首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
李红 《北方水稻》2011,41(5):76-77,80
化肥的大量投入,使农作物的产量明显提高。化肥明显的增产作用,使农民对化肥产生了很大的依赖性,从而忽视了有机肥的使用。多年来,科学种田水平不断提高,但土壤中的有机质含量有所下降。要想使土地资源永续利用,保证土壤的生产力,必须增施有机肥,提高土壤有机质含量,改善土壤的理化性状,这是保持并提高耕地质量的一条最有效的途径。  相似文献   

2.
Potato nutrient management in sustainable cropping systems   总被引:2,自引:0,他引:2  
Sustainable nutrient management involves a set of management practices designed to conserve soil resources, to maintain or enhance productivity, and to help reduce growers’ reliance on chemical fertilizers. Sustainable nutrient management systems will most certainly rely heavily on the use of legume rotation crops and/or organic soil amendments. To realize the full benefit to the crop ecosystem, sustainable nutrient management programs will also likely require longer crop rotations with less frequent potato production. There is considerable research evidence indicating that these systems can maintain or increase productivity while having positive impacts on nutrient supply, soil physical properties, and soil conservation. However, their successful adoption and continued use on a large scale will require resolution of uncertainties related to economic risk associated with inconsistent nutrient availability in alternative nutrient management systems, potential environmental risks associated with excessive P applications in animal manures, and the potential for increased potato pest incidence resulting from manure application.  相似文献   

3.
Soil compaction and erosion are problems in many Pacific Northwestern potato fields. We wanted to determine if zone-subsoiling would reduce these problems and improve potato yields and or grade without adversely impacting other production practices. Studies were conducted in Southern Idaho at six locations over two years on different soils and with different irrigation methods to assess the effects of zone-subsoiling immediately after planting on tuber yield and grade. Reservoir-tillage comparisons were made at three locations where sprinkler water application rates were higher than soil infiltration rates. Russet Burbank was represented by eight location-years and Russet Norkotah by two. Zone-subsoiling consistently improved tuber grade or increased tuber size. The biggest improvement was under furrow irrigation. Zone-subsoiling also tended to increase total yield in eight of ten location-years. Reservoir-tillage improved yield and grade, but zone-subsoiling did not without reservoir-tillage when water application rates were high. At no location did zone-subsoiling significantly decrease tuber grade or yield. Zone-subsoiling had no appreciable effects on hill configuration or seed-piece dislocation. Surface cracking and “water piping” occurred under furrow irrigation but were not significant problems. Results were similar for both cultivars. Additional studies will be needed to successfully incorporate zone-subsoiling into commercial production practices  相似文献   

4.
以间作胶园的土壤为材料,以单作胶园土壤为对照,采用土壤常规分析方法分别测定其中的主要营养成分。结果表明,间作的9种豆科作物均不同程度的降低了胶园土壤的有机质、全氮(除间作凉薯和黎豆的土壤全氮含量略高于不间作土壤外)、全磷、速效磷含量及pH值,不同程度的增加了铵态氮、硝态氮、全钾及速效钾含量。说明成龄胶园间作豆科作物能改善土壤的硝态氮、铵态氮、全钾及速效钾含量,短时期内提高了土壤的供氮、供钾能力,但降低了土壤磷含量和土壤磷的供应能力。由此可见,在成龄胶园内进行间作,必须加强作物施肥,以实现土壤养分的收支平衡,维护土壤功能、保护土壤质量。  相似文献   

5.
SUMMARY

Cropping system refers to temporal and spatial arrangements of crops, and management of soil, water and vegetation in order to optimize the biomass/agronomic production per unit area, per unit time and per unit input. Soil quality refers to its intrinsic attributes that govern biomass productivity and environment moderating capacity. It is the ability of soil to perform specific functions of interest to humans. Three components of soil quality (e.g., physical, chemical and biological) are determined by inherent soil characteristics, some of which can be altered by management. Soil quality and soil resilience are inter-related but dissimilar attributes. Resilient soils, which have the ability to restore their quality following a perturbation, have high soil quality and vice versa. Decline in soil quality sets-in-motion degradative processes, which are also of three types, namely physical (e.g., compaction, erosion), chemical (e.g., acidification, salinization) and biological (e.g., depletion of soil organic matter content). Soil degradation, a biophysical process but driven by socioeconomic and political causes, adversely affects biomass productivity and environment quality. Determinants of soil quality are influenced by cropping systems and related components. Dramatic increases in crop yields during the 20th century are attributed to genetic improvements in crops, fertilizer use, and improved cropping systems. Dependence on fertilizers and other input, however, need to be reduced by adopting cropping systems to enhance biological nitrogen fixation and use efficiency of water and nutrients through conservation tillage, cover crops, and improved methods of soil structure and nutrient management.  相似文献   

