首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Reclaimed coal mine lands have the potential to sequester atmospheric carbon (C); however, limited information exists for the western USA coalfields. This study was carried out on two chronosequences (BA‐C3 grasses and DJ‐shrubs) of reclaimed sites at two surface coal mines to determine the effects of vegetation, soil texture, and lignin content on soil total organic carbon (TOC) accumulations. In the BA chronosequence, TOC increased over 26 years at an average rate of 0·52 Mg C ha−1 yr−1 in the 0–30 cm depth and was significantly correlated with clay content. Comparison between < 1 and 16‐year‐old stockpile soils indicated TOC content did not differ significantly. In the DJ chronosequence, TOC content in the 0–30 cm depth declined from 31·3 Mg ha−1 in 5‐year‐old soils to 23·4 Mg ha−1 in 16‐year‐old soils. The C:N ratios suggested that some (up to 2·0 per cent) of the TOC was potentially derived from coal particles in these reclaimed soils. Soil total N (TN) contents followed a similar trend as TOC with TOC and TN concentrations strongly correlated. Lignin contents in TOC of all reclaimed soils and topsoil stockpiles (TSs) were higher than that of nearby undisturbed soils, indicating the recalcitrant nature of TOC in reclaimed soils and/or possibly the slow recovery of lignin degrading organism. Results indicated that TOC accumulations in DJ were largely controlled by its composition, particular lignin content. In BA sites TOC accumulation was strongly influenced by both clay and lignin contents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
15NO?3 was immobilized in a calcareous sandy soil and a calcareous clay soil each incubated with glucose and wheat straw. Net mineralization of organic-15N was more rapid in the sandy soil, irrespective of C amendment, and in soils amended with glucose. Intermittent drying and wetting of soils during incubation stimulated mineralization of 15N-labelled and native soil organic-N in all treatments. The availability (percentage mineralization) of recently-immobilized 15N consistently exceeded that of the native soil N. Ratios of the availability of labelled and unlabelled N were similar in the sandy and clay soils but varied according to C amendment, drying and wetting cycle and incubation period.Changes in the distribution of immobilized N amongst soil extracts and soil fractions of different particle size and density were determined during periods of net N mineralization. In straw-amended soils, the organic-15N of a light fraction, sp.gr. < 1.59, decomposed relatively rapidly during the late mineralization period. Decreases of organic 15N of the fine clay fraction were also recorded. In glucose-amended soils, net N mineralization was accompanied by significant decreases in the concentrations of organic-15N of the silt and fine clay fractions.Drying and rewetting of soils hastened or magnified changes occurring in the organic-15N of soil fractions, but qualitatively, the pattern of change was similar to that observed with soils incubated under uniformly-moist conditions.The percentage distribution of labelled and unlabelled N suggested that in the long term, the silt fraction will accumulate an increasing proportion of the more stable nitrogenous residues.  相似文献   

3.
Purpose

Sustainable management of riparian zone soils is required to ensure the health of natural ecosystems and maintenance of soil nitrogen (N) pools and soil N cycling. However, the effect of revegetation type and age on soil N pools remains poorly understood.

Materials and methods

This study compiled data from published articles to understand the effects of revegetation types and age on soil total N (TN) and soil inorganic N (NH4+-N, and NO3?-N) using a meta-analysis. We extracted 645 observations from 52 published scientific articles.

Results and discussion

The revegetation of riparian zones led to a significant increase of soil TN (mean effect size: 11.5%; 95% CI: 3.1% and 20.6%). Woodland increased soil TN significantly by 14.0%, which was associated with the presence of N fixing species and high litter inputs. Soil NH4+-N concentration significantly increased (mean effect size: 20.1%; 95% CI: 15.1% and 25.4%), whereas a significant decrease in soil NO3?-N (mean effect size: ? 21.5%; 95% CI: ? 15.0% and ? 27.5%) was observed. Of the revegetation types considered in this paper, NO3?-N concentration in soil followed the order: grassland < shrubland < woodland, suggesting that woodland might be more efficient in soil NO3?-N retention than grassland. The high plant N uptake and accelerated NO3?-N leaching in grassland could be related to the decreased soil NO3?-N in grassland compared with other revegetation types. Revegetation significantly decreased soil moisture by (mean effect size: ? 7.9%; 95% CI: ? 3.3% and ? 12.2%) compared with the control, which might be associated with the selection of exotic species as dominant vegetation in the riparian zone. Soil TN increased in revegetation ages between 10 and 40 years following revegetation and was related to increased soil organic carbon inputs within those ages following the establishment.

