首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The sites of uptake of chlorsulfuron in maize (Zea mays L.) were investigated at three different growth stages. Exposure of seedling roots, or shoots separately, to herbicide-treated sand over 4 days resulted in inhibition of both roots and shoots. Exposure of seedling roots to chlorsulfuron-treated soil over 21 days severely inhibited both roots and foliage, while separate shoot exposure also reduced both foliage and root growth. After plant emergence, exposure of the crown root node, growing point and lower stem to treated soil reduced foliage and root growth, but exposure of the shoot above the growing point caused only slight inhibition of foliage and had no effect on roots. The herbicide safener 1,8-naphthalic anhydride (NA) applied as a dust (10 g kg?1 seed weight), or as a 50 mg 1?1 suspension in water to maize seeds, reduced the root inhibition by chlorsulfuron in 4-day-old seedlings. NA completely prevented both foliage and root injury when chlorsulfuron was placed in soil in the shoot zone before emergence, or in the shoot zone below the soil surface after plant emergence. NA slightly decreased injury to foliage, but not to roots when chlorsulfuron was placed in soil in the root zone before emergence. NA seed treatment protected both roots and foliage against injury from foliarly applied chlorsulfuron. Plants were also protected when a suspension of NA in water was sprayed on the foliage seven days before chlorsulfuron. When a mixture of NA and chlorsulfuron was applied to foliage, root injury was reduced more than foliage injury.  相似文献   

2.
The history of herbicide antidotes is reviewed, beginning with the exploration of compounds to protect wheat (Triticum aestivum L.) against barban in the early 1960s, and the later introduction of naphthalic anhydride (NA, naphthalene-1, 8-dicarboxy-licanhydride) as a seed dressing for protecting maize (Zea mays L.) against EPTC. This compound was largely replaced by Stauffer's R-25788 (N, N-diallyl-2, 2-dichloroacetamide) which has continued to be widely used in conjunction with EPTC and butylate in maize. This compound is highly specific to maize and can thus be applied in admixture with the herbicide, but has not proved of practical value on other crop species. NA on the other hand is less specific and is of potential value on sorghum [Sorghum bicolor (L.) Moench] and rice (Oryza sativa L.); experimental work continues on these crops. The only other antidote to be marketed so far is cyometrinil as a seed dressing for protecting sorghum against metolachlor and related herbicides. Other compounds are under development. Mode of action and structure-activity relations are discussed, as well as the current and future potential for antidotes in respect of the control of weed species in closely related crops, the increased options for herbicide use in minor crops and the possibility of reduced costs for broad spectrum weed control in major crops.  相似文献   

3.
In hydroponic experiments, seed-dressing with the herbicide safener 1,8-naphthalic anhydride (NA), significantly enhanced the tolerance of maize, (Zea mays L., cv. Monarque) to the imidazolinone herbicide, AC 263222, (2-[4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-5-methylnicotinic acid). Uptake, distribution and metabolism studies where [14C]AC 263222 was applied through the roots of hydroponically grown maize plants showed that NA treatment reduced the translocation of radiolabel from root to shoot tissue and accelerated the degradation of this herbicide to a hydroxylated metabolite. Reductions in the lipophilicity and, therefore, mobility of this compound following hydroxylation may account for NA-induced retention of radiolabel in the root system. Hydroxylation of AC 263222 suggested that NA may stimulate the activity of enzymes involved in oxidative herbicide metabolism, such as the cytochrome P450 mono-oxygenases. In agreement with this theory, the cytochrome P450 inhibitor, 1-aminobenzotriazole (ABT), synergized AC 263222 activity and inhibited its hyroxylation in vivo. NA seed-dressing enhanced the total cytochrome P450 and b5 content of microsomes prepared from etiolated maize shoots. Isolated microsomes catalyzed AC 263222 hydroxylation in vitro. This activity possessed the characteristics of a cytochrome P450 mono-oxygenase, being NADPH-dependent and susceptible to inhibition by ABT. Activity was stimulated four-fold following NA seed treatment. Differential NA enhancement of AC 263222 hydroxylase and the cytochrome P450-dependent cinnamic acid-4-hydroxylase (CA4H) activity, suggested that separate P450 isozymes were responsible for each activity. These results indicate that the protective effects of NA result from enhancement of AC 263222 hydroxylation and concomitant reduction in herbicide translocation. This may be attributed to the stimulation of a microsomal cytochrome P450 system. © 1998 SCI.  相似文献   

