首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agriculture has claimed a large share of terrestrial environments in the tropics and subtropics through cultivation of native grasslands or forests. The impact of this anthropogenic change on speciation, dynamics, and ecological significance of sulphur (S) compounds is still poorly understood. We combined degradative wet-chemical reduction and S K-edge X-ray absorption near edge structure (XANES) spectroscopy techniques to evaluate the impact of long-term agricultural management of native grassland soils in South African Highveld on the amount, form and dynamics of S species. Sulphur XANES in the humic substances extracted by 0.1 m NaOH/0.4 m NaF solution showed the presence of strongly reduced (polysulphides, disulphides, thiols, monosulphides and thiophenes), intermediate (sulphoxides and sulphonates) and strongly oxidized (ester sulphates) organic-S. It showed that strongly oxidized-S is the predominant form (39–54%) of the total organic-S in the humic substances, and organic-S in the intermediate oxidation state represented 30–37% (78–93% of which was attributed to sulphonates). The strongly reduced organic-S comprised only 17–24% of the total organic-S. We did not find a close correlation between the results of a degradative wet-chemical procedure and XANES spectroscopy conducted in both the bulk soils (ester SO4-S from XANES versus HI-fractionation, r = 0.27; P < 0.05) and the humic substance extracts (ester SO4-S from XANES versus HI-fractionation, r= 0.39; P < 0.05). The ratio of reduced-S to strongly oxidized-S (R-S/O-S) in the humic substances decreased from 0.61 to 0.21, while the ratio of intermediate-S to strongly oxidized-S (I-S/O-S) declined from 0.93 to 0.61 after 90 years of arable cropping of the native grassland soils. Hence, there was a shift in oxidation state towards strongly oxidized-S (+6) and, thereby, a change in the relative proportion of the organic-S moieties associated with each oxidation state following cultivation of the native grassland soils. Therefore, we conclude that changes in land-use practice brought about not only quantitative change but also altered the composition of organic-S functional groups in these native subtropical grassland soils.  相似文献   

2.
A new data treatment method for fitting spectra obtained by sulphur (S) K‐edge X‐ray absorption near‐edge structure (XANES) spectroscopy was used to quantify the chemical S speciation at three experimental sites with arable soils receiving the same long‐term field treatments. Two treatments, crop residue (CR) incorporation and farmyard manure (FYM) application, with equal applications of mineral nutrients were included in the study. In the new data treatment method, internally calibrated spectra of dilute solutions (30 mm ) of model compounds were used to fit the sample spectra. This greatly enhanced the reliability of quantitative determination of contributing S species in soil samples and soil extracts. The results indicated that long‐term FYM application shifted S species composition from highly oxidized towards intermediate oxidization in two of the soils, but in the third soil the opposite trend was observed. Sulphur XANES spectroscopy of acetylacetone extracts of physically protected and unprotected organic S in two of the soils revealed that physical protection was not related to S speciation; however, intermediate forms of oxidized S species appeared to accumulate in the residual S pool (not extractable by acetylacetone).  相似文献   

