首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种基于Mean-shift分割和非抽样剪切波变换(NSST)的多光谱与高分辨率全色图像融合方法。对高分辨率图像进行Mean-shift分割,并利用区域方差将多光谱图像划分为需要进行空间细节增强及需要光谱特征保持的区域;然后利用NSST变换对高分辨率图像和多光谱图像的强度分量进行多尺度分解。分解后的低频子带采用基于四阶相关系数的融合规则进行融合,带通方向子带根据分割所得的区域按区域方差进行融合;最后进行NSST重构得到融合后的强度分量,经IHS逆变换获得高分辨率的多光谱图像。仿真实验表明,与其他4种相关的融合方法相比,该方法能在空间分辨率的提高与光谱信息的保持之间达到良好的平衡,使得融合图像不仅具有较好的光谱保持特性,而且其空间分辨率也能得到有效提高。  相似文献   

2.
以陕西省榆阳区2013年6月9日的Landsat 8 OLI图像为基础数据源,对比分析LBV-Wavelet RF等5种图像融合算法的使用效果。对图像预处理后,分别采用HIS变换、Brovey变换、HPF变换、PCA变换和LBV-Wavelet RF方法进行融合和SVM监督分类,然后从目视评价和定量评价两方面对比分析各种融合算法的使用效果。在目视评价方面,判读融合前、后9种地类光谱特征的一致性;融合后图像是否具有全色波段图像的空间结构特征,是否存在细节模糊。在定量评价方面,采用灰度均值差、灰度均方根差评价融合后图像对多光谱信息的保持性能;采用相关系数均值、相关系数均方根差评价融合后图像对高空间分辨率信息的融入度;采用总体分类精度、Kappa系数评价融合前、后SVM监督分类精度差异。结果表明LBV-Wavelet RF方法能够使融合后图像在保持原多光谱图像光谱信息的同时,增强纹理结构特征,提高对细小地物的辨识能力;融合后图像SVM监督分类的总体分类精度和Kappa系数分别为84.01%和0.787,较原多光谱图像分别提高13.45%和15.91%。  相似文献   

3.
探讨了基于多进制小波变换与多维纹理特征融合相结合的遥感影像融合方法。在融合过程中,首先对高分辨率全色影像和多光谱影像进行多进制小波分解,再联合提取局部方差、局部梯度、局部能量和局部信息熵4维纹理特征,将高分辨率影像的高频分量分别与多光谱影像的高频分量以多维纹理特征进行多判据联合方法融合,形成新的高频分量,然后与多光谱影像的低频分量进行多进制小波逆变换,最后经 RGB合成为彩色影像。试验选取淮南矿区SPOT 10 m与TM 30 m空间分辨率影像,从目视判读(定性评价)、地物光谱曲线分析、定量评价指标三方面对融合方法进行了评价。结果表明,该方法既保留了原影像的光谱信息,同时也改善了影像的清晰度和分辨率,利用融合后的影像进行矿区土地利用变化监测,效果明显提高。  相似文献   

4.
利用2CCD多光谱相机设计了近地遥感图像采集平台,同步获取小范围区域作物的可见光和NIR图像,通过图像处理技术从作物图像获得反射光谱信息.采集平台包括一个2CCD多光谱相机,两个采集盒,一台具有两个千兆网口的田间计算机.图像处理部分通过2GRB灰度化、中值滤波和Otsu二值化,从背景中分割出作物图像,结合作物原始R分量灰度图像,提取出作物红光图像平均灰度值,利用建立的灰度值与反射率的线性模型,计算得到作物红光波段的反射率.试验结果表明,图像采集平台工作稳定,利用图像处理方法提取的反射率与ASD光谱仪测量结果有较好相关性,为从作物冠层图像探测生长状况提供了理论依据.  相似文献   

