首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hymenoscyphus fraxineus, the causal agent of common ash dieback, possesses a low level of genetic diversity in Europe. The introduction of novel strains of this fungus must be prevented, due to the possible emergence of new virulence alleles, which could result in the infestation of the small proportion of hitherto resistant or tolerant ash trees. More comprehensive knowledge of the host spectrum of H. fraxineus is necessary for preventing further introductions. It is possible that H. fraxineus manifests itself in hosts beyond the genus Fraxinus, though this proposition has received little attention thus far. Two in vitro experiments were set up to investigate whether privet (Ligustrum vulgare) could serve as a host: germination rate of fresh H. fraxineus ascospores and colony growth of H. fraxineus were tested on agar media containing leaf extracts of privet, common ash (Fraxinus excelsior) and manna ash (Fraxinus ornus). Two different media with leaf extracts were tested, one with high (60%) and one with low (12%) extract content. Barely any significant differences were recorded in the case of the media with low extract content. Significant effects occurred only at the higher extract content level: germination was completely inhibited on the privet medium. Mycelial growth on the privet medium was slower than on both the common ash and manna ash media and, in addition, one of the three H. fraxineus strains was completely inhibited. These observations indicate the presence of inhibitors in privet. It is therefore unlikely to be a suitable host for H. fraxineus.  相似文献   

2.
The impact of ash dieback caused by Hymenoscyphus fraxineus on 17 provenances of Fraxinus excelsior and one provenance of Fraxinus angustifolia was studied in an extensive field trial established in the Czech Republic prior to the H. fraxineus invasion in 1999. A difference in the level of resistance to ash dieback between the species was found: F. angustifolia was significantly less affected by the disease than F. excelsior. Moreover, particular provenances of F. excelsior showed important differences in the level of resistance to H. fraxineus. A relationship between the impact of ash dieback and altitude was also discovered – the provenances from altitudes above 600 m a.s.l. were less affected by the pathogen than were the provenances from lower areas. No difference in the impact of the disease among provenances of F. excelsior from different ecotopes (ravine, calcareous ravine and alluvial) was found. Substantial among‐tree variability in resistance to H. fraxineus was observed throughout the trial – promising genotypes (with crown defoliation up to 5%) were identified in all 18 tested provenances. In regard to this finding, it appears that the main source of resistance to the pathogen is probably at the individual genotype level in the trial. A secondary but massive attack by Hylesinus fraxini was identified in the trees that had been greatly damaged by ash dieback, and the beetle caused their health to deteriorate significantly. A significant negative effect of the presence of collar necroses caused by H. fraxineus and browse damage was also identified.  相似文献   

3.
During the period of seed storage in 2019, stored Fraxinus angustifolia and F. ornus seeds showed signs of infection and fungus Epicoccum nigrum was isolated from mould and necrotic lesions on the seeds. In order to confirm the pathogenicity of Enigrum towards Fangustifolia and Fornus seeds, an experiment that included inoculation of seeds with E. nigrum and the assessment of germinability was performed. The inoculation with Enigrum strain caused mould to around 20% of Fangustifolia and 58% of Fornus, necrotic lesions to 96% of Fangustifolia and 92% of Fornus, and decrease in germinability to 95% of Fangustifolia and 97% of Fornus seeds. This study presented, for the first time, the ability of Enigrum to cause high infection rates and reduced germinability of the Fangustifolia and Fornus stored seeds. The transmission routes and possibilities for preventive strategies were discussed.  相似文献   

4.
The presumed resistance of individual ash trees to ash dieback caused by invasive pathogen Hymenoscyphus fraxineus is an important issue for the maintenance of ash in European forests. All known studies regarding the resistance of ash trees to ash dieback were conducted in plantations and stands of F. excelsior; however, no such data exist for F. angustifolia. Crown damage assessments were performed over four consecutive years between 2009 and 2012 at a F. angustifolia clonal plantation in Hra??ica, Slovenia. Inoculation of H. fraxineus into the branches of the most and least damaged clones of F. angustifolia and leaf phenology assessments was performed to verify the presence of defence mechanisms that limit fungal growth or promote disease escape. Additionally, root collars of selected clones were inspected for fungal infections. The crown damage assessments showed considerable differences among F. angustifolia clones, indicating genetic variability in susceptibility to ash dieback. Crown dieback progressed significantly over the 4‐year time period; the mean crown damage of individual clones in 2012 varied between 16.7% and 83.8%. Significant differences among F. angustifolia clones were found in the inoculation trials and leaf phenology assessments. However, defence mechanisms such as early leaf flushing, early leaf shedding and the ability to inhibit pathogen growth in host tissues were not confirmed. High frequency of Armillaria spp. and H. fraxineus root collar infection demonstrated the need for whole tree inspection to determine causal agent of damages on individual ash trees. Armillaria spp. may be highly associated with ash decline epidemiology.  相似文献   