4.
Abstract

Treating maize seed and cowpea seed with activated carbon or naphthalic anhydride permitted highly selective and economic early control of grasses and some broadleaved weeds with respectively EPTC and linuron and EPTC and chloramben. Without protectant every herbicide treatment produced less crop yield than with protectant. Early season control of grasses with herbicides followed by one row-cultivation controlled weeds throughout the crop.  相似文献   

5.
The rapid interactions between the herbicide S-ethyl dipropyl thiocarbamate (EPTC) and the structurally similar herbicide protectant N,N-diallyl 2,2-dichloroacetamide (DDCA) at the level of herbicide uptake were examined in maize cell cultures. When the two compounds were given simultaneously, DDCA inhibited uptake of [14C]EPTC into maize cells measured for 30 min. A Lineweaver-Burk plot indicated this inhibition to be competitive. N,N-Diallyl 2-chloroacetamide (CDAA), a compound similar in structure to DDCA, inhibited uptake to a lesser extent. Other protectants having no similarity in structure to either DDCA or EPTC had no inhibitory effect on the uptake of EPTC. The data suggest that competition between DDCA and EPTC for a site of uptake may be related to their similarity in chemical structure. Experiments with metabolic inhibitors suggested that uptake of EPTC is not via an active transport mechanism. We suggest that competition for uptake between EPTC and DDCA may represent the first step in a complex series of interactions between the herbicide and its protectant that contributes to the protection of maize from herbicide injury.  相似文献   

6.
The herbicide safener N-dichloroacetyl-1-oxa-4-aza-spiro-4,5-decane (AD-67) is of similar efficiency as the extensively used N.N-diallyl-2,2-dichloroacetamide (R-25788) and the structurally related 3-(dichloroacetyl)-2,2-dimethyl-1,3-oxa-zolidine (AD-2) in reducing EPTC [S-ethyl-N,N-dipropyl (thiocarhamate)] injury to maize (Zea mays L. cv. KSC 360). EPTC treatment produces growth retardation and deformities and inhibits CO2 fixation. It does not reduce epicuticular lipids appreciably but affects wax arrangement on the leaf surface. When EPTC is applied together with one of these safeners, these injuries are not observed. All three safeners act similarly. Each prevents the herbicide-induced aggregation of epicuticular wax of maize, thereby protecting the plants against the formation of areas where the underlying cuticle layers are exposed and increase in transpiration.  相似文献   

7.
Accelerated degradation of vernolate, EPTC and butylate but not of cycloate was detected in soils from three locations in Israel which were treated annually with vernolate. Repeated application of EPTC to soils with and without a history of vernolate application, under laboratory conditions, resulted in a progressive increase in its rate of dissipation with each application. Accelerated degradation of EPTC was also rapidly induced by mixing small amounts (5%) of soil with a history of vernolate treatment with soil that had never received vernolate. Liberation of 14CO2 from [14C]EPTC was more rapid in vernolate-treated soils than in untreated soils, indicating a development of microbial populations in soil capable of rapidly degrading the EPTC. Degradation of [14C]EPTC was faster in soil previously cropped with maize than in non-cropped soil, but slower in soils cropped with cotton or peanuts.  相似文献   

8.
The effect of chlorsulfuron on uptake of 45Ca was studied in maize (Zea mays L. cv. Earliking) plants grown from seeds dusted with 1, 8 naphthalic anhydride (NA). 45Ca absorption in sand-grown maize was significantly decreased when chlorsulfuron was applied to the foliage but this was not so when seeds had been dusted with NA. Uptake of 45Ca was also reduced when either root or shoot soil zones were separately exposed to chlorsulfuron. When seeds had been dusted with NA, uptake of 45Ca from main roots was similar to that of untreated plants, but only when chlorsulfuron was localized in the shoot zone. NA did not counteract the severe reduction in 45Ca absorption when chlorsulfuron was localized in the root zone.  相似文献   