6.
A soil management regime that improves water use efficiency (WUE) is urgently required to increase the sustainability of the winter wheat-summer fallow system in the Loess Plateau, China. However, the long-term partitioning of the water balance must be understood in order to evaluate the viability of possible soil management regimes. Therefore, an ecosystem model (CoupModel) was used to explore the effects on components of the water balance of five types of soil management regimes: conventional practice, wheat straw mulching, incorporation of high organic matter contents, compaction, and use of a harvested fallow crop. Three variants of the fallow crop approach were also considered, in which the crop was harvested 15, 30 and 45 days before sowing the wheat (designated Fallow-15d, Fallow-30d and Fallow-45d, respectively). Simulations were used to identify the relative magnitude of soil evaporation, wheat transpiration and deep percolation and to elucidate the temporal variability in these components for a selected location using climate records spanning 45 years. However, the soil management regime significantly influenced the magnitude of every component of the water balance (in terms of minimum, maximum and mean values) over the long periods considered. Consequently, wheat yield and WUE differed significantly among the simulated treatments. Mulching led to significantly lower soil evaporation, higher transpiration, and more frequent and extensive deep percolation than other regimes, thereby improving fallow efficiency (percentage of rainfall stored in the soil during the fallow period at the end of the fallow period), wheat yields and WUE. In contrast, soil compaction gave the opposite results, leading to the most unfavourable partitioning of the water balance reflected in the lowest wheat yield and WUE values of all the regimes. In 90% of the years no deep percolation occurred in the soil compaction simulations. Use of a fallow crop with optimal harvest timing (Fallow-30d) improved partitioning of the water balance (decreased soil evaporation) and did not significantly reduce wheat yield compared with conventional practice. High organic matter contents in the soil also had a positive influence on the water balance and improved wheat yield and WUE relative to conventional practice. Therefore, mulching appears to be the best management practice for the winter wheat-summer fallow system in the Loess Plateau, according to the simulations. Increasing soil organic matter may be the best option if mulching cannot be implemented. The ideal time for harvesting a fallow crop for use as green manure or fodder appears to be ca. 30 days before sowing the winter wheat.  相似文献   

7.
8.
海南岛典型农业土壤产流与面源污染特征分析   总被引:1,自引:0,他引:1  
采用径流场结合人工模拟降雨方式,研究各种降雨条件下海南岛不同土地类型产流产沙的规律与面源污染特征。结果表明:土壤(泥沙)产流系数与平均流失速率表现为暴雨>大雨>中雨,且暴雨时的泥沙平均流失速率为中雨时的416%、大雨时的261%,在中雨、大雨和暴雨强度下,平均径流系数分别为24.49%、33.97%和53.40%;雨强对土壤营养物质流失速率的影响达到显著水平,COD、有机质和氮素以径流流失为主,磷素以泥沙流失为主;土壤径流和泥沙中的COD、有机质、氮素和磷素流失速率随雨强的增大而增大,坡度也可明显影响面源污染物的流失;海南岛农业土壤平均流失量为3.79 t/(hm2·a),中雨强度条件时为1.92 t/(hm2·a),大雨强度条件时为2.57 t/(hm2·a),暴雨强度条件时为6.87 t/(hm2·a)。海南岛农业土壤的水土流失强度较高,海南农业土壤的水土流失与农田污染物输出状况不容乐观。  相似文献   

9.
Summary

Soil fertility is defined in terms of the ability of the soil to maximize plant productivity, often within economic constraints. A decline in natural soil fertility seems to have occurred over all civilizations. Overgrazing and deforestation are the two most important factors affecting global soil degradation. Nutrient losses from agricultural systems are broadly divided into losses through volatilization, losses from leaching, losses due to product removal, losses to non-labile soil pools and losses from various forms of erosion. Rapid declines in soil fertility are associated with large demands for food due to expanding population, nutrient mining of agricultural areas with concomitant shifts of produce to cities, and intensification of agricultural activities without proper regard for long-term maintenance of fertility by application of fertilizers, recycling of organic wastes, liming to combat acidification, fallowing, rotations and prevention of large scale soil erosion. Agricultural policy has often encouraged soil fertility decline and soil degradation. In the future, agricultural scientists must have major inputs into the development and implementation of policy.  相似文献   

