首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Aluminum tolerance of two sets of hexaploidtriticale (×Triticosecale Wittmack)lines with disomic substitutions of theD-genome chromosomes from Triticumaestivum L. was analyzed by themodified-pulse method. Of the 20substitution lines in winter triticalePresto, and 18 lines of spring triticaleRhino, six and nine lines, respectively,showed improved tolerance relative to thatobserved in the control lines. The D-genomechromosomes in substitutions 1D(1B),3D(3A), 3D(3B), 4D(4A), 4D(4B) and 6D(6B)significantly (p<0.01) improved Altolerance in both sets of lines. Highpercentages of tolerant plants were alsoobserved in 2D(2B) and 5D(5A) substitutionsin Presto and in 2D(2A), 2D(2B), 5D(5B),6D(6A) and 7D(7A) substitution lines ofRhino. In no instance, the removal ofindividual rye chromosomes, bysubstitutions, improved Al tolerance of therecipient line. Moreover, the presence of acomplete rye genome, and especially ofchromosome 3R, was necessary for triticale'stolerance to aluminum. The results alsoindicated some effects of allelic variationpresent on both rye and wheat chromosomes,and a possibility of interactions ofvarious factors.  相似文献   

2.
S. J. Xu  L. R. Joppa 《Plant Breeding》2000,119(3):233-241
Durum wheat ‘Langdon’(LDN) caused a high frequency of first‐division restitution (FDR) and partial fertility in hybrids with rye, Secale cereale L., and Aegilops squarrosa L. In order to determine the genetic control of FDR, a complete set of 14 Langdon durum D‐genome disomic substitution lines (LDNDS) was crossed with ‘Gazelle’ rye and one accession (RL5286) of A. squarrosa. The microsporogenesis and fertility of the hybrids were studied. The results showed that most of the hybrids expressed a high frequency of FDR and partial fertility. However, the hybrids of 2D(2A), 4D(4A), 5D(5B) and 6D(6B) crossed with both rye and A. squarrosa, as well as 1D(1A) with A. squarrosa, had either little or no FDR and were completely sterile. These hybrids had different types of first meiotic divisions compared with LDN control hybrids. The hybrids with 2D(2A), 4D(4A) and 6D(6B) had a high frequency of random segregation of chromosomes at the first division. The hybrids with 5D(5B), as expected, showed high homoeologous pairing. The hybrid of 1D(1A) with A. squarrosa had a high frequency of equational division at first division. These results suggest that the reduced or absent FDR in such hybrids might be related to the substitution of chromosomes with an FDR gene and poor compensation ability of the D‐genome chromosomes for their homoeologous A‐ or B‐ genome chromosomes. Cytological analysis suggested that chromosome 4A in LDN most likely carries a gene for high frequency of FDR in hybrids. In addition, some monads were observed at the end of meiosis in the hybrids of 3D(3A) and 6D(6A) crossed with rye. They were formed from FDR cells that failed to divide at second division, suggesting that the LDN 3A and 6A chromosomes might carry genes for normal second division of FDR cells in the rye crosses.  相似文献   

3.
S. J. Xu  L. R. Joppa 《Plant Breeding》2000,119(3):223-226
The formation of unreduced gametes in some hybrids between disomic D‐genome substitutions (DS) of durum wheat cv.‘Langdon’ and rye provides a convenient approach for the rapid introduction of D‐genome chromosomes into hexaploid triticale. Meiotic pairing at metaphase I and seed fertility in spontaneous and colchicine‐induced amphidiploids derived from F1 hybrids between a set of ‘Langdon’ DS and ‘Gazelle’ rye were analysed. The purpose was to determine the effects of the substitution of D‐genome chromosomes for their A‐ and B‐genome homoeologues on hexaploid triticale and to select stable disomic D‐genome substitutions of hexaploid triticale. The results showed that the disomic substitutions with D‐genome slightly increased the frequency of univalents (1.0‐3.13) compared with the ‘Langdon’ control primary hexaploid triticale (0.76). Substitutions 2D(2A) and 3D(3B) were partly desynaptic. The substitutions 1D(1A), 1D(1B) and 7D(7B) exhibited high seed fertility but the others had decreased fertility. Except for 2D(2A), 5D(5A), 3D(3B) and 5D(5B), 10 of the 14 possible hexaploid triticale D‐genome disomic substitutions have been obtained. The results suggest that the poor compensation ability of some D‐genome chromosomes for their homoeologous A‐ and B‐genome chromosomes is a major factor affecting meiotic stability and fertility in the hexaploid triticale D‐genome substitutions.  相似文献   