3.
X-ray absorption near edge structure (XANES) spectra at the sulfur (S) K-edge (E=2472 eV) were compared for bulk soil material, humic and fulvic acid fractions, and different particle size separates from Ah horizons of two arable Luvisols, from an O and a Bs horizon of a Podzol under Norway spruce forest, and from an H horizon of a Histosol (peat bog). In the bulk soil samples, the contribution of reduced organic S (organic mono- and disulfides) to total sulfur increased from 27% to 52%, and the contribution of ester sulfate and SO42−-S decreased from 39% to 14% of total S in the following order: arable Luvisols Ah—forested Podzol O—Histosol H. This sequence reflects the increasing organic carbon content and the decreasing O2 availability in that order. Neither sulfonate nor inorganic sulfide was detected in any of the bulk soil samples. For all samples except the Podzol Bs, the XANES spectra of the bulk soils differed considerably from the spectra of the humic and acid fractions of the respective soils, with the latter containing less reduced S (16-44% of total S) and more oxidized S (sulfone S: 19-35%; ester sulfate S: 14-38% of total S). Also the S speciation of most particle size fractions extracted from the Ah horizon of the Viehhausen Luvisol and the Bs horizon of the Podzol was different from that of the bulk soil. For both soils, the contribution of oxidized S species to total S increased and the contribution of sulfoxides and organic mono- and disulfides decreased with decreasing particle size. Thus, sulfur K-edge XANES spectra of alkaline soil extracts, including humic and fulvic acids or of particle size separates are not representative for the S speciation of the original soil sample they are derived from. The differences can be attributed to (i) artificial changes of the sulfur speciation during alkaline extraction (conversion of reduced S into oxidized S, loss of SO42− during purification of the extracts by dialysis) or particle size separation (carry-over of water-soluble S, such as SO42−), but also to (ii) preferential enrichment of oxidized S in hydrophilic water-soluble soil organic matter (ester sulfate) and in the clay fraction of soils (ester sulfate, adsorbed SO42−).  相似文献   

4.
《Soil biology & biochemistry》2001,33(12-13):1797-1804
Sulphur transformations were monitored in a unique set of arable, grassland and woodland soils from the Broadbalk Classical Experiment, which started in 1843. In an open incubation experiment with periodic leaching, 14–35 mg SO42−-S kg−1 was mineralised in 28 weeks at 25°C, equivalent to 4.4–8.3% soil organic S. Cumulative amounts of S mineralised increased linearly during the 28 weeks, indicating constant rates of mineralisation. The rate of mineralisation was the greatest in the woodland soil (170 μg SO4-S kg−1 day−1), followed by the grassland (120 μg SO4-S kg−1 day−1) and the arable soil from the farmyard manure (FYM) plot (110 μg SO4-S kg−1 day−1). Three soils from arable plots receiving different inorganic fertiliser treatments but no FYM had similar rates of S mineralisation (~70 μg SO4-S kg−1 day−1). In an incubation experiment with 35SO42−, addition of glucose greatly enhanced S immobilisation. In 132 days, the woodland and grassland soils immobilised more S than the arable soils, with or without glucose amendment. Immobilisation and mineralisation of S occurred concurrently, and both were stimulated by glucose addition. The results show that S mineralisation and immobilisation were influenced strongly by the type of land-use and long-term organic manuring, whereas annual application of sulphate-containing fertilisers for over 150 years had few effects on short-term S transformations.  相似文献   

5.
The amount and chemical nature of soil organic sulphur was determined in several pairs of soils taken from long-term pasture and adjacent, continuously cultivated sites. Similar determinations were also carried out on organic matter extracts obtained from the soils. The lower levels of sulphur in the arable soils compared with pasture soils were assumed to have resulted from the mineralisation of organic matter brought about by cultivation. Losses of sulphur caused by this mineralisation were found to occur in all three organic fractions examined. A high proportion (75%) of the sulphur lost consisted of carbon-bonded sulphur with only 25% derived from HI-reducible forms. Despite this, it is suggested that, of the two forms, HI-reducible sulphur has a more transitory nature and is possibly of greater importance in the short-term mineralisation of sulphur whereas carbon-bonded sulphur passes through an HI-reducible form prior to release as inorganic sulphur. It is suggested that the sulphur present in the fulvic acid pool could, likewise, be most important for short-term mineralisation.  相似文献   