10.
In recent years, conventional rice production technologies have been leading to deterioration of soil health and declining farm profitability due to high inputs of water and labor. Conservation agriculture(CA) based resource-conserving technologies i.e. zero-tillage(ZT), raised-bed planting and direct-seeded rice(DSR) have shown promise as alternatives to conventional production technologies to overcome these problems. Present study was undertaken during 2009–2012 to establish an understanding of how permanent raised bed cropping system could be practiced to save water at the field application level to improve water productivity and also have the capability to enhance productivity, profitability and soil physical quality. The results showed that among different crop establishment techniques, conventional-tilled puddle transplanted rice(CT-TPR) required 14%-25% more water than other techniques. Compared with the CT-TPR system, zero till direct-seeded rice(ZT-DSR) consumed 6%–10% less water with almost equal system productivity and demonstrated higher water productivity. Wide raised beds saved about 15%–24% water and grain yield decrease of about 8%. Direct-seeded rice after ZT or reduced tillage or on unpuddled soil provided more net income than CT-TPR. The CTTPR system had higher bulk density and penetration resistance due to compaction caused by the repeated wet tillage in rice. The steady-state infiltration rate and soil aggregation( 0.25 mm) were higher under permanent beds and ZT and lower in the CT-TPR system. Under CT-TPR, soil aggregation was static across seasons, whereas it improved under no-till and permanent beds. Similarly, mean weight diameter of aggregates was higher under ZT and permanent beds and increased over time. The study reveals that to sustain the rice productivity, CA-based planting techniques can be more viable options. However, the long-term effects of these alternative technologies need to be studied under varying agro-ecologies in western Uttar Pradesh, India.  相似文献   

11.
《Journal of Crop Improvement》2013,27(1-2):125-136
Abstract

The rice-wheat cropping system of the Indo-Gangetic Plains (IGP) has contributed tremendously to food security of the region. However, of late there has been a significant slowdown in yield growth rate of this system and the sustainability of this important cropping system is at stake. A decline in soil productivity, particularly of organic C and N, a deterioration in soil physical characteristics, a delay in sowing of wheat, and decreasing water availability are often suggested as the causes of this slowdown in productivity. Therefore, a paradigm shift is required for enhancing the system's productivity and sustainability. Resource-conserving technologies involving zero-or minimum tillage with direct seeding, improved water-use efficiency, innovations in residue management to avoid straw burning, and crop diversification should assist in achieving sustainable productivity and allow farmers to minimize inputs, maximize yields, conserve the natural resource base, reduce risk due to both environmental and economic factors, and increase profitability.  相似文献   

12.
《Plant Production Science》2013,16(2):147-153
Abstract

Mini-watersheds called Nongin Thai are geographical components of rainfed lowland rice culture in Northeast Thailand, and constitute distinct units in understanding environmental constraints for low and unstable rainfed rice production there. The toposequential variation of soil fertility and its relation to rice productivity within mini-watersheds, was examined by phytometry of sampled soils and field measurements of rice growth and yield. The phytometry experiment with irrigated potted rice using soils sampled from various rice fields within each mini-watershed, revealed that soil fertility as evaluated by rice dry matter production showed a 5 times difference among the fields at most. The difference in the soil fertility was ascribed primarily to that in nitrogen (N) supply capacity, which itself had a strong correlation with soil organic carbon (SOC) content. Accordingly, the biomass production of pot-grown rice was proportional to SOC. content, which suggested the usefulness of SOC as an index for soil fertility evaluation. The effect of clay on the soil fertility was much less than that of SOC. The actual rice yield in each field also showed quite large field-to-field variation, most of which was explained by the SOC content, rice growth duration and fertilizer application rate even though water availability also affected the yield. The yield positively correlated with growth duration and hence with earlier transplanting. Both SOC and clay contents of fields showed steep gradients with ascending field elevation within mini-watersheds, resulting in a marked toposequential distribution of rice yield. The toposequential distributions of SOC and clay contents imply that rice culture after deforestation accelerated soil erosion from upper to lower fields. The large toposequential gradient in soil fertility requires different resource and crop management for each toposequential position, in order to improve rice productivity of the mini-watershed as a whole.  相似文献   

