首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diurnal and seasonal photosynthesis patterns were studied in poplar clones Populus tristis Fisch. x P. balsamfera L. cv. Tristis #1 (NC 5260) and Populus x euramericana (Dode) Guiner cv. Eugenei (NC 5326, Carolina poplar) during their first season in the field in a short rotation, intensive culture plantation. Photosynthetic rates were low in immature leaves; increased basipetally on the shoot and peaked in leaves that had recently reached full expansion; and thereafter declined in lower-crown leaves in both clones. Photosynthesis was associated with leaf age and stomatal conductance in immature leaves; adaxial photosynthetic photon flux density (PPFD) and leaf temperature in recently mature leaves; and leaf age and adaxial PPFD in lower-crown leaves. Diurnal photosynthesis patterns within trees were highly variable due to differential light interception among leaves. Results of clonal comparisons of photosynthetic rates were dependent on which leaves were pooled for comparison and how photosynthesis was expressed. Compared to Eugenei, Tristis produced smaller leaves which had higher unit-area photosynthesis rates. The more indeterminate Eugenei outgrew Tristis principally because it more fully utilized the growing season for leaf area production. Photosynthetic production integrated over the growing season was closely related to dry matter production in both clones.  相似文献   

2.
Hardwood cuttings of Populus clones Tristis #1 and Eugenei were grown in pots in a controlled environment chamber to observe early patterns of growth and water relations in response to changing conditions of water stress. Height and dry weight growth, dry matter partitioning, leaf area production, stomatal conductance and leaf water potential were measured periodically during the 73-day experiment. The two clones reacted in a similar way to an initial period of stress, showing reduced growth, stomatal conductance and leaf water potential. However, when stress was interrupted by ample watering and then reimposed, substantial differences between the clones were evident. Growth of Eugenei fully recovered after stress was relieved, especially leaf growth, but when water deficiency was reimposed, the plants wilted and some leaves died. Tristis #1, in contrast, showed a greater adaptation to changing stress conditions; it grew less than Eugenei after drought was interrupted, but showed little adverse effect of renewed water deficits. These responses were partially explained by the higher root/leaf weight ratios of Tristis #1 which enabled it to maintain a more favorable plant water status than Eugenei.  相似文献   

3.
Photosynthetic and stomatal responses to a soil drying cycle were examined in half-sib seedlings of four walnut (Juglans nigra L.) families. Well-watered seedlings of an Iowa seed source had significantly higher rates of net photosynthesis than seedlings from New York or Michigan sources. This superior photosynthetic potential was associated with both greater stomatal conductance and mesophyll capacity for CO(2) fixation. In a drying soil, net photosynthesis and leaf conductance to water vapor of all families declined substantially, even under mild water stress. These responses were more strongly related to soil water status, as estimated by predawn leaf water potential, than to leaf water potential at the time of gas exchange measurement. There were no differences among families in the pattern of gas exchange response to developing water stress; however, families differed in capacity for recovery of gas exchange from water stress following rehydration. Sensitivity of photosynthesis of black walnut seedlings to water stress may be associated with poor growth and survival of this species in xeric habitats.  相似文献   

4.
Root tips of intact willow (Salix dasyclados Wimm., Clone 81-090) plants were partially dried by exposure to ambient greenhouse air and then kept in water-vapor-saturated air for up to 3 days. The drying treatment increased abscisic acid (ABA) concentrations in both the root tips subjected to drying and in the xylem sap, while it reduced leaf stomatal conductance and leaf extension rate. Despite the decrease in stomatal conductance, leaf water potentials were unaffected by the root drying treatment, indicating that the treatment reduced hydraulic conductivity between roots and foliage. After roots subjected to drying were returned to a nutrient solution or excised, ABA concentrations in the remaining roots and in the xylem sap, stomatal conductance of mature leaves and extension rate of unfolding leaves all returned to values observed in control plants. The 4-fold increase in xylem sap ABA concentration following the root drying treatment was not solely the result of reduced sap flow, and thus may be considered a potential cause, not merely a consequence, of the observed reduction in stomatal conductance.  相似文献   