6.
In forested catchments, retention and remobilization of S in soils and wetlands regulate soil and water acidification. The prediction of long‐term S budgets of forest ecosystems under changing environmental conditions requires a precise quantification of all relevant soil S pools, comprising S species with different remobilization potential. In this study, the S speciation in topsoil horizons of a soil toposequence with different groundwater influence and oxygen availability was assessed by synchrotron‐based X‐ray absorption near‐edge spectroscopy (XANES). Our investigation was conducted on organic (O, H) and mineral topsoil (A, AE) horizons of a Cambisol–Stagnosol–Histosol catena. We studied the influence of topography (i.e., degree of groundwater influence) and oxygen availability on the S speciation. Soil sampling and pretreatment were conducted under anoxic conditions. With increasing groundwater influence and decreasing oxygen availability in the sequence Cambisol–Stagnosol–Histosol, the C : S ratio in the humic topsoil decreased, indicating an enrichment of soil organic matter in S. Moreover, the contribution of reduced S species (inorganic and organic sulfides, thiols) increased systematically at the expense of intermediate S species (sulfoxide, sulfite, sulfone, sulfonate) and oxidized S species (ester sulfate, SO ). These results support the concept of different S‐retention processes for soils with different oxygen availability. Sulfur contents and speciation in two water‐logged Histosols subject to permanently anoxic and temporarily oxic conditions, respectively, were very different. In the anoxic Histosol, reduced S accounted for 57% to 67% of total S; in the temporarily oxic Histosol, reduced S was only 43% to 54% of total S. Again, the extent of S accumulation and the contribution of reduced S forms to total S closely reflected the degree of O2 availability. Our study shows that XANES is a powerful tool to elucidate key patterns of the biogeochemical S cycling in oxic and anoxic soil environments. In contrast to traditional wet‐chemical methods, it particularly allows to distinguish organic S compounds in much more detail. It can be used to elucidate microbial S‐metabolism pathways in soils with different oxygen availability by combining soil inventories and repeated analyses of a sample in different stages of field or laboratory incubation experiments under controlled boundary conditions and also to study (sub)microspatial patterns of S speciation in aggregated soils.  相似文献   

7.
In highly weathered tropical conditions, soil organic matter is important for soil quality and productivity. We evaluated the effects of deforestation and subsequent arable cropping on the qualitative and quantitative transformation of the humic pool of the soil at three locations in Nigeria. Cultivation reduced the humic pool in the order: acetone‐soluble hydrophobic fraction (HE) > humic acid (HA) > humin (HU) > fulvic acid (FA), but not to the same degree at all three sites. The C and N contents, as well as the C/N ratios of humic extracts, were large and not substantially influenced by land use. The δ13C values of the humic extracts were invariably more negative in forested soils thereby showing a dilution of δ13C signature with cultivation from C3 to C4 plants. The δ13C values of apolar HE fractions were generally more negative, indicating a reduced sensitivity compared with other humic fractions to turnover of crop residues. The contents of hydrophobic constituents (alkyl and aromatic C), as revealed by cross‐polarization magic angle spinning (CPMAS) 13C‐NMR spectroscopy, in HA, FA and HU were generally < 50%, with the exception of larger hydrophobicity in HU in the forested soil at Nsukka and HA in that at Umudike. The HE fraction contained significantly more apolar constituents, and consequently had a larger intrinsic hydrophobicity than the other humic fractions. The larger reduction of apolar humic constituents than of the less hydrophobic humic fractions, when these soils were deforested for cultivation, indicates that at those sites the stability of accumulated organic matter is to be ascribed mainly to the selective preservation of hydrophobic compounds.  相似文献   