13.
为明确腐植酸在干旱胁迫下对燕麦叶片光合性能的调控效应,以燕麦品种燕科二号为试验材料,采用盆栽方式,分别在正常供水(75%田间持水量)、中度干旱胁迫(60%田间持水量)和重度干旱胁迫(45%田间持水量)3个水分条件喷施腐植酸和等量清水(CK),分析了干旱胁迫下喷施腐植酸后燕麦叶片光合色素含量、光合特性、干物质积累及产量的变化。结果表明,随着土壤水分的减少,燕麦叶片的叶绿素a含量、叶绿素b含量、类胡萝卜素含量、光合速率、气孔导度、蒸腾速率、胞间CO_2浓度、干物质积累量、产量及其构成因素均呈下降趋势。在正常供水条件下,喷施HA处理的各指标值与CK差异不显著;干旱胁迫下,与CK相比,喷施腐殖酸后各指标值均不同程度提高,其中在重度干旱胁迫下提高幅度较大,且差异均达到显著水平。由此说明,干旱胁迫条件下喷施腐植酸可改善燕麦叶片的光合性能,促进干物质积累和增加产量,且在重度干旱胁迫条件下效果最明显。  相似文献   

14.
Summary

Cultivars can be selected for traits that improve water use efficiency, and fertilizers and other nutrient sources also can be managed to optimize water use efficiency of a crop. Both cultivar selection and nutrient management impact water use efficiency by altering photosynthetic rate, yield, rooting characteristics, transpiration, or soil evaporation. In order to optimize water use efficiency, cultivar and nutrient decisions should be made jointly. This integrated approach will lead to improvements in water use efficiency, with an increase in productivity and profitability per unit water.  相似文献   

15.
轮作对土壤肥力及玉米生长发育的影响   总被引:2,自引:0,他引:2  
黑龙江省西部半干旱区土壤常年风沙侵蚀,土壤质量不断恶化,玉米大豆轮作和玉米连作深翻秸秆还田是当地生产中提高耕地质量、保护农田土壤生态的两种生产模式。利用长期定位试验玉米大豆轮作、玉米深翻秸秆还田种植模式和玉米连作处理对比,研究分析土壤理化性质、玉米生长发育指标和产量,评价两种种植模式技术效果。结果表明,轮作处理显著增加土壤速效氮、速效钾和有机质的含量,显著降低土壤容重10%左右,提高土壤孔隙度8%,对土壤物理结构改善具有良好作用。深翻秸秆还田处理能够显著增加土壤有机质26%~32%,增加土壤速效钾含量,能够显著降低土壤pH值0.4~1.2个单位,提升西部半干旱区地力,改善西部土壤盐碱化。深翻秸秆还田处理更有利于玉米拔节和抽丝期根长生长,有利于茎粗和穗干重的形成,对玉米产量具有显著增产作用。  相似文献   

16.
长期培肥对土壤肥力及玉米产量的影响   总被引:6,自引:1,他引:5  
朱平  彭畅  高洪军  李强  刘春光  张林 《玉米科学》2009,17(6):105-108
在吉林省中部重点产粮区的黑土上进行了近30年的土壤定位培肥研究。结果表明,连续30年不施肥料,耕层土壤有机质含量年均减少0.1 g/kg左右,单施化肥土壤有机质年平均矿化率约为0.38%,施入不同数量有机肥及与化肥配合施用的耕层土壤有机质平均年增加0.3 g/kg左右,土壤全氮含量的变化与土壤有机质趋势相同。施用有机肥可以降低土壤容重,下降幅度在0~0.06 g/cm3,不施肥和单施化肥区土壤容重呈增加趋势。施用高量有机肥,耕层土壤总孔隙、田间持水孔隙增加。长年施用有机肥的玉米产量与单施化肥的处理基本相同。有机-无机肥配施有利于土壤有机质的积累,改善耕层土壤理化性状,玉米产量稳定增加。  相似文献   

17.
To improve potato yield in the Yinshan hilly area in Inner Mongolia of China, we implemented a novel cultivation method, i.e., the mini-ridge with covering and side planting (MCSP), based on local meteorological conditions and soil characteristics, and the growth and developmental process of potato. Data from four years of field experiments and laboratory simulation indicate that: 1) the yield of rain-fed potato under the MCSP method increased significantly, by 34% and 48% over yields obtained from the traditional methods of flat cultivation with covering (FC), and flat cultivation with no covering (FNC), respectively; 2) Compared to the FC and FNC methods, MCSP increased the rain water productivity by 15–53% and 28–74%; 3) MCSP increased water content in the top 20 cm of soil, and changed the distribution pattern of soil water by enhancing its vertical movement while reducing its lateral transport, thereby concentrating soil water into the root zone for improved root development.  相似文献   