5.
In addition to Hymenoscyphus fraxineus, two fungi identified as Diaporthe eres aff. and Fusarium sambucinum aff. were also isolated from necrotic bark lesions on declining one‐year‐old Fraxinus excelsior in a forest stand in Montenegro. To examine their involvement in ash decline, a pathogenicity test was performed using under bark inoculations on one‐year‐old Fraxinus excelsior. Hymenoscyphus fraxineus was included as comparison. All three fungal species proved highly pathogenic towards one‐year‐old seedlings although lesion sizes differed significantly between the different species. Hymenoscyphus fraxineus was most aggressive, followed by F. sambucinum aff., while D. eres aff. caused the smallest lesions. This study demonstrates for the first time the ability of isolates in the D. eres and F. sambucinum species complexes to cause decline on one‐year‐old common ash seedlings.  相似文献   

6.
European ash (Fraxinus excelsior) trees currently face the major threat of ash dieback caused by an invasive fungus, Hymenoscyphus fraxineus. Collar rots in F. excelsior have been increasingly associated with infections by this pathogen. However, the aetiology of the collar rots is still unclear and remains heavily debated. In contrast to most studies of this kind, entire rootstocks of four diseased ash trees were dug out to examine necrotic tissues in these rootstocks and stem bases in detail and to sample necrotic wood for fungal isolation. With the aid of morphological and molecular identification techniques, five to twelve fungal taxa were detected per tree. Members of the Nectriaceae family and Botryosphaeria stevensii, the causal agent of stem and branch cankers on many tree species, were frequently isolated from outer xylem. In contrast, H. fraxineus was the dominating species in interior wood layers. Microsatellite genotyping of 77 H. fraxineus isolates helped to identify up to six different genotypes per tree. The role of H. fraxineus and other isolated fungi in the aetiology of ash collar rots are discussed.  相似文献   

7.
We describe a method for inoculating rachises of Fraxinus excelsior (European or common ash) with Hymenoscyphus fraxineus, which is faster than previous methods and allows associated foliar symptoms to be assessed on replicate leaves. A total of ten ash seedlings were inoculated with five isolates of H. fraxineus and lesion development assessed over four weeks. A five‐point disease progress scale of symptom development was developed from no lesion (0), lesion on rachis (1), “pre‐top dead,” with curling of distal leaflets and bending of the rachis (2), top dead, with wilting and death of distal leaflets (3) to leaf abscission (4). The method revealed variation in aggressiveness of H. fraxinus isolates and may be suitable for assessing the resistance of F. excelsior and other Fraxinus species to dieback. The in vitro growth rate of H. fraxineus isolates was highly correlated with both disease progress and the length of rachis lesions on susceptible plants, indicating that it can be used as a preliminary step in selecting isolates with high aggressiveness for use in resistance screening.  相似文献   

8.
The growth rate of Hymenoscyphus fraxineus was evaluated on five different media under laboratory conditions. Statistically significant differences were found among them, where H. fraxineus demonstrated the highest growth rate on ADA medium (a newly designed nutritive medium). This study suggests that ADA is a suitable medium for growing H. fraxineus.  相似文献   

9.
Ash dieback (ADB) caused by the pathogen Hymenoscyphus fraxineus is the cause of massive mortality of Fraxinus spp. in Europe. The aim of this work was to check for the presence of the molecular marker for ADB tolerance in mapped healthy‐looking F. excelsior trees, and to compare its occurrence in trees exhibiting severe ADB symptoms. Monitoring of 135 healthy‐looking F. excelsior on the island of Gotland, Sweden, showed that after 3–4 years 99.3% of these trees had 0%–10% crown damage, thus remaining in a similar health condition as when first mapped. After 5–6 years, 94.7% of these trees had 0%–10% crown damage. Molecular analysis of leaf tissues from 40 of those showed the presence of the molecular marker in 34 (85.0%) trees, while it was absent in 6 (15.0%) trees. Analysis of leaf tissues from 40 severely ADB‐diseased trees showed the presence of the molecular marker in 17 (42.5%) trees, but its absence in 23 (57.5%) trees (p < .0001). The results demonstrated that monitoring of healthy‐looking F. excelsior is a simple and straightforward approach for the selection of presumably ADB‐tolerant ash for future breeding. The cDNA‐based molecular marker revealed moderate capacity on its own to discriminate between presumably ADB‐tolerant and susceptible F. excelsior genotypes.  相似文献   