5.
小波变换与分水岭算法融合的番茄冠层叶片图像分割   总被引:1,自引:0,他引:1  
在基于机器视觉的作物营养诊断研究中,通常需要采集叶片样本并在实验室条件下定量测定其营养素含量,但由于叶片间相互重叠,往往使得叶片样本不能清晰地反映在群体番茄冠层图像中。为了解决这一问题,需要利用图像分析技术有效提取作物冠层图像中的叶片,并根据处理结果采集实验室测定样本。本文从复杂背景剔除、梯度图计算、小波变换、标记选取、分水岭分割等环节出发,实现了基于小波变换与分水岭算法融合的番茄冠层多光谱图像叶片分割。首先对比了4种复杂背景剔除算法,发现当增强因子a=1.3时,基于归一化植被指数(Normalized difference vegetation index,NDVI)的阈值分割目标提取准确,适合各种光照条件,时空复杂度低。其次在梯度图计算方面,近红外(Near infrared,NIR)波段图像形态学梯度在保持目标边缘的同时,能消除大量由叶脉、光照等引起的叶片内纹理细节。然后以小波分析为基础进行标记选取,发现当选取db4小波函数、4层小波分解低频系数、阈值为18的H-maxima变换能得到最优的目标标记结果。最后对多光谱番茄冠层图像的小波变换分水岭分割和数学形态学分水岭分割结果进行叠加,发现对复杂背景及不同光照强度下的番茄冠层叶片平均误分率为21%,为基于多光谱图像分析的番茄叶片营养素含量检测提供了一定的技术支持。  相似文献   

6.
针对任意放置姿态下的轻微绿皮马铃薯难以检测的问题,进行了半透射与反射高光谱成像方式的不同检测方法比较研究,最终确定较优高光谱成像方式的检测方法。分别以半透射与反射高光谱成像方式对图像维提取RGB、HSV和Lab空间颜色信息,并采用等距映射、最大方差展开、拉普拉斯特征映射进行图像信息降维;分别以半透射与反射高光谱成像方式对光谱维提取感兴趣区域的平均光谱数据,并采用局部保持投影、局部切空间排列、局部线性协调进行光谱信息降维;然后分别建立不同高光谱成像方式下的图像与光谱信息的深度信念网络模型;对识别率良好的模型采用多源信息融合技术进一步优化,并建立基于图像和光谱融合或不同成像方式融合的模型。结果表明,基于半透射和反射高光谱的光谱信息融合模型最优,校正集和测试集识别率均达到100%,可实现轻微绿皮马铃薯的无损检测。  相似文献   

7.
农田监测可以获取作物的生长状态,是农艺管理操作的依据。传统的农田监测由人工完成,效率和准确性较低,无法满足现代化农业的要求。以无人机为平台的遥感技术应用于农田信息监测中,能有效地解决这个问题。高光谱遥感具有连续的光谱,通过光谱分析可以得到农田作物的完整信息。为此,设计了基于无人机光谱分析的农田监测系统,利用无人机搭载的光谱仪拍摄水稻田的高光谱影像,基于多个光谱参数建立估算叶绿素含量(SPAD)的回归模型。结果表明:4个光谱参数与建模样本SPAD值的回归分析都达到显著水平,以DR 526和SD y建立的模型精确度较高。综合考虑决定系数和斜率值,将SD y作为文中SPAD值的最佳估算参数,可为精准农业的发展提供技术支撑。  相似文献   

8.
含水量是表征水稻生理和健康状况的关键参数,精确预测水稻含水量对于水稻育种和大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长的研究主要集中在利用植被指数评估作物在单一或者几个生育期的生长参数,针对作物含水量监测的研究非常有限。本研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层的RGB图像和多光谱图像,通过提取植被指数和纹理特征,分析水稻的动态生长变化,并构建了基于随机森林回归方法的含水量预测模型。试验结果表明:(1)从无人机图像提取的植被指数、纹理特征以及地面测量的含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;(2)与RGB图像相比,多光谱图像评估水稻含水量具有更高的潜力,其中归一化光谱指数NDSI771,611实现了更好的预测精度(R2=0.68,RMSEP=0.039,rRMSE =5.24%);(3)融合植被指数和纹理特征能够进一步改善含水量的预测结果(R2=0.86,RMSEP=0.026,rRMSE=3.51%),预测误差RMSEP分别减小了16.13%和18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行的,可为农田精准灌溉和田间管理决策提供新思路。  相似文献   