9.
Eleven corn (Zea mays L.) hybrids were evaluated in terms of their growth response to treatment with a high rate (6.7 kg ha?1) of the thiocarbamate herbicide, EPTC, and the chloroacetanilide herbicide, metolachlor. Most of the tested hybrids were more susceptible to treatment with metolachlor than EPTC. It was apparent that the degree of tolerance observed for one of these herbicides was not necessarily matched by a similar degree of tolerance to the other. No correlation between glutathione content and herbicide tolerance was observed for the 11 hybrids tested. A relationship between glutathione S–transferase (GST) activity and metolachlor tolerance was suggested by this study. In general, higher GST activities were characteristic of the more tolerant hybrids. The monooxygenase inhibitor, piperonyl butoxide (PBO), in combination with EPTC resulted in a synergistic effect on eight of the eleven tested hybrids. PBO acted synergistically in combination with metolachlor on only two hybrids and to a lesser extent than with EPTC. Soil treatment with the oxygen evolving compound, calcium peroxide, appeared to have an antagonistic effect on the growth response of ‘Northrup–King 9283’ corn treated with EPTC. In contrast the same treatment had a synergistic effect on the growth response of this hybrid to metolachlor. Both the synergism of EPTC by PBO and the antagonism by calcium peroxide are believed to be due to the importance of monooxygenase activity in the metabolism of EPTC. Tolerance to EPTC is consequently more likely to be influenced by oxidative reactions than is tolerance to metolachlor. Réponses comparées d'hybrides sélectionnés de mai's (Zea mays) a l'EPTC et au métolachlor Onze hybrides de mai's (Zea mays) ont étéétudiés en regard de leur croissance suite à un traitement à une dose é1evée (6.7 kg ha?1) de 1'herbicide thiocarbamate, EPTC et de 1'herbicide chloroacétanilide, métolachlor. La plupart des hybrides testés étaient plus sensibles au métolachlor qu' à l'EPTC. II est apparu que le degré de tolérance observé pour 1'un de ces herbicides n'était pas nécessairement accompagné par un degré similaire de tolérance pour 1'autre. Aucune corrélation entre la teneur en glutathion et la tolérance herbicide n'a été observée pour les 11 hybrides testés. Une relation entre 1'activité de la glutathion S–trans–férase (GST) et la tolérance au métolachlor a été suggérée par cette étude. En général les activités GST plus élevées étaient caractéristiques des hybrides les plus tolérants. L'inhibiteur monooxygénase, le pipéronyl butoxide (BPO) en mélange avec l'EPTC a abouti a un effet synergique sur 8 des 11 hybrides testés. PBO a agis en synergic en mélange avec le métolachlor chez seulement 2 hybrides et à une échelle moindre qu'avec 1'EPTC. Un traitement du sol avec un composé oxygéné, du calcium peroxyde, est apparu avoir un effet antagoniste sur la croisance du mai's ‘Northrup–King 9283’ traitéà l'EPTC. Au contraire, le même traitement a eu un effet de synergie sur la croissance de cet hybride traité au métolachlor. Tant la synergie entre l'EPTC et le PBO, que l'antagonisme avec le calcium peroxidé semblent être liés à l'importance de l'activité monoxygenase dans le métabolisme de l'EPTC. La tolérance à l'EPTC est en conséquence plus étroitement influencée par les réactions oxydantes que la tolérance au métolachlor. Reaktion ausgewählter Mais-Hybriden (Zea mays L.) auf EPTC und Metolachlor Das Wachstum von 11 Mais-Hybriden (Zea mays L.) nach Behandlung mit einem hohen Aufwand (6,7 kg ha?1) des Thiocarbamats EPTC und des Chloracetanilids Métolachlor. Es war deutlich, daß der Grad der Toleranz gegenüber einem dieser Herbizide nicht notwendigerweise dem bei dem anderen entsprach. Bei allen 11 Hybriden konnte keine Korrelation zwischen dem Glutathion-Gehalt und der Herbizidtoleranz gefunden werden. Auf Grund dieser Untersuchung wird eine Beziehung zwischen der Aktivität der Glutathion-S-Transferase (GST) und der Metolachlor-Toleranz angenommen, denn tolerantere Hybriden hatten im allgemeinen eine höhere GST-Aktivität. Der Monooxygenase-Hemmer Piperonylbutoxid (PBO) hatte zusammen mit EPTC eine synergistische Wirkung auf 8 der 11 Hybriden. Mit Metolachlor wirkte PBO synergistisch nur bei 2 Sorten und in geringerem Maße als mit EPTC. Eine Bodenbearbeitung mit dem sauerstoffabgebenden Calciumperoxid hatte offensichtlich eine antagonistische Wirkung auf das Wachstum von ‘Northrup-King 9283’ bei Behandlung mit EPTC. Im Gegensatz dazu wirkte dieselbe Behandlung dieser Hybride mit Metolachlor synergistisch. Es wird angenommen, daß sowohl der Synergismus von EPTC mit PBO als auch der Antagonismus mit Calciumperoxid für die Bedeutung der Monooxygenase-Aktivität für den Metabolismus von EPTC sprechen. Die Toleranz gegenüber EPTC ist deshalb wahrscheinlich mehr durch oxydative Reaktionen beeinflußt als die Toleranz gegenüber Métolachlor.  相似文献   

