1,因此NO2-可以作为反应中的电子供体,直接参与As (Ⅴ)还原反应。  相似文献   

14.
为探讨生物炭/凹凸棒石复合材料对废水中重金属的吸附效果与作用机理,以水稻、小麦秸秆与凹凸棒石为原料,在缺氧条件下热解制备生物炭/凹凸棒石复合材料。通过批量吸附实验研究时间、浓度及pH等因素对复合材料吸附溶液中Cd2+和Pb2+的影响,利用SEM、BET、XRD、FTIR等方法对吸附前后的复合材料进行表征分析,从定性和定量的角度分析其作用机理,明确主导吸附机制。结果表明:准二级动力学和Langmuir等温模型更符合复合材料对Cd2+和Pb2+的吸附过程。与原始生物炭和凹凸棒石相比,水稻秸秆与凹凸棒石比例为5∶1时制备的复合材料RABC5-1和小麦秸秆与凹凸棒石比例为3∶1时制备的复合材料WABC3-1具有更好的吸附效果,对Cd2+的最大吸附量分别为132.97 mg·g-1与132.39 mg·g-1,对Pb2+的最大吸附量分别为222.60mg·g-1与220.55 mg·g-1。机理分析表明,复合材料对Cd2+和Pb2+的吸附机理主要包括沉淀作用、官能团络合作用、离子交换作用和阳离子-π作用。定量分析进一步证明,沉淀作用在RABC5-1、WABC3-1吸附Cd2+的过程中所占比例分别为84.6%、77.3%,在吸附Pb2+的过程中所占比例分别为82.0%、78.3%,是复合材料吸附重金属的主要机理,其次为阳离子交换作用,官能团络合作用和阳离子-π作用对吸附的整体贡献率较小。研究表明,复合材料RABC5-1与WABC3-1具有良好的吸附Cd2+和Pb2+的性能,是一种极具潜力的吸附材料,且沉淀作用是复合材料吸附重金属的主导机制。  相似文献   

15.
不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附   总被引:23,自引:15,他引:8  
为研究秸秆生物质炭的性质特征对其吸附重金属的影响,在限氧条件下将粉碎的小麦、水稻、玉米秸秆于450℃热裂解制备三种秸秆炭。研究了三种秸秆炭对溶液中Pb2+、Cd2+的吸附特性,并对其性质特征进行了测定分析。结果表明:三种秸秆炭对Pb2+、Cd2+的吸附符合准二级动力学模型,小麦、水稻、玉米三种秸秆炭对Pb2+的吸附速率分别为0.044、0.019、0.012 mg·g-1·h-1,对Cd2+的吸附速率分别为0.195、0.164、0.070 mg·g-1·h-1.三者对不同浓度下Pb2+、Cd2+的吸附符合Langmuir等温吸附模型,小麦、水稻、玉米三种秸秆炭对Pb2+的吸附容量分别为99.65、110.31、88.82 mg·g-1,对Cd2+的吸附容量分别为30.64、29.39、21.47 mg·g-1;在溶液pH 2.5~3.5时,三者对溶液中Pb2+、Cd2+的去除率急剧增加。小麦和水稻秸秆炭含有较高的碳酸盐、磷酸盐等无机矿物组分以及相对较高的阳离子交换量,对溶液中的Pb2+、Cd2+的去除可能是由于化学沉淀作用较强烈,而玉米秸秆炭的有机碳及官能团含量较高,孔隙结构较好,比表面积大,可能主要通过表面吸附及官能团的络合作用去除溶液中Pb2+、Cd2+.  相似文献   

16.
吸附是控制As在土壤中迁移的重要过程之一,为了预测As(Ⅴ)在土壤中的吸附过程,使用恒电容表面络合模型(CCM)模拟As (Ⅴ)在土壤中的吸附行为,获取As (Ⅴ)在土壤上吸附的表面络合常数,建立土壤基本理化性质(pH、有机质、碳酸钙、无定形铁/铝/锰、总铁)与As (Ⅴ)表面络合参数的线性回归模型,以阐明As在土壤中吸附的主控因子。结果显示,As (Ⅴ)在不同类型的土壤中表现出不同的吸附特征,恒电容模型能够很好地模拟As(Ⅴ)在不同pH下的吸附特性(R2为0.71~0.96),通过CCM模型拟合得到As(Ⅴ)在土壤表面的3个表面络合常数,绝大部分土壤lg K1比lg K2和lg K3的值要大,说明As(Ⅴ)在土壤中的吸附相较于单齿络合物更偏向于形成双齿双核的络合物。As (Ⅴ)表面络合常数与土壤性质间的回归分析结果表明,As (Ⅴ)表面络合常数主要受土壤pH和无定形铁、无定形锰含量的影响。为了进一步验证上述线性模型的普适性,利用文献数据中土壤性质数据预测不同土壤上As(Ⅴ)的表面络合常数,并结合CCM模型预测了As(Ⅴ)在文献土壤中的吸附量,预测值和实测值具有很好的相关性,说明该模型具有一定的普适性。  相似文献   