Conclusions

This study provides insight into influence of different vegetation types and age on soil N pools and soil moisture. This study also highlights the importance of revegetation in riparian zones to increase soil TN.

  相似文献   

4.
Mineralization of organic matter and microbial activities in an intensively cultivated acid, N-rich peat soil planted with Salix sp. cv. aquatica were examined for 3 yr. The soil was amended with wood ash or NPK fertilizers providing N as ammonium nitrate or urea. The wood ash amendment (10 tons ha?1) increased soil pH from 4.6 to 5.5 and increased markedly all microbial activities measured, resulting in increased mineralization and N availability, and in loss of 9% total soil N during the first year. The addition of ammonium nitrate caused a corresponding though less pronounced increase in N mineralization. Cellulose decomposition increased in all amended soils, reaching rates 53–86% higher than in non-amended soil. Potential N2 fixation (C2H2 reduction) by free-living organisms was increased by the ash-amendment. Potential denitrification rates were positively correlated (r = 0.98) with the presence of water-soluble organic-C, which was more abundant in ash-amended and non-amended soils than in the soils fertilized with N.  相似文献   

5.
Nitrogen mineralization and nitrification in the soil of sub-alpine ruderal community of Mount Uludağ, Bursa, Turkey was measured for 1 year, under field conditions with Verbascum olympicum and Rumex olympicus being the dominant pioneer species under dry and wet sites, respectively. Seasonal fluctuations were observed in N mineralization and nitrification. The net N mineralization and nitrification were high in early summer and winter, due to high moisture. The annual net N mineralization rate (for the 0–15 cm soil layer) was higher under R. olympicus (188 kg N ha−1 yr−1) than under V. olympicum (96 kg N ha−1 yr−1). A significant positive correlation between net N mineralization and soil organic C (r2 = 0.166), total N (r2 = 0.141) and water content (r2 = 0.211) was found. Our results indicate that N mineralization rate is high in soils of ruderal communities on disturbed sites and varies with dominant species and, a difference in net N mineralization rate can be attributed to organic C, total N and moisture content of soils.  相似文献   

6.
In temperate regions, cultivation of Robinia pseudoacacia L. has recently received considerable attention because it is a fast-growing species for biomass and bioenergy production, while acting as a potential carbon (C) sink to counterbalance carbon dioxide (CO2) emissions and an alternative to agricultural crops on marginal sites. The objective of our work was to compare total organic carbon (TOC), total nitrogen (TN), and organic C fractions in postlignite mining soils under different development stages of R. pseudoacacia. Soil samples from three different depths (0–3, 3–10 and 10–30 cm) were taken in plantations 2, 3, 4, and 14 years old (R2, R3, R4, and R14, respectively). The TOC and TN contents increased with increasing tree age in all layers (P < 0.01). In the top 30 cm, TOC and TN stocks ranged from 11.7 to 59.8 Mg C ha?1 and from 0.30 to 2.61 Mg N ha?1 at R2 and R14, respectively. The rate of C sequestration was calculated to be 4.0 Mg C ha?1 year?1. Microbial biomass C and N were strongly correlated to TOC (r2 = 0.96 – 0.81; P < 0.001) and TN contents (r2 = 0.92 – 0.91; P < 0.001). The light fraction C (CLF) accounted for 15–30% and the heavy fraction C for 70% of TOC in all layers. In the 0- to 3-cm layer, CLF increased by 0.5 g kg?1 year?1. The results indicate that plantations of R. pseudoacacia are an attractive alternative to increase soil C contents in reclaimed lignite mining soils. In the short term, microbial biomass C and light fraction C are sensitive and provide an appropriate measure to assess soil C changes caused by cultivation of R. pseudoacacia.  相似文献   