10.
Tri-allate degraded faster in soil from a site (T1) that had received 1·7 kg ha?1 of tri-allate annually for 23 years than in soil from an adjacent site (TO) that had received no pesticide application. Soil from the untreated site, which had been removed to a glasshouse and treated three times per annum with tri-allate at 1·7 kg ha?1 for 7 years (T2), also showed faster degradation. Soil previously treated with tri-allate showed an increased degradation rate for carbofuran and EPTC but not for aldicarb. A further experiment, 2 years after the last treatment with tri-allate, showed that the enhanced degradation effect was still present. Degradation rates were always in the order T1 > T2 > T0 for tri-allate, EPTC and carbofuran. Half-life for degradation was reduced for tri-allate and carbofuran by approximately 40% in the previously treated soils and for EPTC by approximately 80% when compared with the previously untreated soil.  相似文献   

11.
The rapid effects of the thiocarbamate herbicide S-ethyl dipropyl thiocarbamate (EPTC) and the herbicide protectant N,N-diallyl-2,2-dichloroacetamide (DDCA) on macromolecular syntheses and glutathione (GSH) levels in maize cell cultures were studied to determine whether stimulation of GSH could be the primary mechanism of action of DDCA. EPTC (0.5 and 1 mM) reduced incorporation of radioactive precursors within 1 hr after treatment, and affected incorporation of [3H]acetate into lipids more than incorporation of [3H]adenosine into acid-precipitable nucleic acids, or [14C]protein hydrolysate into protein. [14C]EPTC was rapidly biotransformed within 8 hr by maize cell suspensions. Measureable decreases in GSH levels following treatment with 1 mM EPTC occurred after 15 hr. DDCA stimulated incorporation of [3H]acetate into lipids within 4 hr but did not affect incorporation of [14C]protein hydrolysate into protein or [3H]adenosine incorporation into nucleic acids. Measureable increases in GSH following DDCA treatment began after 12 hr. Treatment with EPTC and DDCA in combination inhibited incorporation of [3H]acetate into lipids less than EPTC given alone. Increases in GSH levels could be observed following pretreatments with glutathione precursors, but no protectant activity could be detected, in contrast to treatments with DDCA. It is suggested that DDCA has an initial rapid effect on lipid metabolism followed by a slower effect involving increases in cellular GSH.  相似文献   