17.
为探讨砷(As)污染对小麦苗期生长的影响,并提出减缓As毒害的农艺措施,以两个品种小麦作为供试材料,通过水培试验研究小麦苗期根系、茎叶对As(Ⅲ)吸收、累积的差异,以及As(Ⅲ)对小麦的毒性效应,采用盆栽试验研究硅(Si)肥、磷(P)肥施加对小麦根系、茎叶生物量及As含量的影响。结果表明:晋麦1号和晋麦2号根系生物量的As(Ⅲ)半数抑制浓度分别为1.2μmol·L-1和2.2 μmol·L-1,晋麦1号受As(Ⅲ)毒害引起的生理氧化胁迫显著,而晋麦2号根系受As(Ⅲ)毒害症状较弱;相较于晋麦1号,晋麦2号根系会吸收更多的As并向地上部分转运,对人体健康具有潜在危害。此外,Si、P肥的添加不仅有效增加了小麦根系、茎叶的生物量,而且显著降低了根系、茎叶中As的含量,200 mg·kg-1 Si肥添加后,根系、茎叶中As含量分别降低了77.4%和60.5%,100 mg·kg-1 P肥添加后,根系、茎叶中As含量分别降低了67.6%和49.2%。研究表明,两种小麦吸收、转运和累积As的能力不同,受As毒害产生的氧化胁迫也不同,小麦品种间As耐性存在差异;施加Si、P肥有利于降低小麦各组织部位As的含量。  相似文献   

18.
为研发原料来源广泛和吸附性能高的磷酸盐吸附剂,在400、500、600℃和700℃高温热解法制备羊粪生物炭基础上,采用浸载法进行La改性,得到高效脱磷的La改性新材料。结果表明,500℃热解温度的La改性羊粪生物炭吸附性能最佳,Langmuir方程拟合的最大吸附量为56.35 mg·g-1,达到或优于农林秸秆生物炭吸附水平。通过等温吸附方程和动力学方程推测吸附行为是单分子层的化学吸附。新材料在磷酸盐初始浓度小于100 mg·L-1时,随浓度增加吸附量快速增大。即便溶液pH值在3~11较大范围内变动,新材料对磷酸盐去除能力仍然很高。通过表征分析表明材料吸附磷酸盐的机理主要为配体交换。本研究为羊粪的资源化利用提供了一种新方法,该方法制备工艺简单,获得的材料吸附量高达58.33 mg·g-1,为同类生物炭材料的制备提供一定的参考。  相似文献   

19.
土壤As动态影响下枸杞质量评价及环境风险预测   总被引:1,自引:0,他引:1  
选择柴达木盆地诺木洪农场3种类型农田进行20cm表层土壤砷(As)含量检测。第1种为新开垦原生地,第2种为20年耕种地,第3种为50年耕种地,检测As含量分别为16.29、14.90、14.04 mg·kg-1。3种土壤As含量均达到无公害食品标准(25 mg·kg-1)和绿色食品标准(20mg·kg-1)。多年耕种并没有造成农田表层土壤As积累。农田灌溉用河水中未检出As。生产中使用的22种农药、肥料均检测到As,其中15种杀虫剂、杀真菌剂、除草剂、植物激素等,每年输入土壤As 4 513.59 mg·hm-2;7种肥料每年输入土壤As 258015.24mg·hm-2。施肥是土壤中As输入的重要来源,最主要的输入源是磷酸二铵,占到50%;其次为复合肥、鸡粪和有机肥。每年随作物输出As总量为4 380 mg·hm-2。模拟田间灌溉,进行土壤柱淋漓试验,农田20 cm表层土壤每年随灌溉淋漓输出As为245 230.65 mg·hm-2,这与随着肥料、农药输入量几乎相等。表层土壤As处在一个输入、输出相对稳定的动态平衡状态。从土壤中输出的As,随灌溉水输入到水系统中,继而造成水系统As的积累,最终将影响到地区农业的可持续发展。  相似文献   

20.
为研究在发酵床养猪过程中不同组成垫料的As、Hg累积规律,本文以木屑、稻壳和秸秆为原料,配制成3种垫料处理,分别为木屑(S)、木屑+稻壳(SR)和木屑+稻壳+秸秆段(SRS),在一年半的时间里,测定了4批育肥猪养殖结束时不同层次垫料中As、Hg含量,分析了长期使用后不同发酵床垫料中As、Hg累积情况,为发酵床废弃垫料的后续农用提供理论依据。结果表明,随着猪养殖批次的延长,3种处理及其不同层次垫料As、Hg含量均存在不同程度增加。4批猪养殖结束时,As累积量最大的是SRS处理的发酵床,为1921.7 mg·栏-1,Hg累积量最大的也是SRS处理的发酵床,为21.1 mg·栏-1。S、SR、SRS处理的As、Hg含量分别为2.921、2.190、2.621 mg·kg-1和0.048、0.036、0.042 mg·kg-1,均符合《农业行业标准有机肥料》(NY 525-2012)、《食用农产品产地环境质量评价标准》(HJ/T 332-2006)的标准限值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号