7.
Summary Sandy soils have low reserves of mineral N in spring. Therefore organic-bound N is the most important pool available for crops. The objective of the present investigation was to study the importance of the organic-bound N extracted by electro-ultrafiltration and by a CaCl2 solution for the supply of N to rape and for N mineralization. Mitscherlich-pot experiments carried out with 12 different sandy soils (Germany) showed a highly significant correlation between the organic N extracted (two fractions) and the N uptake by the rape (electroultrafiltration extract: r=0.76***; CaCl2 extract: r=0.76***). Organic N extracted by both methods before the application of N fertilizer was also significantly correlated with N mineralization (electro-ultrafiltration extract: r=0.75***; CaCl2 extract: r=0.79***). N uptake by the rape and the mineralization of organic N increased with soil pH and decreased with an increasing C:N ratio and an increasing proportion of sand in the soils. Ninety-eight percent of the variation in N uptake by the rape was determined by the differences in net mineralization of organic N. This show that in sandy soils with low mineral N reserves (NO inf3 sup- -N, NH 4 + -N) the organic soil N extracted by electro-ultrafiltration or CaCl2 solutions indicates the variance in plant-available N. Total soil N was not related to the N uptake by plants nor to N mineralization.  相似文献   

8.
Effect of freeze-thaw events on mineralization of soil nitrogen   总被引:15,自引:0,他引:15  
Summary In humid regions of the United States there is considerable interest in the use of late spring (April–June) soil NO 3 concentrations to estimate fertilizer N requirements. However, little information is available on the environmental factors that influence soil NO 3 concentrations in late winter/early spring. The influence of freeze-thaw treatments on N mineralization was studied on several central Iowa soils. The soils were subjected to temperatures of-20°C or 5°C for 1 week followed by 0–20 days of incubation at various temperatures. The release of soluble ninhydrin-reactive N, the N mineralization rate, and net N mineralization (mineral N flush) were observed. The freeze-thaw treatment resulted in a significant increase in the N mineralization rate and mineral N flush. The N mineralization rate in the freeze-thaw treated soils remained higher than in non-frozen soils for 3–6 days when thawed soils were incubated at 25°C and for up to 20 days in thawed soils incubated at 5°C. The freeze-thaw treatments resulted in a significant release of ninhydrin-reactive N. These values were closely correlated with the mineral N flush (r 2=0.84). The release of ninhydrin-reactive N was more closely correlated with biomass N (r 2=0.80) than total N (r 2=0.65). Our results suggest that freeze-thaw events in soil disrupt microbial tissues in a similar way to drying and re-wetting or chloroform fumigation. Thus the level of mineral N released was directly related to the soil microbial biomass. We conclude that net N mineralization following a spring thaw may provide a significant portion of the total NO 3 present in the soil profile.  相似文献   

9.
The major aim of this study was to evaluate how the pool size of slowly mineralizable, ‘old’ soil organic N can be derived from more easily accessible soil and site information via pedotransfer functions (PTF). Besides modeling, this pool size might be of great importance for the identification of soils with high mineralization potential in drinking‐water catchments. From long‐term laboratory incubations (ca. 200 days) at 35 °C, the pool sizes of easily mineralizable organic N (Nfast), mainly in fresh residues, and slowly mineralizable, ‘old’ soil organic N (Nslow) as well as their first‐order rate coefficients were obtained. 90 sandy arable soils from NW Germany served to derive PTFs for Nslow that were evaluated using another 20 soils from the same region. Information on former land‐use and soil type was obtained from topographical, historical, and soil maps (partly from 1780). Pool size Nslow very strongly depends on soil type and former land‐use. Mean pool sizes of Nslow were much lower in old arable lowland (105 mg N kg–1) than upland soils (175 mg N kg–1) possibly due to lower clay contents. Within lowlands, mean pool sizes in former grassland soils (245 mg N kg–1) were 2 to 3 times larger than in old arable soils due to accumulation of mineralizable N. In contrast, mean pool sizes of Nslow were lowest in recently cleared, former heath‐ and woodland (31 mg N kg–1) as a result of the input of hardly decomposable organic matter. Neither N nor C in the light fraction (density < 1.8 g cm–3) was adequate to derive pool size Nslow in the studied soils (r2 < 0.03). Instead, Nslow can be accurately (r2 = 0.55 – 0.83) derived from one or two basic soil characteristics (e.g. organic C, total N, C : N, mineral fraction < 20 μm), provided that sites were grouped by former land‐use. Field mineralization from Nslow during winter (independent data set) can be predicted as well on the basis of Nslow‐values calculated from PTFs that were derived after grouping the soils by former land‐use (r2 = 0.51***). In contrast, using the PTF without soil grouping strongly reduced the reliability (r2 = 0.16).  相似文献   

10.
To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0–10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) (r = –0.84 and –0.80, respectively), a* value (correlation coefficient r = –0.51 and –0.46, respectively) and b* value (r = –0.76 and –0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.  相似文献   