12.
The rapid effects of the herbicide EPTC (S-ethyl dipropylthiocarbamate) and the protectant DDCA (N,N-diallyl-2,2-dichloroacetamide) on [2-14C]acetate incorporation into lipids of maize cell cultures were studied in order to determine whether they act at similar sites of lipid synthesis. DDCA, at 0.05 mM and 0.1 mM, increased the incorporation of [2-14C]acetate into neutral lipids of a total lipid extract within 2 h. It had very little effect on the major polar lipid constituents. DDCA altered neither the distribution of label within the major lipid classes, nor turnover of the major lipids within 2 h. EPTC (0.1 mM) inhibited overall uptake of [2-14C]acetate into both neutral and polar lipids by about 30% after a 2-h incubation. The major polar lipid affected was an unidentified glycolipid. In addition to reducing the quantity of lipids synthesized, EPTC changed the lipid profile, altering the distribution of label, mainly within the neutral lipid fraction. A crude membrane fraction from maize cells contained both polar lipids and some neutral lipids. DDCA stimulated [2-14C]acetate incorporation into different lipid species. EPTC inhibited incorporation of [2-14C]acetate into both neutral and polar membrane lipids but altered significantly only its distribution into neutral lipids. DDCA (0.1 mM) given together with EPTC (0.2 mM) partially counteracted the effect of EPTC within the neutral lipid fraction. It is suggested that DDCA has a rapid effect on lipid synthesis, but it is probably not sufficient to account for the entire mode of action of the protectant.  相似文献   

13.
The effect of l-aminobenzotriazole (ABT) and EPTC mixtures on plant growth was investigated in greenhouse experiments by presowing application in sand. The concentration of ABT for 50% shoot growth inhibition (I50) was about 1 mM in the monoctyledons investigated. Both subtoxic and toxic doses of ABT were antagonists of EPTC in maize (Zea mays L.) However, subtoxic doses of ABT were syner-gists of EPTC in wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and oat (Avena sativa L.). No correlation between ABT and EPTC sensitivity of monocotyledonous plants was found. Some of the C- and N-substituted ABT derivatives (e.g. N-methyl or N-benzyl-ABT) completely reversed the effect of toxic dose of EPTC in maize. These results are considered as indirect evidence for the hypothesis that oxidation by cytochrome P-450 enzymes is the biochemical target of EPTC and is involved in the mode of action of EPTC safeners.  相似文献   

14.
S-ethyl dipropylthiocarbamate (EPTC) inhibited gibberellic acid (GA) precursor biosynthesis in a cell-free enzyme preparation from unruptured, etiolated sorghum (Sorghum bicolor L. cv. G522 DR) coleoptiles. EPTC, 1 μM, inhibited incorporation of [14C]mevalonic acid into kaurene 60%, while 10 μM EPTC inhibited 14C incorporation into kaurene 90%. The precursor of kaurene cyclization (GGPP) increased in 14C content at both EPTC concentrations. R-25788 reversed the EPTC inhibition of kaurene synthesis. Kaurene oxidation was modified by both EPTC and R-25788. Hypothesized modes of action for EPTC and R-25788 are (a) inhibition of GA synthesis, (b) increased peroxidase activity resulting in increased lignification, (c) increased detoxification by sulfoxidation and carbamoylation, and (d) inhibition of fatty acid synthesis and/or desaturation. These hypotheses are discussed with three of them being incorporated into one working unit which correlates with EPTC and R-25788 symptom phenology. The fourth hypothesis could also fit into this general pattern.  相似文献   

15.
In glasshouse experiments 1,8-naphthalic anhydride (NA) and N,N-diallyl-2,2-dichloroacctamide (R 25788) were investigated in combination with perfluidone for the control of Rottboellia exaltata Linn. F. in maize. Both protectants were used as seed dressings and R 25788 also as a spray mixture with the herbicide. Surface application of the herbicide generally resulted in greater crop damage than incorporation. The protectants caused no damage than used alone. Both compounds greatly reduced crop damage from perfluidone treatments. In most experiments protection with NA was better and more reliable than with R 25788. Even when kept until flowering no adverse effect at later stages of growth were noted. Good control of R. exaltata was achieved in all trials where perfluidone was applied to the soil surface. Incorporation reduced activity. Mixtures of R 25788 with the herbicide did not significantly protect the weed. Field treatments to improve the tolerance of maize to perfluidone while controlling a wide range of weeds arc suggested.  相似文献   