8.
We investigated the relationship between soil organic matter (SOM) content and N dynamics in three grassland soils (0-10 and 10-20 cm depth) of different age (6, 14 and 50 y-old) with sandy loam textures. To study the distribution of the total C and N content the SOM was fractionated into light, intermediate and heavy density fractions of particulate macro-organic matter (150-2000 μm) and the 50-150 μm and <50 μm size fractions. The potential gross N transformation rates (mineralisation, nitrification, NH4+ and NO3 immobilization) were determined by means of short-term, fully mirrored 15N isotope dilution experiments (7-d incubations). The long-term potential net N mineralisation and gross N immobilization rates were measured in 70-d incubations. The total C and N contents mainly tended to increase in the 0-10 cm layer with increasing age of the grassland soils. Significant differences in total SOM storage were detected for the long-term (50 y-old) conversion from arable land to permanent grassland. The largest relative increase in C and N contents had occurred in the heavy density fraction of the macro-organic matter, followed by the 50-150 and <50 μm fractions. Our results suggest that the heavy density fraction of the macro-organic matter could serve as a good indicator of early SOM accumulation, induced by converting arable land to permanent grassland. Gross N mineralisation, nitrification, and (long-term) gross N immobilization rates tended to increase with increasing age of the grasslands, and showed strong, positive correlations with the total C and N contents. The calculated gross N mineralisation rates (7-d incubations) and net N mineralisation rates (70-d incubations) corresponded with a gross N mineralisation of 643, 982 and 1876 kg N ha−1 y−1, and a net N mineralisation of 195, 208 and 274 kg N ha−1 y−1 in the upper 20 cm of the 6, 14 and 50 y-old grassland soils, respectively. Linear regression analysis showed that 93% of the variability of the gross N mineralisation rates could be explained by variation in the total N contents, whereas total N contents together with the C-to-N ratios of the <50 μm fraction explained 84% of the variability of the net N mineralisation rates. The relationship between long-term net N mineralisation rates and gross N mineralisation rates could be fitted by means of a logarithmic equation (net m=0.24Ln(gross m)+0.23, R2=0.69, P<0.05), which reflects that the ratio of gross N immobilization-to-gross N mineralisation tended to increase with increasing SOM contents. Microbial demand for N tended to increase with increasing SOM content in the grassland soils, indicating that potential N retention in soils through microbial N immobilization tends to be limited by C availability.  相似文献   

9.
Five extraction procedures and thirteen extracting reagents, which included dipolar aprotic solvents, organic chelating agents, pyridine, ethylenediamine, sodium hydroxide, ion-exchange resins and two salts (sodium pyrophosphate and ethylenediamine hydrochloride), were used to extract humic materials from an organic soil. Extractabilities increased in the general order: salts < organic chelating agents < dipolar aprotic solvents < pyridine < ethylenediamine = sodium hydroxide, and the amounts of the soil organic matter extracted by the reagents in the series ranged from 13 to 63%. Gel chromatography techniques indicated that extracts in dipolar aprotic solvents were predominantly of intermediate and low molecular-weight values, and it is suggested that the more highly oxidised soil humic materials were extracted in these. The more efficient solvents extracted materials with a range (high—low) of molecular-weight values. Data from elemental analysis and from E.S.R. measurements indicated that ethylenediamine altered the chemical nature and the composition of extracts. Dipolar aprotics, by the same criteria, were found not to alter the humic extracts, and can be regarded as mild reagents for the extraction of a less representative (of the total) fraction of soil organic matter. Sodium hydroxide in solution, despite its oxidation effects, was the best of the reagents tested for isolating extracts which were representative of a wide range of soil humic substances.  相似文献   

10.
Influence of long-term fertilizing with different forms of nitrogen fertilizer on pH, humic fractions, biological activity and dynamics of nitrogen of an arable brown earth The evaluation of soil characteristics in a 53 years field trial (arable brown earth, sandy silty loam, eff. field cap. 160mm, pH 5,9, total C 0,9 %, total N 0,1 %, CEC 15 meq/100 g soil) gave the following results: Fertilizing with ammonium sulfate decreased pH in topsoil down to 4.9. The acidification reached a depth of 50cm. Liming in addition to ammonium sulfate could not keep pH on the same level as calcium cyanamide did. The other treatments showed pH-values between 5.8 and 6.0. Total carbon and nitrogen in treatments with farm manure, calcium cyanamide and ammonium sulfate were 0.91 to 0.98 % C, in the treatments without N and with nitrate 0.81 resp. 0.87 % C. Farm manure and calcium cyanamide produced a higher content of humic acids in organic matter than ammonium and nitrate fertilization did. Ammonium fertilization increased the content of fulvic acids. Biological activity of soils, measured as activity of 5 enzymes and 02-consumption depends mainly on pH. Highest activity is found in the soil of treatment calcium cyanamide (except catalase). The proportion of hydrolysable and non-hydrolysable nitrogen (12 % non-hydrolysable N) was not changed by fertilizing (except in the plot with farm manure which increased non-hydrolysable N to 14%). Nitrogen mineralisation in laboratory incubation trials were closely correlated with total N (r = 0.94). Lower correlation was found in plant experiments (r = 0.72 to 0.79). Other factors influencing nitrogen mineralisation are discussed.  相似文献   