5.
Foster JR 《Tree physiology》1992,11(2):133-149
During summer, gas exchange and water relations were measured in mature boxelder (Acer negundo L.) trees growing on a floodplain in central Indiana, USA. A shallow (< 1.25-m deep) water table and repeated flooding kept the soil water potential above -0.5 MPa at all times. Net photosynthesis and stomatal conductance were influenced primarily by light and, to a lesser extent, by leaf temperature, but showed no relationships with leaf-to-air water vapor gradient or leaf water potential. Throughout the summer, there was no midday stomatal closure on any measurement day, and leaf water potential at dawn and minimum daily leaf water potential remained above -0.4 and -1.4 MPa, respectively. Nevertheless, there was a seasonal decline in leaf osmotic potentials at saturation and turgor-loss point. Seasonal changes in maximum daily net photosynthesis and stomatal conductance, minimum daily leaf water potential and soil-to-leaf hydraulic conductance were not related to seasonal changes in soil water potential, air or soil temperature, or water table depth. Seasonal responses of net photosynthesis to intercellular CO(2) indicated that net photosynthesis was controlled primarily by nonstomatal factors. High soil water and a shallow water table may have kept soil-to-leaf hydraulic conductance large (5-9 mmol m(-1) s(-1) MPa(-1)) throughout the summer, permitting the trees to keep their stomata open, yet maintain leaf turgor and high net photosynthesis during the hot, low-humidity afternoons. This could also account for the dominance of nonstomatal influences on net photosynthesis.  相似文献   

6.
A multiplicative model of stomatal conductance was developed and tested in two functionally distinct ecotypes of Acer rubrum L. (red maple). The model overcomes the main limitation of the commonly used Ball-Berry model (Ball et al. 1987) by accounting for stomatal behavior under soil drying conditions. We combined the Ball-Berry model with an integrated expression of abscisic acid (ABA)-based stomatal response to ABA concentration ([ABA]) in bulk leaf tissue (gfac), which coupled physiological changes at the leaf level with those in the root. The factor gfac = exp(-beta[ABA]L) incorporated the stomatal response to [ABA] into the Ball-Berry model by down regulating stomatal conductance (gs) in response to physiological changes in the root. The down regulation of gs is pertinent under conditions where soil drying may modify the delivery of chemical signals to leaf stomata. Model testing indicated that the multiplicative model was capable of predicting gs in red maple under wide ranges of soil and atmospheric conditions. Concordance correlation coefficients were high (between 0.59 and 0.94) for the tested ecotypes under three environmental conditions (atmospheric, rhizospheric and minimal stress). The study supported the use of gfac as a gas exchange function that controls water stress effects on gs and aids in the prediction of gs responses.  相似文献   

7.
Leaf conductance, water relations, growth, and abscisic acid (ABA) concentrations in xylem sap, root apices and leaves were assessed in oak seedlings (Quercus robur L.) grown with a root system divided between two compartments and subjected to one of four treatments: (a) well watered, WW; (b) half of root system exposed to soil drying and half kept well watered, WD; (c) whole root system exposed to drought, DD; and (d) half of root system severed, RE. Sharp decreases in plant stomatal conductance, leaf water potential, hydraulic conductance and leaf growth were observed during DD treatment. No significant differences in plant leaf water potential and stomatal conductance were detected between the WW and WD treatments. Nevertheless, the WD treatment resulted in inhibition of leaf expansion and stimulation of root elongation only in the well-watered compartment. Abscisic acid concentrations did not change in leaves, root tips, or xylem sap of WD- compared to WW-treated plants. Increased concentrations of ABA were observed in xylem sap from DD-treated plant roots, but the total flux of ABA to shoots was reduced compared to that in WW-treated plants, because of decreases in transpiration flux. Similar plant responses to the WD and RE treatments indicate that the responses observed in the WD-treated plants were probably not triggered by a positive signal originating from drying roots.  相似文献   