16.
Abstract

A field experiment was conducted in 1973 and 1974 at Udaipur, India to evaluate the selective weed control efficacy of stale seed-bed prepared with paraquat (1 kg/ha) or by cultivation, pre-planting incorporation of EPTC (1.5 kg/ha), and post-emergent application of MCPB (0.5 kg/ha). Two crop protectants, NA and activated carbon, were also field tested as seed treatments against injury by EPTC. It was found that stale seed-bed prepared by desiccation of weed seedlings with paraquat a day before planting berseem (Trifolium alexandrinum L.) and pre-planting incorporation of EPTC were both effective in significantly reducing weed growth and boosting yields of berseem. Berseem seeds coated with activated carbon before planting provided appreciable protection to the crop against EPTC, but NA stunted berseem growth. A combination of stale seed-bed and EPTC caused maximum reduction in weed growth. Post-emergent MCPB, though efficient in controlling weeds, was highly phytotoxic to the crop. Chenopodium spp. and Phalaris minor were lower in net energy content than berseem.  相似文献   

17.
R-25788 (2,2-Dichloro-N,N-diallylacetamide) was the most effective of six potential antidotes evaluated to counter corn (Zea mays L.) injury from the acetanilide herbicides alachlor, metolachlor, acetochlor, H-22234 (N-chloroacetyl-N-(2,6-diethylphenyl)glycine ethyl ester), and H-26910 (N-chloroacetyl-N-(2-methyl-6-cthylphenyl)glycine isopropyl ester). The other potential antidotes in order of decreasing effectiveness were: R-29148 (2,2-dimethyl-5-methyl-dichloroacetyloxazolidine), NA (1,8-naphthalic anhydride), CDAA (2-chloro-N,N-diallylacetamide), Carboxin (2,3-dihydro-5-carboxanilido-6-methyl-l,4-oxathiin), and gibberellin (GA3). GA3 only partly relieved the stunting of corn caused by EPTC and metolachlor and did not prevent other herbicide injury symptoms, suggesting that the mode of action of EPTC and metolachlor is not to simply block GA3 synthesis. R-25788 protected corn equally well from acetanilide or EPTC injury. Produits protecteurs du maïs (Zea mays) contre les dommages provoqués par les acétanilides herbicides Le R-25788 (2,2-dichloro-N.N-diallylacétamide) s'est révéléêtre le plus efficace de six produits protecteurs essayés pour préserver le maïs (Zeas mays L.) des dégâts provoqués par des acétanilides herbicides: alachlore, métolachlore, acétochlore, H-22234 (ester éthylique de la N-chloracétyl-N-(2,6-diéthylphényl) glycine) et H-26910 (ester isopropylique de la N-chloroacétyl-N-(2-méthyl-6-éthylphényl) glycine. Les autres produits protecteurs potentiels ont été, dans l'ordre d'efficacité décroissante: le R-29148 (2,2-diméthyl-5-méthyl-dichloroacéthyloxazolidine), l'AN (anhydride 1.8-naphtalique), le CDAA (2-chloro-N-N-diallylacétamide), la carboxyne (2,3-dihydro-5-carboxanilido-6-méthyl-l,4-oxathiine) et la gibbérelline (A3 G). Cette dernière a seulement atténué le rabou-grissement provoqué par l.EPTC et le métolachlore chez le maïs. Elle n'a pas supprimé les symptômes de dommages provoqués par les autres herbicides, ce qui suggère que le mode d'action de I'EPTC et du métolachlore ne consiste pas seulement en un blocage de la synthèse de la gibbérelline. Le R-25788 a protégé le maïs des dommages provoqués par l'acétanilide ainsi que par I'EPTC. Potentielle Antidots zur Vermeidung von Acetanilid-Herbizid-schäden an Mais (Zea mays) Von sechs potentiellen Antidots, die geprüft wurden, um Schäden an Mais (Zea mays L.) durch Acetanilid-Herbizide zu vermeiden, war R-25788 (2,2-Dichlor-N,N-diallylacetamid) am wirksamsten. Die verwendeten Herbizide waren: Alachlor, Metolachlor, Acetochlor, H-22234 [N-Chloracetyl-N-(2,6- diäthylphenyl) glycin Älhylester] und H-26910 [N-Chloracelyl-N-(2-méthyl-6-äthylphenyl)glycin lsopropylester]. Die weiteren möglichen Antidots, in der Reihenfolge abnehmender Wirksamkeit, waren: R-29148 (2,2-Dimethyl-5-methyldichlorace-toxazolidin), NA (1,8-Naphthalsäureanhydrid), CDAA (2-Chlor-N,N-diallylacetamid), Carboxin (2,3-Dihydro-5-car- boxanilido-6-methyl-l,4-oxathiin) und Gibberellin (GA3). durch GA3 wurde die dureh EPTC und Metolachlor verursachte Stauchung des Mais nur teilweise vermieden. Die durch andere Herbizide verusachten Symptome liessen sich durch GA3 nicht vermeiden, was darauf schliessen lässt, dass die Wirkungsweise von EPTC und Metolachlor nicht einfach mit einer Blockierung der GA3 -Synthese zu erklären ist. R-25788 schützte Mais gleichermassen vor Acetanilid-, wie vor EPTC-Schäden.  相似文献   