18.
【目的】为解决水稻土壤保肥能力较弱,水稻产量较低,氮肥利用效率不高等问题,【方法】于山东省济宁市任城区水稻田设置氮肥水平与栽植密度双因素大田试验,设4个施氮量水平,即无氮(N1,0 kg/hm2)、低氮(N2,216 kg/hm2)、中氮(N3,288 kg/hm2)和高氮(N4,360 kg/hm2);栽植密度设3个梯度,即低密度(24万穴/hm2)、中密度(27万穴/hm2)和高密度(30万穴/hm2)。以探究不同氮肥水平和栽植密度下水稻成熟期土壤养分含量及氮肥利用效率的变化。【结果】随着土层加深,氮、磷、钾、有机质含量均明显下降。其中D3N4处理碱解氮含量下降了60.8%,D3N3处理速效磷含量降低了72.7%。随着施氮量增加,土壤pH值和有机质含量有所下降,速效钾含量升高,肥料偏生产力和氮肥农学利用效率降低,产量先升高后降低;随着栽植密度增加,土壤pH值与速效磷含量有所下降,表层土壤碱解氮含量略有升高,有机质含量与产量及肥料偏生产力均先升高后降低,氮肥农学利用效率降低。【结论】当栽植密度为27万穴/hm2时,氮肥用量288 kg/hm2,水稻产量最高,为14 615.3 kg/hm2;相同密度下氮肥按照216 kg/hm2施用,水稻产量、氮肥农学效率和肥料偏生产力均较高。研究结果可在实际生产中参考应用。  相似文献   

19.
【目的】为解决水稻土壤保肥能力较弱,水稻产量较低,氮肥利用效率不高等问题,【方法】于山东省济宁市任城区水稻田设置氮肥水平与栽植密度双因素大田试验,设4个施氮量水平,即无氮(N1,0 kg/hm2)、低氮(N2,216 kg/hm2)、中氮(N3,288 kg/hm2)和高氮(N4,360 kg/hm2);栽植密度设3个梯度,即低密度(24万穴/hm2)、中密度(27万穴/hm2)和高密度(30万穴/hm2)。以探究不同氮肥水平和栽植密度下水稻成熟期土壤养分含量及氮肥利用效率的变化。【结果】随着土层加深,氮、磷、钾、有机质含量均明显下降。其中D3N4处理碱解氮含量下降了60.8%,D3N3处理速效磷含量降低了72.7%。随着施氮量增加,土壤pH值和有机质含量有所下降,速效钾含量升高,肥料偏生产力和氮肥农学利用效率降低,产量先升高后降低;随着栽植密度增加,土壤pH值与速效磷含量有所下降,表层土壤碱解氮含量略有升高,有机质含量与产量及肥料偏生产力均先升高后降低,氮肥农学利用效率降低。【结论】当栽植密度为27万穴/hm2时,氮肥用量288 kg/hm2,水稻产量最高,为14 615.3 kg/hm2;相同密度下氮肥按照216 kg/hm2施用,水稻产量、氮肥农学效率和肥料偏生产力均较高。研究结果可在实际生产中参考应用。  相似文献   

20.
Adequate soil water is needed for satisfactory yield and quality of potato tubers. With sprinkler irrigation systems it is common practice to apply more water than the crop uses in order to maintain high soil water levels. A study was initiated to evaluate the response of Russet Burbank potatoes to a wide range of daily sprinkler irrigation rates when grown on two soilsa loam and a sand—differing in water holding capacity. The results from the two soils were very different. On the loam soil, yields generally increased with increased applications of water, up to the equivalent of 40 to 50% estimated Et. Irrigation treatment effect on percent No. 1 tubers was inconclusive. In 1978, percent No. 1 tubers increased with water applied up to about 70% estimated Et. In 1980, irrigation rates between the equivalent of about 20 and 80% estimated Et had little effect on tuber grade. Yields and percent No. 1 tubers were depressed at irrigation rates greater than about 80% estimated Et. On the sand, yields and percent No. 1 tubers increased with increased irrigation rates up to about 100% and 80% estimated Et, respectively. Tuber specific gravity was not affected to an important degree by irrigation treatment on either soil. These results indicate that a good crop of potatoes can be grown on a loam soil at daily irrigation rates considerably less than estimated Et rates, while such reductions will decrease yields and grade on a sandy soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号