11.
Two arable soils and one pasture soil had previously been air-dried for 6 d and stored at room temperature. The enzyme activities remaining after this treatment were constant. The soils were then extracted with 140 mM sodium pyrophosphate at pH 7.1. Amino acid N and total organic C content of soils and soil extracts, together with humic and fulvic acids content of soil extracts were determined. Total organic C was determined in soil residues obtained after extraction. Chemical characterization of the organic matter of soils, soil extracts and soil residues was carried out by pyrolysis–gas chromatography (Py–GC). Protease activity was determined in soil extracts and soil residues by using three different substrates: N-benzoyl- -argininamide (BAA), specific for trypsin; N-benzyloxycarbonyl- -phenylalanyl -leucine (ZPL), specific for carboxypeptidases, and casein, essentially non-specific. Comparative studies between specific activities referred to organic C in soils, soil extracts and soil residues and their corresponding pyrogram composition, and also between total extracted or residual activity and the humine or unhumified organic matter content of the corresponding soil, allowed us to establish hypotheses about the type of organic matter the enzymes are associated with. From 12% to 21% of the soil organic C (33% to 39% of which were humic acids) and from 3% and 18% of amino acid N were extracted from soil using pyrophosphate. Py–GC analyses showed that pyrophosphate was effective in extracting condensed humic substances and glycoproteins and that the organic matter present in soil extracts was especially rich in intact or partially-decomposed fresh residues of carbohydrate origin and also in certain humus-associated proteins. Extracted BAA-hydrolysing activity accounted for 11% to 36% of the soil activity, depending on soil type. Extracted ZPL- and casein-hydrolysing activities were, with one exception, remarkably high, accounting for about 100% or even more of the soil activity, depending on soil type. According to the results BAA-hydrolysing proteases are probably mostly associated with highly condensed humus, ZPL-hydrolysing proteases with less condensed humic substances and casein-hydrolysing proteases with fresh organic matter.  相似文献   

12.
Soil organic matter (SOM) is biologically, chemically, and physically complex. As a major store of nutrients within the soil, it plays an important role in nutrient provision to plants. An enhanced understanding of SOM utilisation processes could underpin better fertiliser management for plant growth, with reduced environmental losses. Metaproteomics can allow the characterisation of protein profiles and could help gain insights into SOM microbial decomposition mechanisms. Here, we applied three different extraction methods to two soil types to recover SOM with different characteristics. Specifically, water-extractable organic matter, mineral-associated organic matter and protein-bound organic matter were targeted with the aim to investigate the metaproteome enriched in those extractions. As a proof-of-concept, replicated extracts from one soil were further analysed for peptide identification using liquid chromatography followed by tandem mass spectrometry. We employed a framework for mining mass spectra for both peptide assignment and fragmentation pattern characterisation. Different extracts were found to exhibit contrasting total protein and humic substance content for the two soils investigated. Overall, water extracts displayed the lowest humic substance content (in both soils) and the highest number of peptide identifications (in the soil investigated) with the most frequent peptide hits associated with diverse substrate/ligand binding proteins of Proteobacteria and derived taxa. Our framework also highlighted a strong peptidic signal in unassigned and unmatched spectra, information that is currently not captured by the pipelines employed in this study. Taken together, this work points to specific areas for optimisation in chromatography and mass spectrometry to adequately characterise SOM-associated metaproteomes.  相似文献   