18.
The radiolabelling of isolaled Hedera helix L, (ivy) leaf cutieles was investigated after incorporation of [14C]acetate in foliar discs Cuticle radioactivity greatly decreased as leaf age inereased. The percentage of radioactivity incorporated in the upper cuticles decreased from 0.5% to 0.08% of the total radioactivity of foliar dises from young to old leaves. Cuticle radioactivity was recovered in waxes, cutin and polar components. It was considerably greater for waxes when expressed in terms of cuticle mass. The methodology was validated using S-ethyl-dipropylthiocarbamate (EPTC). The radioactivity incorporation in cuticles was significanly reduced when 1 m m EPTC was deposited as a 20-μL droplet on lo foliar dises 6 h before the incorporation of radiolabelled acetate. EPTC inhibited radioiabelling of wax and cutin fractions in the upper and lower cuticles. Some acetylenic fatty acid analogues inactivating lauric and oleic acid ω-hydroxylases, used as acid and sulphonate forms in the same experimental conditions as EPTC, induced no reduction in cuticle radiolabelling. An inhibitory effect was observed only for the acetylenic and the saturated C12 fatty acid analogues, used as tetrabu-tylammonium sulphonates, when applied directly in the liquid medium supporting foliar dises. Several assumptions are considered to explain the results of the present investigation.  相似文献   