9.
基于机器视觉的大豆外观品质检测一直是近年来研究的热点,其中大豆图像的滤波是大豆外观品质检测的重要工作内容之一。为了更好地去除大豆图像的噪声,提出了一种基于图像融合技术的大豆图像滤波方法。该算法对一个样本图像分别进行维纳滤波和形态学滤波,在此基础上进行基于小波变换的图像融合算法,有效解决了图像边缘毛刺现象。实验证明,此方法保证了图像的细节和边缘的完整性,图像滤波效果良好。  相似文献   

10.
廖建尚  王立国  郝思媛 《农业机械学报》2017,48(8):140-146,211
提出了一种基于双边滤波和像元邻域信息的高光谱图像分类(BS-SVM)算法。该方法首先利用双边滤波器提取经主成分分析降维后的高光谱图像空间纹理信息,然后通过设计一种高光谱像元邻域信息来构建高光谱的空间相关信息,最后将2种空间信息融合后与光谱信息结合,形成空谱信息(空间信息和光谱信息)后交由支持向量机完成分类。实验结果表明,相比单纯使用光谱信息的支持向量机的分类方法以及基于Gabor滤波的空谱信息结合分类方法,所提出的BS-SVM方法分类精度有较大幅度提高,充分证明了该方法的有效性。  相似文献   

11.
基于加权支持向量数据描述的遥感图像病害松树识别   总被引:1,自引:0,他引:1  
利用安装在无人机平台上的双光谱相机所获取的可见光和近红外遥感图像,采用改进的加权支持向量数据描述多分类算法,实现病害松树识别.首先根据不同内容信息图像的特点,提取双光谱相机所获取的可见光图像和近红外图像各颜色分量作为相应像素点的颜色特征,再通过提取加窗图像块的灰度共生矩阵得到中心像素点的纹理特征,然后利用权重系数为每类样本分别作加权支持向量数据描述,实现松树状态的多输出分类识别,其中权重系数是通过建立关于训练样本中心距离的权重函数所确定.与传统的人工、航空和卫星遥感识别方法不同,利用无人机平台和双光谱相机获取遥感图像,具有可操作性强、费用低廉等优势.试验结果表明,相比传统的支持向量机和支持向量数据描述算法,改进的加权支持向量数据描述多分类算法更能准确地进行病害松树识别.  相似文献   

12.
低空无人机影像分辨率对冬小麦氮浓度反演的影响   总被引:1,自引:0,他引:1  
针对目前基于无人机遥感进行作物氮素营养诊断中缺乏规范化的标准来指导无人机应用过程中数据获取与处理的问题,开展了不同分辨率、低空无人机影像对冬小麦植株氮浓度反演影响的研究。在小麦生长的灌浆期,通过设置15、30、50、80 m共4种无人机飞行高度,获取了不同分辨率下的无人机多光谱影像,并开展地面试验,采集冬小麦植株氮浓度信息。基于这些数据,提取了不同分辨率下影像的光谱信息和纹理特征,并分别建立光谱信息、纹理特征和光谱信息+纹理特征等反演植株氮浓度的模型。对不同情景下的模型估测效果进行比较,结果表明,影像分辨率在1.00~5.69 cm之间变化时,影像光谱信息对小麦植株氮浓度反演影响不大,各情景下建模结果和验证结果差异较小;随着影像分辨率的降低,影像纹理特征对小麦植株氮浓度反演的效果变差;影像光谱信息+纹理特征信息对小麦植株氮浓度反演效果整体随着影像分辨率的提高呈增加趋势,且其反演结果优于单一光谱特征或单一纹理特征的反演效果。  相似文献   