8.
Weekly morphological measurements of trees in permanent growth plots and periodic destructive sampling were used to monitor growth and development of two Populus clones with contrasting morphology and phenology during the establishment year in a short-rotation, intensive-culture system. Tristis (P. tristis Fisch. x P. balsamifera L.) grew rapidly for 48 days before setting bud in July. By contrast, Eugenei (P. x euramericana (Dode) Guinier) grew at a slower rate than Tristis, but maintained this rate for 75 days before setting bud in September. By early October, the total leaf area and dry weight of Eugenei exceeded that of Tristis by 39 and 11%, respectively. In addition, Eugenei had a greater harvest index than Tristis throughout most of the growing season because a larger proportion of photosynthate produced was directed to shoot growth; however, a high shoot/root ratio in Eugenei predisposed it to water stress. Differences in aboveground biomass between clones were largely attributable to clonal differences in seasonal leaf area development.  相似文献   

9.
Correlations between leaf abscisic acid concentration ([ABA]), stomatal conductance (gs), rate of stomatal opening in response to an increase in leaf water potential (si), shoot hydraulic conductance (L) and photosynthetic characteristics were examined in saplings of six temperate deciduous tree species: Acer platanoides L., Padus avium Mill., Populus tremula L., Quercus robur L., Salix caprea L. and Tilia cordata Mill. Species-specific values of foliar [ABA] were negatively related to the mean values of gs, si, L and light- and CO2- saturated net photosynthesis (P(max)), thus providing strong correlative evidence of a scaling of foliar gas exchange and hydraulic characteristics with leaf endogenous [ABA]. In addition, we suggest that mean gs, si, L and Pmax for mature leaves may partly be determined by the species-specific [ABA] during leaf growth. The most drought-intolerant species had the lowest [ABA] and the highest gs, suggesting that interspecific differences in [ABA] may be linked to differences in species-specific water-use efficiency. Application of high concentrations of exogenous ABA led to large decreases in gs, si and P(max), further underscoring the direct role of ABA in regulating stomatal opening and photosynthetic rate. Exogenous ABA also decreased L, but the decreases were considerably smaller than the decreases in gs, si and Pmax. Thus, exogenous ABA predominantly affected the stomata directly, but modification of L by ABA may also be an important mechanism of ABA action. We conclude that interspecific variability in endogenous [ABA] during foliage growth and in mature leaves provides an important factor explaining observed differences in L, gs, si and Pmax among temperate deciduous tree species.  相似文献   

10.
The ecophysiological, morphological, and growth characteristics of 14 poplar clones were studied during 37 days of flooding and a 13-day recovery period. Cuttings were subjected to three soil water regimes, viz. drained (control), shallow flooding to 10 cm above the soil, and deep flooding to a depth of 120 cm. All hybrids modified their ecophysiological and morphological patterns to decrease carbon loss and maintain water balance. In response to flooding, all 14 hybrids reduced their expansion and initiation of new leaves, reduced height and root collar growth, and reduced the number of leaves. For shallowly flooded plants, adventitious roots developed by day 14, and their number increased with flooding duration; net photosynthesis, stomatal conductance, and growth decreased significantly compared with the control; dry weights of roots, leaves, and total biomass decreased and the allocation of growth to shoots and roots changed. After flooding ended, net photosynthesis recovered, but stomatal conductance recovered before net CO2 assimilation since photosynthesis was limited by stomatal factor at the initial stage of stress and it was limited by non-stomatal factors over relatively long periods of stress. Transpiration and the amount of water obtained from the roots both decreased. In the deeply flooded plants, similar but often more severe changes were observed. Based on our results, we classified the hybrids into three types using hierarchical cluster analysis. Clones 15-29, 196-522, 184-411, 306-45, 59-289, DN-2, DN-182, DN-17, DN-14274, NE-222, DTAC-7, and R-270 were flood-tolerant, clone NM-6 was flood-susceptible, and clone 328-162 was moderately flood-tolerant.  相似文献   

