首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Radiation-use efficiency (RUE) relates biomass production to the photosynthetically active radiation (PAR) intercepted by a plant or crop. We determined RUE and biomass partitioning coefficients of young olive (Olea europaea) trees for use in a general growth model. In 1995, 1-year-old olive trees var. 'Picual' were planted at a density of either 0.5 or 2.0 trees m(-2) near Córdoba, Spain, at a site providing favorable growth conditions. During the experiment (1995-1997), both PAR interception by the canopy and plant area index (PAI) were measured with radiation sensors. Regular harvests were performed to determine leaf area and biomass accumulation in roots, wood (stem, branches and trunk) and leaves. Leaf, wood and root biomass partitioning coefficients were calculated. The leaf area partitioning coefficients were also estimated. Dry matter production was linearly related to cumulative intercepted PAR. Seasonal RUE, calculated as the slope of the regression of aboveground biomass and cumulative intercepted PAR, was 1.35 g (MJ PAR)(-1). Radiation-use efficiency appeared to respond to environmental conditions, but was independent of planting density and PAI. The young olive trees allocated 0.26 of their total biomass to roots. Partitioning of aboveground dry matter was 0.60 to wood and 0.37 to leaves. As competition increased, dry matter partitioning to wood increased to 0.70.  相似文献   

2.
We studied the influence of branch autonomy on the growth of reproductive and vegetative organs by establishing different patterns of fruit distribution within and between large branch units (scaffolds) in mature peach trees (Prunus persica (L.) Batsch cv. 'Elegant Lady'). Different patterns of fruit distribution were established by defruiting either whole scaffolds (uneven fruit distribution between scaffolds; US) or several selected hangers (small fruiting branches) per tree (uneven fruit distribution between hangers; UH). The effects of these patterns were compared with the effects of an even fruit distribution treatment (EVEN) in which fruits were thinned to achieve maximum uniformity of fruit distribution within the canopy. The desired fruit loads were obtained by differentially thinning the remaining bearing parts. On a tree basis, the response of mean fruit mass to fruit load was strongly affected by fruit distribution. The steepest mean fruit mass to fruit load relationship was found in US trees, whereas the relationship in UH trees was intermediate between the US and EVEN trees. On a scaffold basis, differences in fruit size between EVEN and US trees with similar fruit loads, though statistically significant, were relatively small, indicating that scaffolds were almost totally autonomous with respect to dry matter partitioning to fruit during the final stage of peach fruit growth. Hangers also appeared to exhibit significant autonomy with respect to the distribution of dry matter during the final phase of fruit growth. Branch autonomy was evident in scaffold growth: defruited scaffolds in the US treatment grew more than fruited scaffolds, and fruit distribution treatments had little impact on scaffold cross-sectional area on a tree basis. On the other hand, as observed for fruit growth, branch autonomy did not appear to be complete because the fruited scaffolds grew more in US trees than in EVEN trees under heavy cropping conditions. However, the effect of fruit distribution occurred only over short distances, and was negligible on organs located farther away from the source of heterogeneity (fruits), such as the trunk and roots.  相似文献   

3.
Seven-year-old apple (Malus x domestica Borkh.) trees cv. 'Braeburn' on rootstock M.26 were flower-thinned to establish four crop loads, resulting in final mean fruit numbers per tree of 0, 100, 225 and 400. Mean fruit mass decreased by about 35% with each decrease in cropping density. Fruit from light-cropping trees had significantly advanced maturity as indicated by the harvest management criteria of background color and starch/iodine score, and other fruit quality characteristics such as soluble solids. Flesh firmness and dry matter also increased with decreasing crop load. Compared with fruiting trees, mean leaf photosynthetic rates of non-cropping trees were significantly lower (40%) between 75 days after full bloom (dafb) and fruit harvest, with a maximum reduction of almost 60% at 118 dafb. Photosynthetic activity decreased linearly with increasing concentration of leaf starch, but was positively and significantly related to stomatal conductance. Consequently, the accumulation of nonstructural carbohydrates in leaves of light-cropping or non-cropping trees may have led to end-product inhibition of photosynthesis. Increases in xanthophyll cycle carotenoids mediated non-radiative thermal energy dissipation in non-cropping trees, providing increased capacity for photoprotection but reducing photochemical efficiency.  相似文献   