11.
The objective of this research was to better understand patterns of soil nitrogen (N) availability and soil organic matter (SOM) decomposition in forest soils across an elevation gradient (235-1670 m) in the southern Appalachian Mountains. Laboratory studies were used to determine the potential rate of net soil N mineralization and in situ studies of 13C-labelled glycine were used to infer differences in decomposition rates. Nitrogen stocks, surface soil (0-5 cm) N concentrations, and the pool of potentially mineralizable surface soil N tended to increase from low to high elevations. Rates of potential net soil N mineralization were not significantly correlated with elevation. Increasing soil N availability with elevation is primarily due to greater soil N stocks and lower substrate C-to-N ratios, rather than differences in potential net soil N mineralization rates. The loss rate of 13C from labelled soils (0-20 cm) was inversely related to study site elevation (r=−0.85; P<0.05) and directly related to mean annual temperature (+0.86; P<0.05). The results indicated different patterns of potential net soil N mineralization and 13C loss along the elevation gradient. The different patterns can be explained within a framework of climate, substrate chemistry, and coupled soil C and N stocks. Although less SOM decomposition is indicated at cool, high-elevation sites, low substrate C-to-N ratios in these N-rich systems result in more N release (N mineralization) for each unit of C converted to CO2 by soil microorganisms.  相似文献   

12.
Yi WANG  Chunyue LI  Shunjin HU 《土壤圈》2024,34(1):181-190
The water-wind erosion crisscross region of the northern Loess Plateau in China is under constant pressure from severe erosion due to its windy and dry climate and intensive human activities. Identifying sustainable land use patterns is key to maintaining ecosystem sustainability in the area. Our aim was to appraise the impacts of different land use regimes on the dynamics of soil total organic C(TOC), total N(TN), and microbes in a typical watershed in the northern Loess Plateau to identify sui...  相似文献   

13.
Forest soils contain a variable amount of organic N roughly repartitioned among particles of different size, microbial biomass and associated with mineral compounds. All pools are alimented by annual litter fall as main input of organic N to the forest floor. Litter N is further subject to mineralization/stabilization recognized as the crucial process for the turnover of litter N. Although it is well documented that different soil types have different soil N stocks, it is presently unknown how different soil types affect the turnover of recent litter N. Here, we compared the potential mineralization of the total soil organic N with that of recent litter-released N in three beech forests varying in their soil properties. Highly 15N-labelled beech litter was applied to stands located at Aubure, Ebrach, Collelongo, which differ in humus type, soil type and soil chemistry. After 4-5 years of litter decomposition, the upper 3 cm of the organo-mineral A horizon was sampled and the net N mineralization was measured over 112 days under controlled conditions. The origin of mineralized N (litter N versus soil organic N) was calculated using 15N labeling. In addition, soils were fractionated according to their particle size (>2000 μm, 200-2000 μm, 50-200 μm, <50 μm) and particulate organic matter (POM) was separated from the mineral fraction in size classes, except the <50 μm fraction. Between 41 and 69% of soil organic N was recovered as POM. Litter-released 15N was mainly to be found in the coarse POM fractions >200 μm. On a soil mass basis, N mineralization was two-fold higher at Aubure and Collelongo than at Ebrach, but, on a soil N basis, N mineralization was the lowest at Collelongo and the highest at Ebrach. On a soil N (or 15N) basis, mineralization of litter 15N was two to four-fold higher than mineralization of the average soil N. Furthermore, the δ15N of the mineral N produced was closer to that of POM than to that of the mineral-bound fraction (<50 μm). Highest rates of 15N mineralization happened in the soil with the lowest N content, and we found a negative relationship between accumulations of N in the upper A horizon and the mineralization of 15N from the litter. Our results show that mineral N is preferentially mineralized from POM in the upper organo-mineral soil irrespective of the soil chemistry and that the turnover rate of litter N is faster in soils with a low N content.  相似文献   