10.
We investigated the transmission of Hymenoscyphus fraxineus from infested seed to germinating seedlings of common ash (Fraxinus excelsior) in order to determine the potential risk associated with intra‐ and intercontinental movement of seed. Neither fungal isolations from necrotic or healthy embryos nor PCR testing with H. fraxineus‐specific primers detected the pathogen. Similarly, H. fraxineus was not detected in axenically grown seedlings generated from infested seed lots. The results help clear up prior confusion of the pathogen being seed‐borne. Any remaining surface contamination by pathogen spores could be washed off seeds as a quarantine measure.  相似文献   

11.
12.
Ash dieback is an emerging disease caused by the fungus Chalara fraxinea that severely affects Fraxinus excelsior and F. angustifolia stands in Europe. Previous studies have shown that this pathogen prefers temperatures around 20°C, while its growth in pure cultures at 30°C proved to be very limited. The purpose of this study was to determine the effects of temperature on the development and growth of C. fraxinea in pure cultures and in plant tissues, as well as to test the heat tolerance of F. excelsior saplings. The sensitivity of fungus to heat in ash tissues was higher than in pure cultures. Low isolation success rate from diseased ash tissue after a five‐hour hot water treatment at 36°C and the relatively high survival rate of ash saplings after hot water treatments at 36°C and 40°C indicate possibilities for the development of a C. fraxinea eradication method in ash saplings. Field monitoring showed that in hot weather periods, thermal conditions inside the ash tissues can be extreme enough to markedly decrease the viability of C. fraxinea in infected plant tissues.  相似文献   

13.
Ten saplings of European ash (Fraxinus excelsior L.) naturally infected by the invasive ash dieback pathogen Hymenoscyphus fraxineus were collected in Ukraine and Norway and examined for bark necrosis and extension of discoloration in sapwood and pith in a stem region. Tissue‐specific colonization profiles were determined by spatial analyses of symptomatic and visually healthy stem tissues using a H. fraxineus‐specific qPCR assay and light microscopy. Our data suggest that hyphal growth in the starch‐rich perimedullary pith is of particular importance for both axial and radial spread of H. fraxineus, but that most of its biomass accumulates in sapwood parenchyma. The study confirms the results from earlier work and presents new information that refines the current stem invasion model.  相似文献   

14.
Ash dieback, caused by the pathogen Hymenoscyphus pseudoalbidus, is an emerging lethal disease of Fraxinus excelsior in large parts of Europe. To develop a method for the early detection of Hpseudoalbidus, we designed primers for 46 microsatellites (simple sequence repeats, SSRs) of the pathogen. Seven pairs of primers (SSR38, SSR58, SSR114, SSR198, SSR206, SSR211 and SSR212) were found to bind only to the genome of H. pseudoalbidus, but not to the genome of H. albidus or to 52 different fungal endophytes isolated from F. excelsior and F. angustifolia. Using these seven primer pairs, H. pseudoalbidus was identified in fruiting bodies and different types of ash tissues including dead leaves, dead petioles and discoloured or non‐discoloured wood. Along one twig, H. pseudoalbidus was detected at different levels of intensity, which depended on the distance from symptomatic tissue. The detection limit was 0.9–1.8 pg of genomic DNA per PCR. Of 50 analysed commercially available seedlings, six were infected with H. pseudoalbidus. Two SSR loci (SSR198 and SSR211) showed fragment length polymorphism. Our results showed that the new primers not only provide an easy and inexpensive means of detecting H. pseudoalbidus in ash tissues, but can also provide information on the genetic heterogeneity of the species.  相似文献   

15.
The interaction between the ash dieback fungus, Hymenoscyphus fraxineus, and two commonly grown members of the Oleaceae (Forsythia × intermedia ‘Lynwood’ and Ligustrum vulgare) was investigated. Shoots were inoculated with three isolates of H. fraxineus and harvested after 2 and 10 weeks. DNA was extracted from tissue collected at the point of inoculation, as well as 15 mm below and above (distal), and analysed using fungal‐specific ITS primers and specific primers for H. fraxineus. The fungus was frequently detected in tissue at the point of inoculation, but rarely in distal samples. There was no evidence that H. fraxineus was pathogenic on either of the two oleaceous species over the duration of the experiment.  相似文献   