4.
The growth of wood in trees and forests depends on the acquisition of resources (light, water, and nutrients), the efficiency of using resources for photosynthesis, and subsequent partitioning to woody tissues. Patterns of efficiency over time for individual trees, or between trees at one time, result from changes in rates photosynthesis and shifts in the relative partitioning to wood. We measured the production ecology (stem growth, light interception, and light use efficiency) to explain patterns of growth among trees within plots through stand development, and tested three hypotheses: (1) dominant trees have higher light use efficiency than subordinate trees; (2) lower variation in the size distribution of trees within plots allows higher light use efficiency; and (3) uniform stand structure and high light use efficiency reduce the age-related decline in tree growth. The experiment used clonal plantations of Eucalyptus at four locations in eastern Brazil. Irrigation and fertilization treatments ensured the major resource limitation for tree growth would be light supply. The influence of variation in the sizes of trees within plots was tested by comparing plots with all trees planted in a single day (uniform treatment) with plots where planting was spread over 80 days (heterogeneous treatment). Light interception per tree was simulated with the MAESTRA model. Across sites, treatments and whole-rotation stand development, dominant trees showed higher rates of stem growth, light interception, and light use efficiency than subordinate trees (supporting the first hypothesis). For example, dominant trees (80th percentile rank) at the end of the rotation grew four-times faster than suppressed trees (20th percentile rank), as a result of 2.1-fold greater light interception, and 1.8-fold greater stem growth per unit of light interception. In some cases, greater variation among tree sizes within plots led to lower efficiency of light use by average-size trees, providing mixed evidence for the second hypothesis. Greater uniformity of sizes of trees within plots did not substantially mitigate the decline in stem growth from mid-rotation to the end of the rotation, refuting the third hypothesis. The high efficiency of dominant trees underscores the marginal contribution of subordinate trees to total stand growth, and should spur further work on thinning to increase growth and lengthen rotations for dominant trees.  相似文献   

5.
6.
Photosynthetic light acclimation of leaves can result from (i) changes in mass-based leaf nitrogen concentration, Nm, (ii) changes in leaf mass:area ratio, Ma, and (iii) partitioning of total leaf nitrogen among different pools of the photosynthetic machinery. We studied variations in Nm and Ma within the crowns of two peach (Prunus persica L. Batsch) trees grown in an orchard in Portugal, and one peach tree grown in an orchard in France. Each crown was digitized and a 3-D radiation transfer model was used to quantify the intra-crown variations in time-integrated leaf irradiance, . Nitrogen concentration, leaf mass:area ratio, chlorophyll concentration, and photosynthetic capacity were also measured on leaves sampled on five additional peach trees in the orchard in Portugal. The data were used to compute the coefficients of leaf nitrogen partitioning among carboxylation, bioenergetics, and light harvesting pools. Leaf mass:area ratio and area-based leaf nitrogen concentration, Na, were nonlinearly related to , and photosynthetic capacity was linearly related to Na. Photosynthetic light acclimation resulted mainly from changes in Ma and leaf nitrogen partitioning, and to a lesser extent from changes in Nm. This behavior contrasts with photosynthetic light acclimation observed in other tree species like walnut (Juglans regia L.) in which acclimation results primarily from changes in Ma.  相似文献   

7.
Distribution of leaf nitrogen with respect to leaf mass per unit area (M(a)), nitrogen per unit mass (N(m)) and nitrogen per unit area (N(a)) within peach (Prunus persica L.) tree canopies was studied in two field experiments. In one experiment, leaf light exposure and M(a) were measured on leaves from different canopy positions of peach trees subjected to five nitrogen (N) fertilization treatments. Leaf light exposure and M(a) were linearly related and the relationship was independent of N fertilization. In a subsequent experiment, N fertilizer was applied to previously unfertilized trees in midsummer, after shoot growth had terminated. Application of N fertilizer did not affect mean canopy M(a). Fertilization increased N(m) of all leaves throughout the canopy compared with non-fertilized trees. No significant relationship between N(m) and M(a) was found in either fertilized or control trees. There was a linear relationship between N(a) and M(a) and the slope of the relationship was increased by N fertilizer application. We conclude that distribution of N(a) in peach tree canopies is primarily a function of M(a) partitioning with light and N(m), which is related to soil N availability.  相似文献   