11.
Excised leaves and roots of willow (Salix dasyclados Wimm.) accumulated abscisic acid (ABA) in response to desiccation. The accumulation of ABA was greater in young leaves and roots than in old leaves and roots. In mature leaves, ABA accumulation was related to the severity and duration of the desiccation treatment. Water loss equal to 12% of initial fresh weight caused the ABA content of mature leaves to increase measurably within 30 min and to double in 2.5 h. The drying treatment caused significant (P = 0.05) reductions in leaf water potential and stomatal conductance. Recovery of leaf water potential to the control value occurred within 10 min of rewatering the dehydrated leaves, but recovery of stomatal conductance took an hour or longer, depending on the interval between dehydration and rewatering. The addition of ABA to the transpiration stream of well-watered excised leaves was sufficient to cause partial stomatal closure within 1 h and, depending on ABA concentration, more or less complete stomatal closure within 3 h. When the ABA solution was replaced with water, stomatal conductance increased at a rate inversely related to the concentration of the ABA solution with which the leaves had been supplied.  相似文献   

12.
We compared vertical gradients in leaf gas exchange, CO(2) concentrations, and refixation of respired CO(2) in stands of Populus tremuloides Michx., Pinus banksiana Lamb. and Picea mariana (Mill.) B.S.P. at the northern and southern boundaries of the central Canadian boreal forest. Midsummer gas exchange rates in Populus tremuloides were over twice those of the two conifer species, and Pinus banksiana rates were greater than Picea mariana rates. Gas exchange differences among the species were attributed to variation in leaf nitrogen concentration. Despite these differences, ratios of intercellular CO(2) to ambient CO(2) (c(i)/c(a)) were similar among species, indicating a common balance between photosynthesis and stomatal conductance in boreal trees. At night, CO(2) concentrations were high and vertically stratified within the canopy, with maximum concentrations near the soil surface. Daytime CO(2) gradients were reduced and concentrations throughout the canopy were similar to the CO(2) concentration in the well-mixed atmosphere above the canopy space. Photosynthesis had a diurnal pattern opposite to the CO(2) profile, with the highest rates of photosynthesis occurring when CO(2) concentrations and gradients were lowest. After accounting for this diurnal interaction, we determined that photosynthesizing leaves in the understory experienced greater daily CO(2) concentrations than leaves at the top of the canopy. These elevated CO(2) concentrations were the result of plant and soil respiration. We estimated that understory leaves in the Picea mariana and Pinus banksiana stands gained approximately 5 to 6% of their carbon from respired CO(2).  相似文献   

13.
This study was conducted on Alnus japonica seedlings subjected to flooding for 2, 4, and 6 weeks to examine responses in growth, morphology, and photosynthesis to different periods of flooding. Seedlings subjected to flooding for 2 and 4 weeks were drained after flooding then watered daily. Increases in biomass of leaves, roots, and whole plants were less for 6-week-flooded seedlings. Rate of photosynthesis and stomatal conductance of flooded seedlings decreased within 2 weeks. For 2-week-flooded seedlings recovery from reduced stomatal conductance and recovery of photosynthetic activity occurred after drainage. For the 6-week-flooded seedlings stomatal conductance recovered by the end of the experiment. Adventitious root formation by the 4 and 6-week-flooded seedlings was observed from the third week of flooding. These results suggest that recovery of reduced function in leaves may progress with development of adventitious roots during the period of flooding.  相似文献   