16.
Severe dieback symptoms were observed in a 490‐ha moist ash (Fraxinus angustifolia) lowland forest stand, comprising trees over 100 years old and in 100 ha of newly planted F. angustifolia near Sinop, in Turkey. Five of the 10 soil samples collected around stem bases of the diseased trees were baited using ash leaves and yielded a Phytophthora sp. This heterothallic species produced non‐caducous, non‐papillate sporangia in non‐sterile soil extract, and fluffy, even growth on corn meal and potato dextrose agars, and suppressed, even growth on grated carrot agar. Isolates were identified as Phytophthora taxon salixsoil based on internal transcribed spacer DNA sequences. This species has been recently redesignated as P. lacustris. Three isolates were found to be pathogenic when inoculated on the stem bases of three‐year‐old F. angustifolia saplings.  相似文献   

17.
In recent years, Common ash (Fraxinus excelsior) throughout Europe has been severely impacted by a leaf and twig dieback caused by the hyphomycete Chalara fraxinea. The reasons for its current devastating outbreak, however, still remain unclear. Here, we report the presence of four Phytophthora taxa in declining ash stands in Poland and Denmark. Phytophthora cactorum, Phytophthora plurivora, Phytophthora taxon salixsoil and Phytophthora gonapodyides were isolated from rhizosphere soil samples and necrotic bark lesions on stems and roots of mature declining ash trees in four stands. The first three species proved to be aggressive to abscised roots, twigs and leaves of F. excelsior in inoculation experiments. Soil infestation tests also confirmed their pathogenicity towards fine and feeder roots of ash seedlings. Our results provide first evidence for an involvement of Phytophthora species as a contributing factor in current decline phenomena of F. excelsior across Europe. Specifically, they may act as a predisposing factor for trees subsequently infected by C. fraxinea. Phytophthora species from ash stands also proved to be aggressive towards a wide range of tree and shrub species commonly associated with F. excelsior in mixed stands. Although damage varied considerably depending on the Phytophthora species/isolate–host plant combination, these results show that many woody species may be a potential source for survival and inoculum build‐up of soilborne Phytophthora spp. in ash stands and forest ecosystems in general.  相似文献   

18.
During the monitoring of the mycological complex on different forest tree species in the Biogradska Gora National Park in north‐east Montenegro, symptoms indicative of ash dieback caused by Hymenoscyphus fraxineus were observed on young Fraxinus excelsior trees in the protected virgin forest, including dieback of plants and branches, wilting of leaves and shoots leading to a “flag‐like” habitus, premature shedding of leaves and longitudinal bark necroses. Using standard isolation methods, slow‐growing cultures with numerous phialides, typical of the asexual phase of the ash dieback fungus, were obtained. In addition, petioles with numerous characteristic apothecia were also recorded. This is the first report of H. fraxineus on common ash in Montenegro. Possible pathways of introduction and implications of the findings are discussed.  相似文献   

19.
Hymenoscyphus fraxineus was isolated from four leaf rachises with necrotic lesions of flowering ash (Fraxinus ornus) seedlings, which had been planted on a forest site in Austria where they were exposed to a massive natural infection pressure. This represents the first definite report of natural infection of this ash species by the ash dieback pathogen.  相似文献   

20.
Hymenoscyphus fraxineus, the causal agent of ash dieback, was inoculated onto intact, unwounded current‐year shoots and leaf scars of 4‐year‐old, potted Fraxinus excelsior seedlings. Pieces of ash wood colonized by the fungus were used as inoculum. Three of 25 (12%) of the inoculated intact shoots and nine of 25 (36%) of the inoculated leaf scars were infected by H. fraxineus and developed typical symptoms of ash dieback, including necrotic lesions on the shoot surface and wood discoloration as well as shoot and leaf wilting distal to the inoculation site. No symptoms occurred on control seedlings, which had been inoculated in the same way but with sterile wood pieces. Visible necrotic lesions on shoots and wood discoloration were statistically significantly longer in proximal than in distal direction from the inoculation site, a pattern which resembles symptoms after natural infection. The ash dieback pathogen was re‐isolated from nine of 12 (75%) of the symptomatic seedlings. These results provide indirect supportive evidence that the fungus infects shoots via leaves and shows that it is able, under experimental conditions using a massive mycelial inoculum, to directly infect intact, unwounded current‐year shoots of its main host in Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号