8.
Diurnal and seasonal photosynthesis patterns were studied in poplar clones Populus tristis Fisch. x P. balsamfera L. cv. Tristis #1 (NC 5260) and Populus x euramericana (Dode) Guiner cv. Eugenei (NC 5326, Carolina poplar) during their first season in the field in a short rotation, intensive culture plantation. Photosynthetic rates were low in immature leaves; increased basipetally on the shoot and peaked in leaves that had recently reached full expansion; and thereafter declined in lower-crown leaves in both clones. Photosynthesis was associated with leaf age and stomatal conductance in immature leaves; adaxial photosynthetic photon flux density (PPFD) and leaf temperature in recently mature leaves; and leaf age and adaxial PPFD in lower-crown leaves. Diurnal photosynthesis patterns within trees were highly variable due to differential light interception among leaves. Results of clonal comparisons of photosynthetic rates were dependent on which leaves were pooled for comparison and how photosynthesis was expressed. Compared to Eugenei, Tristis produced smaller leaves which had higher unit-area photosynthesis rates. The more indeterminate Eugenei outgrew Tristis principally because it more fully utilized the growing season for leaf area production. Photosynthetic production integrated over the growing season was closely related to dry matter production in both clones.  相似文献   

9.
Four-year-old apple (Malus x domestica Borkh.) trees cv. 'Braeburn' on M.26 rootstock were thinned at full bloom to establish six crop loads ranging from a heavy crop to a deflowered treatment. At harvest, mean yield per tree varied from 0 to 38 kg and mean fruit weight ranged from 225 g in the heaviest cropping treatment to 385 g in the lightest cropping treatment. Light cropping resulted in a significant advance in fruit maturity as indicated by background color, starch/iodine score and soluble solids. There were small differences in leaf photosynthetic rate among the treatments when shoot growth was active. However, in early January, coincident with cessation of shoot growth and maximum rate of accumulation of fruit weight, leaf assimilation rate was reduced by as much as 65% on the deflowered trees compared to the trees carrying the heaviest crop. Leaf assimilation rate showed a curvilinear response to crop load at this time, with little increase in leaf assimilation when crop load exceeded 12 fruit m(-2) leaf area.  相似文献   

10.
Aboveground xylem hydraulic conductance was determined in Scots pine (Pinus sylvestris L.) trees and stands from 7 to about 60 years of age. At the stand scale, leaf area index and net primary productivity (NPP, above- plus belowground) increased and reached a plateau at about 25-30 and 15-20 years, respectively; both parameters declined in mature stands. Stand hydraulic conductance followed a similar trend to NPP, with a maximum at about 15-20 years and a pronounced reduction in old stands. At the tree scale, annual biomass growth per unit of leaf area (growth efficiency) declined with tree age, whereas aboveground sapwood volume per unit leaf area, which is linearly related to maintenance respiration costs, steadily increased. Radiation interception per unit leaf area increased significantly with reduced leaf area index of mature stands, despite increased foliage clumping in the canopies of mature trees. Needle nutrient concentration did not change in the chronosequence. Tree hydraulic conductance per unit leaf area was strongly and positively correlated with growth efficiency. We discuss our findings in the context of growth reductions in mature and old trees, and suggest that increased hydraulic resistance and maintenance respiration costs may be the main causes of reduced carbon gain in mature and old trees.  相似文献   

11.
The impacts of thinning, fertilization and crown position on seasonal growth of current-year shoots and foliage were studied in a 13-year-old loblolly pine (Pinus taeda L.) plantation in the sixth post-treatment year (1994). Length of new flushes, and their needle length, leaf area, and oven-dry weight were measured in the upper and lower crown from March through November. Total shoot length was the cumulative length of all flushes on a given shoot and total leaf area per shoot was the sum of leaf areas of the flushes.

By the end of June, first-flush foliage reached 70% of the November needle length (14.3 cm) and 65% of the final leaf area (15.0 cm2). Cumulative shoot length of first- and second-flush shoots achieved 95% of the annual length (30.3 cm), whereas total leaf area per shoot was 55% of the final value (75.3 dm2). Fertilization consistently stimulated fascicle needle length, dry weight, and leaf area in the upper crown. Mean leaf area of upper-crown shoots was increased by 64% six years after fertilization. A significant thinning effect was found to decrease mean leaf area per shoot in the crown. For most of the growing season, the thinned-fertilized trees produced substantially more leaf area per shoot throughout the crown than the thinned-nonfertilized trees. These thinned-fertilized trees also had greater needle length and dry weight, longer first flush shoots, and more leaf area per flush than trees in the thinned-nonfertilized plots. Needle length and leaf area of first flush shoots between April and July were linearly related to previous-month canopy air temperature (Ta). Total shoot length strongly depended on vertical light gradient (PPFD) within the canopy, whereas shoot leaf area was a function of both PPFD and Ta. Thus, trees produced larger and heavier fascicles, more and longer flush shoots, and more leaf area per shoot in the upper crown than the lower crown. We conclude that thinning, fertilization, and crown position regulate annual leaf area production of current-year shoots largely by affecting the expansion of first flush shoots and their foliage during the first half of the growing season.  相似文献   