14.
Perks MP  Irvine J  Grace J 《Tree physiology》2002,22(12):877-883
We investigated the effect of drought on canopy stomatal conductance (g(c)), and examined the hypothesis that g(c) is controlled by the chemical messenger abscisic acid (ABA) produced in roots. Beginning in November 1994, we subjected a mature stand of Scots pine (Pinus sylvestris L.) to an imposed 11-month drought. Control plots were maintained at average-season soil water content. Xylem sap was extracted from shoots at regular intervals from April to November 1995. Soil water, sap flow and leaf water potentials (predawn to dusk) were recorded at the same time. Canopy stomatal conductance was calculated from sap flow data and xylem sap ABA concentrations ([ABA(xyl)]) were measured by radioimmunoassay. Mean [ABA(xyl)] in control trees was 250 micromol m(-3). No diurnal variation in [ABA(xyl)] was detected. With soil drying, [ABA(xyl)] increased to a maximum in summer (600 micromol m(-3)), but decreased again toward autumn; however, no significant increase in ABA flux to the leaves occurred. A decline in g(c) was detected when volumetric soil water content declined below 0.12. The decline in g(c) could not have been mediated by increasing [ABA(xyl)] because stomatal closure appeared to precede any increase in [ABA(xyl)]. Peak sap flow velocity data were used to estimate delivery times for root-to-shoot signals in 15-m tall trees. Under normal field conditions, a signal would take 12 days to travel from the site of production (roots) to the presumed site of action (shoots). However, under drought conditions it may take a chemical signal in excess of 6 weeks. We conclude that a feedforward model of short-term stomatal response to soil drying, based solely on the action of a chemical messenger from the roots, is not applicable in mature conifer trees because signal transmission is too slow.  相似文献   

15.
Effects of short-term (32 days) flooding on photosynthesis, stomatal conductance, relative growth rate and tissue starch concentrations of flood-intolerant Quercus alba L. (white oak), bottomland Quercus nigra L. (water oak), bottomland Fraxinus pennsylvanica Marshall. (green ash) and flood-tolerant Nyssa aquatica L. (water tupelo) seedlings were studied under controlled conditions. Net photosynthetic rates of flooded N. aquatica seedlings were reduced by 25% throughout the 32-day flooding period. Net photosynthetic rates of flooded Q. alba seedlings fell rapidly to 25% of those of the control seedlings by Day 4 of the flooding treatment and to 5% by Day 16. In F. pennsylvanica and Q. nigra, net photosynthetic rates were reduced to 50% of control values by Day 8 but remained at approximately 30 and 23%, respectively, of control values by Day 32. Leaves of flooded Q. alba seedlings accumulated approximately twice as much starch as leaves of non-flooded control plants, whereas root starch concentrations decreased to 67% of those of control plants by the end of the 32-day flooding treatment. In contrast, flooding caused only a small increase in leaf starch concentrations of N. aquatica plants, but it increased root starch concentrations to 119% of those of the control plants by the end of the experiment. The co-occurring bottomland species, Fraxinus pennsylvanica and Q. nigra, differed from each other in their patterns of stomatal conductance and root starch concentrations. We conclude that the maintenance of low leaf starch concentrations, and high pre-flood root tissue starch concentrations are important characteristics allowing flood-tolerant species to survive in flooded soils.  相似文献   

16.
Seedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1-2 pmol ABA m(-2) leaf area s(-1)) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil.  相似文献   

17.
Little is known about the effect of flowering on leaf photosynthesis. To understand why net photosynthesis (A(net)) is lower in Mangifera indica L. leaves close to inflorescences than in leaves on vegetative shoots, we measured nitrogen and carbohydrate concentrations, chlorophyll a fluorescence and gas exchange in recently matured leaves on vegetative terminals and on floral terminals of 4-year-old trees. We used models to estimate photosynthetic electron fluxes and mesophyll conductance (g(m)). Lower A(net) in leaves close to developing inflorescences was attributable to substantial decreases in stomatal conductance and g(m), and also in photosynthetic capacity as indicated by the decrease in the light-saturated rate of photosynthetic electron transport (J(max)). The decrease in J(max) was the result of decreases in the amount of foliar nitrogen per unit leaf area, and may have been triggered by a decrease in sink activity as indicated by the increase in the hexose:sucrose ratio. Parameters measured on leaves close to panicles bearing set fruits were generally intermediate between those measured on leaves on vegetative shoots and on leaves close to inflorescences, suggesting that the changes in A(net) associated with flowering are reversible.  相似文献   