19.
Eight amino-substituted derivatives of 1-amino-benzotriazole (ABT) were synthesized and tested. N-acetyl-N-methyl ABT (AcMeABT) was found to kill maize (Zea mays L.) hybrid Pioneer 3737 at 5 kg ha?1 dose while ryegrass (Lolium perenne L.) was unaffected. The analogous N-propionyl-N-methyl ABT had an activity similar to AcMeABT whereas other N-acyl-N-alkyl derivatives had only moderate or no effects on maize. AcMeABT was considerably toxic to oats (Avena sativa L.) and sorghum (Sorghum bicolor L.) as well. Unlike ABT, AcMeABT did not show any in vitro inhibitory effect on cytochrome P-450 enzymes of maize microsomes. However, in vivo AcMeABT pre-treatment significantly decreased the microsomal cytochrome P-450 level of aetiolated maize seedlings. Moreover, a subtoxic dose of AcMeABT was a weak antagonist of a toxic dose of EPTC in maize in vivo. These data predict the involvement of cytochrome P-450 enzyme in the mode of action of AcMeABT. N-acyl-N-alkyl l-aminobenzotriazoles: phyto-toxicité, antagonisme avec l'EPTC et effets sur le cytochrome P-450 du maïe Huit dérivés sur le groupement amine de l'1-aminobenzotriazole (ABT) ont été synthétisés. Une dose 5 kg ha?1 de N-acétyl-N-méthyl ABT (AcMeABT) détruisait le maïs (Zea mays L.) hy-bride Pioneer 3737 alors que le raygrass (Lolium perenne L.) n'était pas affecté. L'analogue N-propionyl-N-méthyl ABT avail une activité simi-laire à celle de l' AcMeABT, alors que les autres dérivés N-acyl-N-aklyl n'avaient que des effets nuls ou faibles surle maïs. L'AcMeABTétait très toxique à l'égard de l'avoine (Avena sativa L.) et du sorgho bicolore (Sorghum bicolor L.). Con-trairement à l'ABT, l'AcMeABT n'inhibait pas in vitro les enzymes P-450 des microsomes du maïs. Cependant, un pré-traitement in vivo a l'AcMeABT diminuait significativement le niveau de cytochromes P-450 microsomaux de jeunes plantes étiolées de maïs. En outre, une dose subtoxique d'AcMeABT avail sur maïs in vivo un effet antagoniste faible contre une dose loxique d'EPTC. Ces données suggèrent l'impli-cation d'enzymes cytochrome P-450 dans le mode d'action de l'AcMeABT. Phytotoxizität, Antagonismus gegenüber EPTC und Wirkungen auf das Cytochrom P-450 von N-Acyl-N-alkyl-1-aminobenztriazolen Bei Versuchen mit 8 Amino-subslituierten Deri-vaten von 1-Aminobenzotriazol (ABT) war N-Acetyl-N-methyl-1-aminobenztriazol (AcMeABT) mit 5 kg ha?1 für Mais (Zea mays L.) ‘Pionier 3737’ phyloloxisch, für Deulsches Weidelgras (Lolium perenne L.) nicht. Das analoge N-Propionyl-N-methyl-1-aminobenztriazol war ähnlich wirksam wie AcBeABT, andere Deri-vale kaum oder gar nichte. AcMeABT war für Saat-Hafer (Avena sativa L.) und Sorghumhirse (Sorghum bicolor L.) erheblich phytotoxisch. Anders als ABT zeigte AcMeABT in vitro keine Hemmwirkung auf das Cytochrom P-450 in Mais-Mikrosomen, in vivo jedoch nahm der Cy-tochrom-P-450-Gehalt etiolierter Mais-keimpflanzen nach AcMeABT-Behandlungen signifikantab. Außerdem war eine subtoxische Dosis von AcMeABT schwach antagonistisch für eine für Mais toxische EPTC-Dosis. Diese Daten weisen auf die Beteiligung des Cytochrom-P-450-Enzyms an der Wirkungsweise des AcMeABT hin.  相似文献   

20.
The influence of EPTC (S-ethyl dipropylthiocarbamate) on the hydrogenation of geranylgeranylchlorophyll (GG-Chl) to phytol-Chl was studied during the greening (6-, 12-, 18-, 24-, and 48-hr incandescent light exposure) of etiolated wheat [Triticum aestivum (L.) cv “Stacy”] and sorghum [Sorghum bicolor (L.) Moench cv “G 522DR”] seedlings grown in nutrient solution containing 14C-labeled sodium acetate. Chloroplast pigment synthesis occurred and small quantities of GG-Chl were found in both Chl?a and Chl?b. When wheat seedlings were greened for 48 hr in an EPTC concentration series (1 nM to 100 μM), geranylgeraniol (GG) content increased from 11% (control) to 60% (100 μM EPTC) of the isoprenoid alcohol esterified to chlorophyllide a, but Chl-b contained ≤1% GG-Chl at all concentrations of EPTC. Sorghum seedlings greened for 48 hr in the same EPTC concentration series contained about 3% GG (control) while 100 and 40% GG esterified to chlorophyllide a and chlorophyllide b, respectively, after 48 hr exposure to 100 μM EPTC. Thus, EPTC prevented hydrogenation of GG-Chl to phytol-Chl on the Chl molecule more in sorghum than in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号