12.
Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.  相似文献   

13.
Many biomechanical and theoretical studies have been based on the pipe-model theory, according to which a tree is regarded as an assemblage of pipes, each having the same amount of leaf area or leaf mass. However, the physiological mechanisms underlying the theory have not been extensively examined, particularly at the branch level. We analyzed how branches and trunks thickened in nine young Acer mono Maxim. var. marmoratum (Nichols) Hara f. dissectum (Wesmael) Rehder. and A. rufinerve (Siebold & Zucc.) trees. In particular, we examined the roles of light, allocation of photosynthates and shoot heterogeneity. The cross-sectional area (A) of a branch was proportional to cumulative leaf mass or leaf area of the branch, and cumulative cross-sectional area of the daughter branches (SigmaA) above a branching point was equal to the A of the mother branch. These results indicate the validity of the pipe-model theory. However, the theory was invalid for current-year growth of branch cross-sectional area (DeltaA). The DeltaA/SigmaDeltaA for a branching point was greatest (nearly equal to 1) at the crown surface, decreased with crown depth, and tended to increase again at the trunk base, and DeltaA strongly depended on light interception and the yearly increment of leaves on the branch. We examined factors that influenced DeltaA with multiple regression analysis. The ratio of DeltaA of a branch to branch leaf area depended on both relative irradiance and mean current-year shoot length of the branch, suggesting that diameter growth of a branch is determined by the balance between supply of photosynthates, which depends on light interception by the branch, and demand for photosynthates, which is created by the high cambial activity associated with vigorous shoot elongation.  相似文献   

14.
Stockplants of Eucalyptus grandis were pruned to a height of 7–10 cm and after 3 weeks were placed in growth cabinets set at a photon flux density (PFD) of 200 μmol m−2 s−1 and red to far-red ratios of 0.4, 0.7, 1.3, 3.5 or 6.5. Experiments tested the effects of light quality on growth and gas exchange of stockplants. Light quality did not affect the total shoot dry weight (DW), root DW or shoot to root ratio of stockplants or their total leaf area. However, there were significant effects of light quality on: (i) plant height, which was greatest at red:far-red (R:FR) ratios of 0.4 and 0.7; (ii) partitioning of DW between leaves and stems, with greater stem DW and less leaf DW at low R:FR ratios (0.4 and 0.7); (iii) partitioning of DW and leaf area between the most dominant shoot and all other (non-dominant) shoots; (iv) specific leaf area, which was greatest at low R:FR ratios. In the above characters, the dominance ratio (ratio of most dominant shoot to sum of all other shoots) was greatest at low R:FR ratios and least at ratios of 3.5 and 6.5. Photosynthetic rate per unit leaf area and leaf chlorophyll concentration significantly increased with increasing R:FR ratio. However, photosynthesis per unit chlorophyll concentration was significantly greater at low R:FR ratios. Generally, light quality had no significant effect on photosynthetic rate per leaf or per unit dry weight, but rates of transpiration, stomatal conductance and water use efficiency increased with an increase in R:FR ratio. These data indicate that compensatory changes in plant morphology and gas exchange caused equality in total dry weight per plant between treatments. The above effects of light quality on dry matter partitioning and gas exchange had important effects on the size, number, morphology and physiology of subsequently collected cuttings for vegetative propagation.  相似文献   