18.
Sap flux density in branches, leaf transpiration, stomatal conductance and leaf water potentials were measured in 16-year-old Quercus suber L. trees growing in a plantation in southern Portugal to understand how evergreen Mediterranean trees regulate water loss during summer drought. Leaf specific hydraulic conductance and leaf gas exchange were monitored during the progressive summer drought to establish how changes along the hydraulic pathway influence shoot responses. As soil water became limiting, leaf water potential, stomatal conductance and leaf transpiration declined significantly. Predawn leaf water potential reflected soil water potential measured at 1-m depth in the rhizospheres of most trees. The lowest predawn leaf water potential recorded during this period was -1.8 MPa. Mean maximum stomatal conductance declined from 300 to 50 mmol m(-2) s(-1), reducing transpiration from 6 to 2 mmol m(-2) s(-1). Changes in leaf gas exchange were attributed to reduced soil water availability, increased resistances along the hydraulic pathway and, hence, reduced leaf water supply. There was a strong coupling between changes in soil water content and stomatal conductance as well as between stomatal conductance and leaf specific hydraulic conductance. Despite significant seasonal differences among trees in predawn leaf water potential, stomatal conductance, leaf transpiration and leaf specific hydraulic conductance, there were no differences in midday leaf water potentials. The strong regulation of changes in leaf water potential in Q. suber both diurnally and seasonally is achieved through stomatal closure, which is sensitive to changes in both liquid and vapor phase conductance. This sensitivity allows for optimization of carbon and water resource use without compromising the root-shoot hydraulic link.  相似文献   

19.
We studied the flood tolerance of five tree species growing in the flooded forest adjacent to the Mapire river, in SW Venezuela. Mean photosynthetic rate and leaf conductance were 11 &mgr;mol m(-2) s(-1) and 700 mmol m(-2) s(-1), respectively. Xylem water potential ranged from -0.08 to -1.15 MPa. Based on leaf gas exchange as a criterion of tolerance to flooding, two response patterns were identified: (1) decreasing photosynthetic rate with increasing flooding and leaf conductance (Psidium ovatifolium Berg. ex Desc., Campsiandra laurifolia Benth., Symmeria paniculata Benth. and Acosmium nitens (Vog.) Benth); and (2) independence of photosynthesis and leaf conductance from flooding (Eschweilera tenuifolia (Berg.) Miers.). In the first response pattern, declining photosynthetic rate with flooding may be interpreted as a sign of reduced flood tolerance, whereas the second response pattern may indicate increased flood tolerance. An increase in xylem water potential with depth of water column was found for all species (with the possible exception of P. ovatifolium), indicating that flooding does not cause water stress in these trees. Submerged leaves that had been under water for between four days and four months generally had photosynthetic rates and leaf conductances similar to those of aerial leaves, indicating maintenance of photosynthetic capacity under water. Daily positive oscillations in glucan content in submerged leaves of P. ovatifolium and C. laurifolia suggest that submerged leaves do not represent a sink for photosynthates produced by aerial leaves.  相似文献   

20.
Seedlings of Taxodium distichum L., Quercus lyrata Walt. and Q. falcata var. pagodaefolia Ell. were grown for 22 days in a rhizotron system providing two soil redox potential regimes, +170 mV (low Eh) and +560 mV (high Eh). Leaf chlorophyll concentration and gas exchange, root alcohol dehydrogenase (ADH) activity, root and leaf ethylene production, and growth and biomass partitioning were measured. In response to the low Eh soil treatment, stomatal conductance was reduced in Q. falcata and Q. lyrata but not in T. distichum, whereas net photosynthesis was reduced significantly in all species; however, net photosynthesis in T. distichum began to recover within 2 weeks of treatment initiation. Within each treatment, mean stomatal conductance and net photosynthesis were significantly greater in T. distichum than in the oak species. Leaf chlorophyll concentration was not affected by the soil treatments. All species showed significant reductions in root and leaf dry weights in response to the low Eh soil condition. The low Eh soil treatment resulted in increased root ADH activity and ethylene production in T. distichum, but had no effect on root ADH activity and ethylene production in the oak species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号