14.
No information is available on the role of particle size of canola (Brassica napus) residue in altering C mineralization and nutrient (N, S) cycling in soil. We studied decomposition of canola residue (at 20±1 °C temperature and 10% moisture (w/w) for 6 months to elucidate the effect of its particle size (<1, 5-7, and 20-25 mm) on dynamics of C, N and S turnover following incorporation into a nutrient-poor sandy soil.Averaged over time, particle size of canola residue did not significantly affect C mineralization rate, the size of microbial-C and microbial-N pools, or the extent of CaCl2-extractable S immobilization, but altered the extent of mineral-N immobilization and water-soluble organic C (W-SOC) depletion. A rapid decrease in C mineralization rate in the first week matched the rapid depletion of W-SOC, especially for the <1 mm residue treatment. Over 6 months, mineral-N in the amended soils rarely increased beyond the starting level (0.8-1 mg kg−1 soil for all the treatments), whereas nitrate-N increased 19-fold in the non-amended soil. This suggests an occurrence of strong N immobilization in the amended soils; such immobilization was high for the <1 mm residue treatment. On a cumulative basis, 33-35% of C added in canola residues to the soil was respired in 6 months. The microbial-C and microbial-N pools peaked by day 4 for all the residue treatments (compared to time zero, 58-122% increase for microbial-C and 36-57% for microbial-N). Averaged over time, amended soils contained approx. 40% more microbial-C and microbial-N than the non-amended soil. An addition of canola residue (regardless of the size) to soil increased the extractable S significantly (3.4-fold) on day 0; this initially increased S level decreased by one-third over 6 months. In conclusion, particle size of canola residue did not affect temporal pattern of C and S mineralization in a nutrient-poor sandy soil, but altered N cycling.  相似文献   

15.
N mineralization capacity and its main controlling factors were studied in a large variety (n=112) of native (forest, bush) and agricultural (pasture, cultivated) soils from several climatic zones in Spain. The available inorganic N content, net N mineralization, and net N mineralization rate were determined after 6 weeks of aerobic incubation. NH inf4 sup+ –N largely predominated over NO inf3 sup- -N (ratio near 10:1) except in some agricultural soils. Net N mineralization predominated (83% of soils) over net N immobilization, which was more frequent in agricultural soils (25%) than in native soils (9%). In forest soils, both net N mineralization and the net N mineralization rate were significantly higher than in the other soil groups. The net N mineralization rate of pasture and cultivated soils was similar to that of bush soils, but available inorganic N was lower. The net N mineralization rate decreased in the order: soils over acid rocks>soils over sediments>soils over basic rocks or limestone; moreover, the highest net N mineralization and available inorganic N were found in soils over acid rocks. The highest N mineralization was found in soils with low C and N contents, particularly in the native soils, in which N mineralization increased as the C:N ratio increased. N mineralization was higher in soils with a low pH and base saturation than in soils with high pH and base saturation values, which sometimes favoured N immobilization. Soils with an Al gel content of >1% showed lower net N mineralization rates than soils with Al gel contents of <1%, although net N mineralization and available inorganic N did not differ between these groups. The net N mineralization rate in silty soils was significantly lower than in sandy and clayey soils, although soil texture only explained a low proportion of the differences in N mineralization between soils.  相似文献   

16.
The high cost of chemical fertilizers has forced farmers to switch to intensive use of locally available manures. Two laboratory incubation experiments were carried out in Sudan to study the effects of manure (chicken, farmyard, pigeon, and goat), chemical fertilizer, and four soil types (Ustert, Fluvent, Orthid, and Psamment) on nitrogen (N) mineralization. Net N mineralization in light soils (248, 529 mg N kg?1) was significantly (P ≤ 0.02) greater than in heavy soils (44, 212 mg N kg?1). Manure pH (R 2 = 0.9, P ≤ 0.01), lignin content (R 2 = 0.74, P ≤ 0.05), lignin / total nitrogen (TN; R 2 = 0.72, P ≤ 0.05), polyphenols/TN (R 2 = 0.75, P ≤ 0.05), and TN (R 2 = 0.76, P ≤ 0.05) were found to be the best parameters to determine N mineralization from manures. These findings support earlier studies that N release from organic N of different sources depends on soil type and chemical composition of the manure.  相似文献   