15.
Increasing fruit load (from no berries present to 25, 50 and 100% of the initial fruit load) significantly decreased branch growth on 5-year-old coffee (Coffea arabica L.) trees of the dwarf cultivar 'Costa Rica 95', during their third production cycle. Ring-barking the branches further reduced their growth. Berry dry mass at harvest was significantly reduced by increasing fruit load. Dry matter allocation to berries was four times that allocated to branch growth during the cycle. Branch dieback and berry drop were significantly higher at greater fruit loads. This illustrates the importance of berry sink strength and indicates that there is competition for carbohydrates between berries and shoots and also among berries. Leaf net photosynthesis (P(n)) increased with increasing fruit load. Furthermore, leaves of non-isolated branches bearing full fruit load achieved three times higher P(n) than leaves of isolated (ring-barked) branches without berries, indicating strong relief of leaf P(n) inhibition by carbohydrate demand from berries and other parts of the coffee tree when excess photoassimilates could be exported. Leaf P(n) was significantly higher in the morning than later during the day. This reduction in leaf P(n) is generally attributed to stomatal closure in response to high irradiance, temperature and vapor pressure deficit in the middle of the day; however, it could also be a feedback effect of reserves accumulating during the morning when climatic conditions for leaf P(n) were optimal, because increased leaf mass ratio was observed in leaves of ring-barked branches with low or no fruit loads. Rates of CO(2) emission by berries decreased and calculated photosynthetic rates of berries increased with increasing photosynthetic photon flux (PPF) especially at low PPFs (0 to 100 micromol m(-2) s(-1)). The photosynthetic contribution of berries at the bean-filling stage was estimated to be about 30% of their daily respiration costs and 12% of their total carbon requirements at PPF values commonly experienced in the field (200 to 500 micromol m(-2) s(-1)).  相似文献   

16.
Berman ME  DeJong TM 《Tree physiology》1996,16(10):859-864
Effects of water stress on fruit fresh and dry weights were investigated in peach trees, Prunus persica (L.) Batsch., with varying crop loads: light, moderate and heavy. In well-watered controls, tree water status was independent of crop load. In trees receiving reduced irrigation, the degree of water stress increased with increasing crop load. Water stress induced fruit fresh weight reductions at all crop loads. Fruit dry weight was not reduced by water stress in trees having light to moderate crop loads, indicating that the degree of water stress imposed did not affect the dry weight sink strength of fruit. Water-stressed trees with heavy crop loads had significantly reduced fruit dry weights, which were likely due to carbohydrate source limitations resulting from large crop carbon demands and water stress limitations on photosynthesis.  相似文献   

17.
Shoot architecture may significantly alter mean quantum flux on foliage and thus, photosynthetic productivity. There is currently only limited information about plastic alterations in shoot structure caused by within-canopy variation in mean integrated irradiance (Q(int)) in broad-leaved trees. We studied leaf and shoot structure, and nitrogen and carbon content in late-successional, widely distributed, temperate, broad-leaved Nothofagus taxa to determine the architectural controls on light harvesting and photosynthetic performance. Nothofagus fusca (Hook. f.) Oersted has larger leaves and less densely leaved shoots than the N. solandri varieties. Nothofagus solandri var. solandri (Hook. f.) Oersted is characterized by rounder leaves that potentially have a larger overlap than the ovate-triangular leaves of N. solandri var. cliffortioides (Hook. f.) Poole. Leaf dry mass (M(A)) and nitrogen content (N(A)) per unit area increased with increasing Q(int) in all species, demonstrating enhanced investment of photosynthetic biomass in high light. Although M(A) differed between species at a common irradiance, there was a uniform relationship between N(A) and Q(int) across species. Leaf carbon content per dry mass and leaf dry mass to fresh mass ratio also scaled positively with irradiance, suggesting greater structural investments in high light. In all species, shoots became more horizontal and flatter at lower Q(int), implying an enhanced use efficiency of direct irradiance in natural leaf positions. In contrast, irradiance effects on leaf aggregation varied among species. Across the data, leaf overlap or leaf area density was often greater at lower irradiances, possibly as a result of limited carbon availability for shoot axis extension growth. In N. fusca, leaves of which were more aggregated in high light, the shoot silhouette to total leaf area ratio (S(S)) declined strongly with increasing irradiance, demonstrating a lower light harvesting efficiency at high Q(int). This effect was only moderate in N. solandri var. cliffortioides and S(S) was independent of Q(int) in N. solandri var. solandri. Although the efficiency of light interception at high irradiances was lowest in N. fusca, this species had the greatest nitrogen content per unit shoot silhouette area (2N(A)/S(S)), indicating superior shoot-level photosynthetic potential. These data collectively demonstrate that shoot architecture significantly affects light interception and photosynthesis in broad-leaved trees, and that structural carbon limitations may constrain leaf light harvesting efficiency at low irradiance.  相似文献   