4.
With the aim of producing polyhaploids of hexaploid triticale, 20 genotypes from a CIMMYT breeding programme and eight D-genome chromosome substitution lines of ‘Rhino’ were crossed with maize. In crosses between 20 triticale genotypes and maize, 15 lines produced embryos. Frequencies of embryo formation ranged from 0.0 to 5.4%, with an average of 1.1%. From a total of 200 pollinated spikes, 62 plants were regenerated. Most regenerated plants were polyhaploids with 21 chromosomes, and few aneuhaploids with 22 chromosomes were found. In crosses of triticale substitution lines with maize, all the lines produced embryos, while ‘Rhino’ produced no embryos at all. Higher frequencies of embryo formation were obtained in substitution lines with chromosomes 2D and 4D. These results suggest that D-genome chromosomes in a triticale genetic background have the effect of increasing the frequency of polyhaploid production in triticale x maize crosses.  相似文献   

5.
为发掘和利用荆州黑麦所携抗梭条花叶病基因,综合利用分子细胞遗传学与分子标记技术结合多年抗性鉴定,从高感梭条花叶病小麦地方品种辉县红与荆州黑麦杂交后代(F7~F9)中选育出二体异附加系5个(分别添加1R、2R、R3、5R和R7)、5RS端二体异附加系1个和多重异附加代换系2个(染色体组成分别为20’’+2R(2D)’’+4R’’和19’’+1R(1B)’’+2R(2B)’’+4R’’)。鉴定表明,双二倍体荆辉1号高抗梭条花叶病,表明黑麦抗性基因可在小麦背景中稳定表达,2R、R7二体异附加系及2个含2R的多重异附加代换系均表现高抗,推测2R和R7上可能携带抗病基因。这些材料是研究荆州黑麦抗性基因遗传及小麦抗病育种的新种质。  相似文献   

6.
Grain protein compositions of 106 advanced generation backcross lines from crosses involving ‘Amigo’ (1AL.1RS), ‘Aurora’, ‘Kavkaz’, ‘Skorospelka-35’ and ‘Sunbird’ (all 1BL.1RS) and ‘Gabo’ 1DL.1RS parents and 152 cultivars with unknown pedigree were analysed by one-dimensional SDS-PAGE. Eighty seven backcross lines and 16 cultivars carried one or other of these translocations, 2 cultivars had a 1R (1B) substitution, whereas 5 backcross lines were found to be heterogeneous for the 1BL.1RS translocation. The translocation lines were easily identified by the presence of secalins (Sec-1) controlled by rye chromosome arm IRS and a simultaneous loss of the gliadin (Gli-1) and/or triticin (Tri-1) protein bands controlled by the replaced wheat chromosome arm (1AS, 1BS or 1DS). Certain gliadins, showing no allelic variation among the genotypes analysed, were identified as markers for chromosome arms 1AS (Mr= 34 kd) and IBS (Mr= 42,33 kd). The whole chromosome substitutions 1R (1B) were recognized by scoring for the presence of Sec-1 and HMW secalin bands, Sec-3 (controlled by rye chromosome arm 1RL) and the absence of Gli-B1 and HMW glutenin subunits, Glu-B1 (controlled by wheat chromosome arm 1BL). The results have shown that protein electrophoresis provides a rapid and reliable technique for screening genotypes for these translocations and substitutions in a breeding programme.  相似文献   

7.
研究分层供水施磷对冬小麦磷效率及产量的影响,为指导旱地施磷提供一定理论和实践依据。试验设整体湿润(W1)和上干下湿(W2) 2 种水分处理,不施磷(CK)、表施(SP)、深施(DP)3 种施磷处理,供试品种选用水分敏感型(‘小偃22’)和抗旱型(‘长旱58’)。研究结果表明:磷肥施用深度对冬小麦磷根效率比、磷肥利用效率、磷肥偏生产力(PFPP)及产量的影响随土壤水分和品种而异。2 种水分条件下,‘小偃22’DP较SP处理磷肥利用率、PFPp均显著降低(P<0.05),磷根效率比及产量则差异不显著;W1 处理下,‘长旱58’DP较SP处理除磷根效率比外其他指标均显著降低(P<0.05),W2 处理下则相反,上述指标均显著增加(P<0.05)。本试验结果表明,土壤水分供应不足时,磷肥深施有利于提高抗旱性较强冬小麦品种对磷素的吸收利用能力,从而提高磷肥利用率及产量。  相似文献   

8.
Hexaploid triticale contains valuable genes from both tetraploid wheat and rye and plays an important role in wheat breeding programmes. In order to explore the potential of hexaploid triticale ‘Certa’ in wheat improvement, two crosses were made using ‘Certa’ as female parent, and common wheat cultivars ‘Jinmai47’ (JM47) and ‘Xinong389’ (XN389) as male parents. The karyotyping of BCF4:5 lines from Certa/JM47//JM47 and F5:6 lines from Certa/XN389 was investigated using sequential fluorescence in situ hybridization (FISH). One 1B(1R) substitution line and five 1BL.1RS whole‐arm translocation lines were identified, one of which was found lacking ω‐secalin locus. Many structural alterations on wheat chromosomes were detected in the progeny. Great morphologic differences resulting from genetic variations were observed, among which the photosynthetic capability was increased while grain quality was slightly improved. Compared with both parents, the stripe rust resistance at adult stage was increased in lines derived from Certa/JM47//JM47, while it was decreased in lines derived from Certa/XN389. These newly developed lines might have the potential to be utilized in wheat improvement programmes.  相似文献   