13.
It is well established that certain substrate additions to soils may accelerate or retard the mineralisation of soil organic matter. But up to now, research on these so called ‘priming effects’ was almost exclusively conducted with arable soils and with plant residues or glucose as additives. In this study, the effects of the uniformly 14C-labelled substrates fructose, alanine, oxalic acid and catechol on the mineralisation of soil organic carbon (SOC) from different horizons of two forest soils (Haplic Podzol and Dystric Cambisol) and one arable soil (Haplic Phaeozem) under maize and rye cultivation were investigated in incubation experiments for 26 days. Apart from the controls, all samples received substrate additions of 13.3 μg substrate-C mg−1 Corg. During the incubation, CO2-evolution was measured hourly and the amount of 14CO2 was determined at various time intervals. In almost all soils, priming effects were induced by one or several of the added substrates. The strongest positive priming effects were induced by fructose and alanine and occurred in the Bs horizon of the Haplic Podzol, where SOC mineralisation was nearly doubled. In the other soil samples, these substrates enhanced SOC mineralisation by +10 to +63%. Catechol additions generally reduced SOC mineralisation by −12 to −43% except in the EA horizon of the Haplic Podzol where SOC-borne CO2-evolution increased by +46%. Oxalic acid also induced negative as well as positive priming effects ranging from −24 to +82%. The data indicate that priming effects are ubiquitously occurring in surface and subsoil horizons of forest soils as well as in arable soils. Although a broad variety of soils was used within this study, relationships between soil properties and priming effects could not be ascertained. Therefore, a prediction on occurrence and magnitude of priming effects based on relatively easily measurable chemical and physical soil properties was not possible. Nevertheless, the data suggest that positive priming effects are most pronounced in forest soils that contain SOC of low biodegradability, where the added substrates may act as an important energy source for microbial metabolism.  相似文献   

14.
Phosphorus availability in terrestrial ecosystems is strongly dependent on soil P speciation. Here we present information on the P speciation of 10 forest soils in Germany developed from different parent materials as assessed by combined wet‐chemical P fractionation and synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy. Soil P speciation showed clear differences among different parent materials and changed systematically with soil depth. In soils formed from silicate bedrock or loess, Fe‐bound P species (FePO4, organic and inorganic phosphate adsorbed to Fe oxyhydroxides) and Al‐bound P species (AlPO4, organic and inorganic phosphate adsorbed to Al oxyhydroxides, Al‐saturated clay minerals and Al‐saturated soil organic matter) were most dominant. In contrast, the P speciation of soils formed from calcareous bedrock was dominated (40–70% of total P) by Ca‐bound organic P, which most likely primarily is inositol hexakisphosphate (IHP) precipitated as Ca3‐IHP. The second largest portion of total P in all calcareous soils was organic P not bound to Ca, Al, or Fe. The relevance of this P form decreased with soil depth. Additionally, apatite (relevance increasing with depth) and Al‐bound P were present. The most relevant soil properties governing the P speciation of the investigated soils were soil stocks of Fe oxyhydroxides, organic matter, and carbonate. Different types of P speciation in soils on silicate and calcareous parent material suggest different ecosystem P nutrition strategies and biogeochemical P cycling patterns in the respective ecosystems. Our study demonstrates that combined wet‐chemical soil P fractionation and synchrotron‐based XANES spectroscopy provides substantial novel information on the P speciation of forest soils.  相似文献   