13.
李果实成熟度的高光谱成像判别研究   总被引:1,自引:0,他引:1  
为实现对李果实成熟度的快速、准确判别,采用高光谱成像技术(450~1 000nm)采集不同成熟阶段(未熟期、半熟期、成熟期、过熟期)的李果实共计640个样本的高光谱信息进行判别研究。对不同成熟阶段的李果实样本测定表征成熟度的理化指标(可溶性固形物和硬度值)并进行单因素方差分析,结果表明:不同成熟度样本的两项指标均存在极显著差异,硬度值差异最大。采用连续投影算法(Successive projections algorithm,SPA)和主成分分析(Principal component analysis,PCA)分别提取得到不同成熟度样本光谱数据的10个特征波长(381、3 8 2、3 8 7、4 0 8、4 4 3、4 9 4、5 9 6、8 1 3、9 6 3、1 0 0 8 nm)和前5个主成分值(累积贡献率达9 7.8 3%)。基于RGB、HSV颜色模型对不同成熟度李果实样本图像进行颜色特征提取,最终得到6项颜色特征指标(R、G、B及H、S、V分量图像的平均值和标准差)。分别建立基于光谱信息、图像信息及融合信息的偏最小二乘(Partial least squares,PLS)判别模型,结果表明:基于特征波长和RGB特征信息融合值建立的PLS模型判别结果最佳,准确率达9 1.2 5%。由此可见,采用高光谱成像技术在光谱和图像信息方面对不同成熟度李果实进行判别是可行的、有效的,该研究为实现李果实成熟度在线检测提供了理论依据。  相似文献   

14.
利用无人机影像进行森林资源调查具有作业快速便捷、数据分辨率较高、影像细节丰富的特点,可较好地识别单木,获取树木位置、冠幅等信息。但是,厘米级的影像分辨率使基于光谱信息的传统分割算法在提取树冠时出现破碎化现象,产生过分割结果。同时,在非落叶季由于无人机影像难以观测到茂密林冠下层地形,故在地形起伏较大的林区难以实现基于树木冠层高度模型(CHM)的单木分割方法。针对上述问题,结合传统二维图像处理和Sf M三维建模,提出了一种无需高度归一化的无人机影像树冠三维分割提取算法,首先利用Sf M技术从高重叠航片建立三维表面模型,利用高程和图像信息检测初始树木位置,再采取k NN自适应邻域分水岭分割的方式对中心单木进行精确的树冠参数提取。在北京市百花山国家级自然保护区的落叶松林地进行了高分辨率无人机影像实验,采用正射影像目视解译结果和多种基于图像、点云的自动分割算法结果进行验证和评价。结果表明,本文方法对树木总体检出率在91%以上,冠幅提取精度在81%以上,优于传统的全局分水岭方法和其他树冠分割算法。  相似文献   

15.
茶叶等级评价是检测茶叶品质的一项重要技术指标。通过提取红茶高光谱成像技术下的图像特征和光谱特征,构建一种基于图谱融合方法、适用于英德红茶等级评价的快速无损判别模型。首先制备3种不同等级的红茶样本,采用t分布-随机近邻嵌入和主成分分析对光谱数据进行降维可视化分析,然后从影响内在品质角度用连续投影法提取每种化学值的特征波长,通过多模型共识策略和竞争性自适应重加权算法-连续投影法筛选得出表征其内在品质的最佳特征波长组合,并建立基于遗传算法优化支持向量机的等级判别模型;其模型的训练集准确率为88%,预测集准确率为78.33%。为了融合外形纹理差异,先提取最佳特征波长组合对应的高光谱图像;采用图像掩膜消除背景的干扰和采用图像主成分分析消除多波长图像间的冗余信息,然后采用灰度共生矩阵和局部二值化算法提取主成分前三维主成分图像与特征光谱融合,并建立基于特征融合的遗传算法优化支持向量机等级判别模型,且基于第三主成分图像特征融合模型判别效果最佳,训练集准确率提升至98%,预测集准确率提升至96.67%。  相似文献   

16.
基于Hough变换的成熟草莓识别技术   总被引:6,自引:1,他引:6  
基于图像区域特征来识别被遮掩、重叠或紧靠的草莓果实非常困难,提出一种基于Hough变换的成熟草莓识别方法。先对Lab彩色模型下α通道图像进行分割,利用提取的草莓轮廓信息,根据草莓轮廓的数学模型进行Hough变换,实现成熟草莓的识别。为减少运算量,在Hough变换之前,先进行区域标记,获取有效图像信息区域。草莓轮廓信息提取和Hough变换在各个有效区域中进行,由于参数空间大大压缩,运算量也得到减少。试验表明:当成熟草莓轮廓信息丢失小于1/2时,无论单个分离的成熟草莓,还是被遮掩、重叠或紧靠的成熟草莓,皆有很好的识别效果,识别平均相对偏差为4.8%,能满足草莓采摘机器人对目标识别精度的要求。  相似文献   