18.
To quantify the effects of crown thinning on the water balance and growth of the stand and to analyze the ecophysiological modifications induced by canopy opening on individual tree water relations, we conducted a thinning experiment in a 43-year-old Quercus petraea stand by removing trees from the upper canopy level. Soil water content, rainfall interception, sap flow, leaf water potential and stomatal conductance were monitored for two seasons following thinning. Seasonal time courses of leaf area index (LAI) and girth increment were also measured. Predawn leaf water potential was significantly higher in trees in the thinned stand than in the closed stand, as a consequence of higher relative extractable water in the soil. The improvement in water availability in the thinned stand resulted from decreases in both interception and transpiration. From Year 1 to Year 2, an increase in transpiration was observed in the thinned stand without any modification in LAI, whereas changes in transpiration in the closed stand were accompanied by variations in LAI. The different behaviors of the closed and open canopies were interpreted in terms of coupling to the atmosphere. Thinning increased inter-tree variability in sap flow density, which was closely related to a leaf area competition index. Stomatal conductance varied little inside the crown and differences in stomatal conductance between the treatments appeared only during a water shortage and affected mainly the closed stand. Thinning enhanced tree growth as a result of a longer growing period due to the absence of summer drought and higher rates of growth. Suppressed and dominant trees benefited more from thinning than trees in the codominant classes.  相似文献   

19.
Changes in gas exchange with leaf age and fruit growth were determined in lychee trees (Litchi chinensis Sonn.) growing in subtropical Queensland (27 degrees S). Leaves expanded in a sigmoid pattern over 50 days during spring, with net CO2 assimilation (A) increasing from -4.1 +/- 0.9 to 8.3 +/- 0.5 micromol m-2 s-1 as the leaves changed from soft and red, to soft and light green, to hard and dark green. Over the same period, dark respiration (Rd) decreased from 5.0 +/- 0.8 to 2.0 +/- 0.1 micromol CO2 m-2 s-1. Net CO2 assimilation was above zero about 30 days after leaf emergence or when the leaves were half fully expanded. Chlorophyll concentrations increased from 0.7 +/- 0.2 mg g-1 in young red leaves to 10.3 +/- 0.7 mg g-1 in dark green leaves, along with stomatal conductance (gs, from 0.16 +/- 0.09 to 0.47 +/- 0.17 mol H2O m-2 s-1). Fruit growth was sigmoidal, with maximum values of fresh mass (29 g), dry mass (6 g) and fruit surface area (39 cm2) occurring 97 to 115 days after fruit set. Fruit CO2 exchange in the light (Rl) and dark (Rd) decreased from fruit set to fruit maturity, whether expressed on a surface area (10 to 3 micromol CO2 m-2 s-1 and 20 to 3 micromol CO2 m-2 s-1, respectively) or on a dry mass basis (24 to 2 nmol CO2 g-1 s-1 and 33 to 2 nmol CO2 g-1 s-1, respectively). Photosynthesis never exceeded respiration, however, the difference between Rl and Rd was greatest in young green fruit (4 to 8 micromol CO2 m-2 s-1). About 90% of the carbon required for fruit growth was accounted for in the dry matter of the fruit, with the remainder required for respiration. Fruit photosynthesis contributed about 3% of the total carbon requirement of the fruit over the season. Fruit growth was mainly dependent on CO2 assimilation in recently expanded dark green leaves.  相似文献   

20.
The application of detailed models of canopy photosynthesis rely on the estimation of attenuation of light in the canopy. This attenuation is readily estimated with the Lambert-Beer law when the canopy is homogeneous. In reality, forest canopies are far from homogeneous, and this has led to the use of detailed light extinction models that account for grouping of foliage between and within trees. Because such models require detailed parameterization and fine resolution inputs, they are impractical in larger-scale applications. Thus, there is interest in simplified models that can be readily parameterized. We developed two equations that can be used to estimate mean annual light interception by single unshaded trees and by stands of Poisson distributed trees. Interception by single trees is a function of crown surface area, the ratio of leaf area to crown surface area, the extinction coefficient in a homogeneous canopy--which can be determined separately--and one empirical parameter that depends on the mean solar angle. The summary model was tested against a detailed model of interception, and showed good agreement, although with slight bias. The results showed that crown surface area is a good summary variable for crown size and shape, because errors are independent of crown shape (ellipsoids, cones and height:width ratios). We also tested whether canopy photosynthesis is proportional to light interception across canopies differing in structure and leaf area index, and found that light-use efficiency is influenced by canopy structure. The model is useful in larger-scale applications because it can be parameterized with available data without the need for additional empirical parameters. It can also be used to study the effect of stand structure on mean annual light interception and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号