15.
Low soil organic carbon (SOC) levels in dry areas can affect soil functions and may thus indicate soil degradation. This study assesses the significance of SOC content in Mediterranean arable soils based on the analysis of a broad data set of 2613 soils sampled from Mediterranean grasslands and agricultural land. The distribution in values of SOC, pH, clay and carbonates was analysed according to different climatic areas (semi‐arid, Mediterranean temperate, Mediterranean continental and Atlantic) and with respect to six different land uses (grassland, cereal crops, olives and nuts, vineyards, fruit trees and vegetable gardens). The general trend was for low SOC in arable land and decreased with aridity. In wet areas (Atlantic and Mediterranean continental), acidic soils had a higher SOC content than did calcareous soils, whereas in the Mediterranean temperate area SOC had little relationship to soil pH. In low SOC arable soils, the SOC content was related to clay content. In calcareous arable soils of the Mediterranean temperate zone, SOC content was more closely related to carbonates than to clay. In contrast to the Atlantic area, Mediterranean grassland soils had much lower amounts of SOC than forest soils. Mediterranean calcareous and temperate acidic soils under grassland had SOC‐to‐clay ratios similar to or only slightly greater than that under a crop regime. In contrast, Mediterranean continental acidic soils under grassland had a much higher SOC‐to‐clay ratio than arable soils. This suggests a low resilience of the Mediterranean temperate and calcareous arable soils in terms of SOC recovery after the secession of ploughing, which may be a result of intensive use of these soils over many centuries. Consequently, we hypothesize that the Mediterranean calcareous soils have undergone significant changes that are not readily reversed after ploughing ceases. Such changes may be related to alterations in soil aggregation and porosity which, in turn, are associated with soil carbonate dynamics. Decarbonation processes (the depletion of active carbonates) may therefore be relevant to the reclamation of highly calcareous arable soils through fostering soil re‐aggregation. The article concludes by discussing the suitability of zero tillage, manuring or the introduction of woody species to increase SOC in calcareous arable soils that are highly depleted of organic matter.  相似文献   

16.
Surface runoff is the major way of P transport from agricultural land to surface waters. To assess the potential of P loss in runoff in relation to soil P status, the chemical nature and distribution of soil P in different size classes of water-stable aggregates were quantified for two distinctive soil types. For both soils unfertilized areas under pasture and well-fertilized arable soils were sampled. The content of total P, organic P and microbial biomass P (Pmic) decreased in the aggregate size order <0.1, 1–2, and 0.1–1.0 mm respectively. In contrast available P (extracted by Bray I reagent) was lowest in the <0.1 mm aggregate size. Cultivation decreased the percentage of 1–2 mm aggregates but increased that of the <0.1 mm aggregates. Fertilization increased markedly both total P and organic P in the <0.1 mm fraction of arable soils compared to the corresponding samples from unfertilized grassland soils. During aggregate separation, most of P loss was in the form of particulate P and less than 1% in solution. More organic P and Pmic were lost from the grassland soils than from the arable soils.  相似文献   

17.
The parameters of the elemental composition, molecular weight distribution, infrared and proton spectroscopy, and hydrophilic-hydrophobic properties were determined for humic acids preparations isolated from arable horizons of soils from different natural zones (an ordinary chernozem, a soddy-podzolic soil, and a meadow sierozem). The general and specific properties of the humic acids from the three studied soils were revealed.  相似文献   

18.
The objective of this study was to investigate differences in organic matter fractions, such as dissolved organic carbon and humic substances, in soils under different land uses. Soil samples were collected from the upper layer of arable lands and grasslands. Humic substances (HS) were chemically fractionated into fulvic acids (FA), humic acids (HA) and humins (HUM), and based on the separated fractions, the humification index (HI) and the degree of HS transformation (DT) were calculated. Dissolved organic carbon (DOC) was determined by cold (CWE) and hot water (HWE) extractions. Regardless of land use, the results indicated significant differences in soil organic carbon (SOC) and HS composition, with HA and HUM as the dominant fractions. Total SOC was higher in grassland (median = 17.51 g kg?1) than arable soils (median = 9.98 g kg?1); the HI and DT indices did not differ significantly between land uses (HI = 0.3–10.3 and DT = 0.2–6.2 for grasslands, > 0.05; HI = 0.3–3.9 and DT = 0.2–20.1 for arable lands, > 0.05). This indicates the relatively high stability of organic carbon and efficient humification processes in both land uses. Additionally, in arable soils lower CWE‐C (0.75 g kg?1) and higher HWE‐C (2.59 g kg?1) than in grasslands (CWE‐C = 1.13 g kg?1, HWE‐C = 1.60 g kg?1) can be related to farming practice and application of soil amendments. The results showed that both labile and humified organic matter are better protected in grassland soils and are consequently less vulnerable to mineralization.  相似文献   