17.
Grazing animals recycle a large fraction of ingested C and N within a pasture ecosystem, but the redistribution of C and N via animal excreta is often heterogeneous, being highest in stock camping areas, i.e., near shade and watering sources. This non-uniform distribution of animal excreta may modify soil physical and chemical attributes, and likely affect microbial community eco-physiology and soil N cycling. We determined microbial population size, activity, N mineralization, and nitrification in areas of a pasture with different intensity of animal excretal deposits (i.e., stock camping, open grazing and non-grazing areas). The pasture was cropped with coastal bermudagrass (Cynodon dactylon L.) and subjected to grazing by cattle for 4 y. Soil microbial biomass, activity and N transformations were significantly higher at 0-5 cm than at 5-15 cm soil depth, and the impacts of heterogeneous distribution of animal excreta were more pronounced in the uppermost soil layer. Microbial biomass, activity and potential net N mineralization were greater in stock camping areas and were significantly correlated (r2≈0.50, P<0.05) with the associated changes in total soil C and N. However, gross N mineralization and nitrification potential tended to be lower in stock camping areas than in the open grazing areas. The lower gross N mineralization, combined with greater net N mineralization in stock camping areas, implied that microbial N immobilization was lower in those areas than in the other areas. This negative association between microbial N immobilization and soil C is inconsistent with a bulk of publications showing that microbial N immobilization was positively related to the amount of soil C. We hypothesized that the negative correlation was due to microbial direct utilization of soluble organic N and/or changes in microbial community composition towards active fungi dominance in stock camping areas.  相似文献   

18.
Rates of N mineralization were measured in 27 forest soils encompassing a wide range of forest types and management treatments in south-east Australia. Undisturbed soil columns were incubated at 20°C for 68 days at near field-capacity water content, and N mineralization was measured in 5-cm depth increments to 30 cm. The soils represented three primary profile forms: gradational, uniform and duplex. They were sampled beneath mature native Eucalyptus sp. forest and from plantations of Pinus radiata of varying age (<1 to 37 years). Several sites had been fertilized, irrigated, or intercropped with lupins. The soils ranged greatly in total soil N concentrations, C:N ratios, total P, and sand, silt, and clay contents. Net N mineralization for individual soil profiles (0–30 cm depth) varied from 2.0 to 66.6 kg ha-1 over 68 days, with soils from individual depths mineralizing from <0 (immobilization) to 19.3 kg ha-1 per 5 cm soil depth. Only 0.1–3.1% of the total N present at 0–30 cm in depth was mineralized during the incubation, and both the amount and the percentage of total N mineralized decreased with increasing soil depth. N fertilization, addition of slash residues, or intercropping with lupins in the years prior to sampling increased N mineralization. Several years of irrigation of a sandy soil reduced levels of total N and C, and lowered rates of N mineralization. Considuring all soil depths, the simple linear correlations between soil parameters (C, N, P, C:N, C:P, N:P, coarse sand, fine sand, silt, clay) and N mineralization rates were generally low (r<0.53), but these improved for total N (r=0.82) and organic C (r=0.79) when the soils were grouped into primary profile forms. Prediction of field N-mineralization rates was complicated by the poor correlations between soil properties and N mineralization, and temporal changes in the pools of labile organic-N substrates in the field.  相似文献   

19.
Soil organic nitrogen (ON) accounts for more than 90%of the total nitrogen (TN) in paddy soils. Inadequate understanding of the different ON fractions in paddy soils and their corresponding bioavailability under different climatic conditions has constrained the development of appropriate nutrient management strategies for rice production. In this study, we applied a modified Bremner method coupled with high-performance liquid chromatography to characterize how soil ON fractions and amino acid ch...  相似文献   

20.
Abstract

Termites play a significant role in soil-forming processes of the tropics. The influence of termites on pedogenesis as affected by the toposequence, however, has rarely been explored. We investigated the soil physicochemical and morphological characteristics of epigeal mounds constructed by Macrotermes bellicosus (Smethman) compared with those of surrounding pedons along a toposequence (bottom, fringe and upland sites) of an inland valley in central Nigeria. The physicochemical and morphological properties of the mound soils varied according to structural units but were generally different from those of the adjacent pedons. The differences included finer texture, higher electrical conductivity, total N, exchangeable bases (Ca, Mg and K) and effective cation exchange capacity and lower C/N ratio and exchange acidity in the mound than the pedon at each toposequence position. This tendency to modify the soil properties was more prominent in the nest body where the termites actually live, that is, in the hives, royal cell and base-plate, than in the soils below the nest and the other mound parts, that is, the external wall, internal wall and pillars. We found this trend to a greater or lesser degree at all toposequence positions. Our findings suggest that: (1) M.?bellicosus can manipulate the mound soils according to functional applications of structure units or environmental requirements for its livelihood, regardless of local soils; (2) M.?bellicosus makes ecological patches (hot spots) at all toposequence positions in the same measure; (3) the influence of M.?bellicosus on the pedogenesis is reduced in the lowlands compared with the uplands because the number and volume of the mounds were substantially lower in the bottom and fringe sites compared with the upland site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号