17.
针对目前田间大豆株高测量采用作物标尺准确度不够或人工测量费时费力的问题,基于50个试验小区、10个标准株高不同的大豆品种,以无人机(UAV)低空遥感平台获取大豆田间影像及数字表面模型,同时测定地面大豆实际冠层高度;利用克里金插值算法获取地面高程值(DEM),通过计算提取大豆株高信息,并验证此方法的精度和提取误差。研究表明:利用无人机遥感正射影像、数字表面模型和克里金插值算法生成的DEM模型符合试验田的地势情况,提取的大豆株高范围为0~1.13627m,所建立的株高提取模型R2=0.8163,计算得到的大豆实际株高与提取株高平均误差为3.79%。此方法可较为精确地计算大豆的植株高度,能够为大豆田间管理和高产株型选育过程中株高性状数据获取提供参考。  相似文献   

18.
叶脉网络的提取及其性状参数的测算,可为植物叶脉生态学机理研究提供重要参考。以不同叶特性的6类树种(国槐、毛白杨、臭椿、洋白蜡、元宝枫和栾树)叶片为对象,基于e Cognition软件对叶脉显微图像进行多尺度分割,综合利用显微图像的光谱信息和几何信息构建提取知识库,并使用叶脉循环生长法对提取结果进行完善,增加叶脉网络的完整性。结果表明,叶脉提取的最优阈值分别为:尺度参数200,形状参数0. 7,紧凑度参数0. 3,亮度特征值230~280,光谱特征值180~230,几何特征值大于1. 5。叶脉密度测算的精度均达到了93%以上,对植物叶脉信息的快速提取具有较高的普适性。  相似文献   

19.
孙红  文瑶  赵毅  李民赞  陈军  杨玮 《农业机械学报》2015,46(S1):240-245
为了快速获取大田冬小麦作物生长信息,对田间植被覆盖度(VCI)进行检测。采用开发的多光谱图像采集系统,在拔节期-扬花期获取冬小麦冠层可见光( B、G、R ,400~700 nm)和近红外(NIR,760~1 000 nm)图像。图像经自适应平滑滤波处理后,针对RGB图像,采用HSI色彩空间模型,设定 H 分量阈值[π/4,6π/5]进行分割,对NIR图像采用自动阈值分割法分割,进而提出了基于“ H +NIR”组合的冬小麦冠层多光谱图像分割方法,并计算VCI值。对未经分割的原始图像提取了9个图像检测参数,包括各通道图像灰度均值( A R、 A G、 A B、 A NIR )、归一化植被指数(NDVI)、归一化差异绿度指数(NDGI)、比值植被指数(RVI)、差值植被指数(DVI)和冠层 H 分量均值 A H。图像检测参数与VCI相关性分析结果表明,各植被指数与VCI的相关系数绝对值均大于0.90。应用NDVI、NDGI、RVI和DVI建立了多元线性回归模型,其 R 2 c =0.948, R 2 v =0.884,可以用于快速反演VCI,为田间作物生长评价和管理提供支持。  相似文献   

20.
为了探究无人机多光谱遥感影像估算作物光合有效辐射吸收比例(Fraction of absorbed photosynthetically active radiation,FPAR)的潜力,以无人机多光谱影像提取的植被指数、纹理指数、叶面积指数为模型输入参数,在分析不同参数与FPAR相关性的基础上优选植被指数与纹理指数,并分别以一元线性模型、多元逐步回归模型、岭回归模型、BP神经网络模型等方法估算玉米FPAR。结果表明:植被指数、纹理指数、叶面积指数 3种参数与FPAR都具有较强的相关性,其中植被指数相关系数最大;在不同类型的FPAR估算模型中,BP神经网络模型的估算效果最优,FPAR估算模型决定系数R2、均方根误差(RMSE)分别为0.857、0.173,验证模型R2、RMSE分别为0.868、0.186,模型估算值与田间实测值间相对误差(RE)为8.71%;在不同形式的模型参数组合中,均以植被指数、纹理指数、叶面积指数 3种参数融合的FPAR模型的估算与验证效果最优,说明多特征参数融合能有效改善FPAR估算效果。该研究为基于无人机多光谱遥感数据精准估算玉米FPAR及生产潜力提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号