19.
Phosphorus in the soil microbial biomass (biomass P) and soil biomass carbon (biomass C) were linearly related in 15 soils (8 grassland, 6 arable, 1 deciduous woodland), with a mean P concentration of 3.3% in the soil biomass. The regression accounted for 82% of the variance in the data. The relationship was less close than that previously measured between soil biomass C and soil ATP content and indicates that biomass P measurements can only provide a rough estimate of biomass C content. Neither P concentration in the soil biomass, nor the amount of biomass P in soil, were correlated with soil NaHCO3-extractable inorganic, organic or total P.The calculated mean annual flux of P through the biomass (in a soil depth of 10 cm) in 8 grassland soils was large, 23 kg P ha?1 yr?1, and more than three times the mean annual P flux through 6 arable soils (7 kg P ha?1 yr?1), suggesting that biomass P could make a significant contribution to plant P nutrition in grassland.About 3% of the total soil organic P in the arable soils was in microbial biomass and from 5 to 24% in the grassland soils. The decline in biomass P when an old grassland soil was put into an arable rotation for about 20 yr was sufficient to account for about 50% of the decline in total soil organic P during this period. When an old arable soil reverted to woodland, soil organic P doubled in 100 yr; biomass P increased 11-fold during the same period.  相似文献   

20.
Purpose

Recent research suggests that Swedish organic arable soils have been under-recognized as a potential source of phosphorus (P) loading to water bodies. The aim of this study was to compare P losses through leaching from organic and high-fertility mineral soils. In addition, the effectiveness of a magnesium-salt-coated biochar applied below the topsoil as a mitigation strategy for reducing P losses was evaluated.

Materials and methods

Phosphorus leaching was measured from four medium- to high-P arable soils, two Typic Haplosaprists (organic 1 and 2), a Typic Hapludalf (sand), and an unclassified loam textured soil (loam), in a 17-month field study utilizing 90-cm-long lysimeters. A magnesium-salt-coated biochar was produced and characterized using X-ray powder diffraction (XPD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and X-ray adsorption (XANES) spectroscopy, and its phosphate adsorption capacity was determined at laboratory scale. It was also applied as a 3-cm layer, 27 cm below the soil surface of the same lysimeters and examined as a mitigation measure to reduce P leaching.

Results and discussion

Total-P loads from the 17-month, unamended lysimeters were in the order of organic 2 (1.2 kg ha?1)?>?organic 1 (1.0 kg ha?1)?>?sand (0.3 kg ha?1)?>?loam (0.2 kg ha?1). Macropore flow, humic matter competition for sorption sites, and fewer sorption sites likely caused higher P losses from the organic soils. Analysis by XRD and SEM revealed magnesium was primarily deposited as periclase (MgO) on the biochar surface but hydrated to brucite (Mg(OH)2) in water. The Langmuir maximum adsorption capacity (Qmax) of the coated biochar was 65.4 mg P g?1. Lysimeters produced mixed results, with a 74% (P?<?0.05), 51% (NS), and 30% (NS) reduction in phosphate-P from the organic 1, organic 2, and sand, respectively, while P leaching increased by 230% (NS) from the loam.

Conclusions

The findings of this study indicate that P leached from organic arable soils can be greater than from mineral soils, and therefore, these organic soils require further investigation into reducing their P losses. Metal-enriched biochar, applied as an adsorptive layer below the topsoil, has the potential to reduce P losses from medium- to high-P organic soils but appear to be less useful in mineral soils.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号