9.
Hexaploid triticale (X Triticosecale Wittmack) (2n= 6x= 42, AABBRR) and wheat (Triticum aestivum L.) (2n= 6x= 42, AABBDD) differ in their R and D-genomes. This produces differences in both agronomic and end-use quality characteristics. Our objective was to determine how introgressions of individual chromosomes from the D-genome of wheat affect these characteristics of a winter triticale 'Presto'. We studied the effects of 18 D-genome chromosome substitution lines, 15 sib-lines as controls, and five check cultivars at Lincoln, NE in 1996, using a randomized complete block design with two replications. The experiment was repeated at Lincoln and Mead, NE in 1997 and 1998 with 15 substitution lines that survived the first winter in Lincoln, along with their 12 control sibs and five check cultivars. Few D-genome chromosomes had positive effects. Chromosomes 2D, 4D, and 6D significantly reduced plant height when substituted for 2R, 4B, and 6R, respectively. No grain yield increases were associated with any of the D-genome chromosomes tested, but three substitutions decreased the grain yield. Depending on the allele of the hardness gene present, chromosome 5D increased or decreased kernel hardness when substituted for 5R or 5A, respectively. Introgressions of chromosomes 1D and 6D improved end-use quality characteristics of Presto. These results suggest that apart from beneficial effects of individual loci located on the D-genome chromosomes, no major benefit can be expected from D-genome chromosome substitutions.  相似文献   

10.
Powdery mildew (caused by Erysiphe graminis) and yellow rust (caused by Puccinia striiformis) are the two most serious wheat diseases found in China. Rye chromosomes, carrying genes for resistance to these diseases, were introduced into common wheat in two generations using chromosome engineering and anther culture. The F1 hybrids from a cross involving a hexaploid triticale (×Triticosecale Wittmack) בChinese Spring’ nulli‐tetrasomic N6DT6A wheat aneuploid line were anther cultured and doubled‐haploid plants were regenerated. Using genomic in situ hybridization, C‐banding and biochemical marker analyses, one of the anther‐cultured lines (ZH‐1)studied in detail, proved to be a doubled‐haploid with one rye chromosome pair added (1R) and a homozygous 6R/6D substitution (2n= 44). The line was tested for expression of disease resistance and found to be highly resistant to powdery mildew and moderately resistant to yellow rust.  相似文献   

11.
Limited genetic knowledge is available regarding crossability between hexaploid triticale (2n= 6x= 42, 21″, AABBRR, amphiploid Triticum turgidum L.‐Secale cereale L.) and rye (2n= 14, 7″, RR). Our objectives were to determine (1) the crossability between triticales and rye and (2) the inheritance of crossability between F2 progeny from intertriticale crosses and rye. First, ‘8F/Corgo’, a hexaploid triticale, was crossed as a female with two landrace ryes, ‘Gimonde’ and, ‘Vila Pouca’ and two derived north European cultivars, ‘Pluto’ and ‘Breno’. These crosses produced 21.7, 20.9, 5.9, and 5.6%, seed‐set or crossability, respectively, showing that the landrace ryes produced higher seed‐set than the cultivars. Second, ‘Gimonde’ rye was crossed as a male with four triticales for 3 years. The control cross, ‘Chinese Spring’ wheat × rye, produced 80‐90% seed‐set. Of the four triticales, ‘Beagle’ produced 35.7‐56.8% seed‐set. The other three triticales produced less than 20% seed‐set, showing that the triticales differ in crossability with ‘Gimonde’ rye. Third, six FiS from intertriticale crosses (‘8F/Corgo’בBeagle’, ‘Beagle’בCachirulo’, ‘Lasko’בBeagle’, ‘8F/Corgo’בCachirulo’, ‘Lasko’בCachirulo’, ‘Lasko’ב8F/Corgo’) were crossed to ‘Gimonde’ rye. Results indicated that lower crossability trait was partially dominant in the two F1S from crosses involving ‘Beagle’(high crossability) with‘8F/Corgo’ and ‘Cachirulo’(low crossability) and completely dominant in the ‘Beagle’בLasko’ cross, as it happens in wheat. Fourth, segregants in four F2 populations (‘Lasko’בBeagle’, ‘8F/Corgo’בBeagle’, ‘Lasko’ב8F/Corgo’, and‘8F/Corgo’בCachirulo’) were crossed with rye. Segregation for crossability was observed, although distinct segregation classes were blurred by environmental and perhaps other factors, such as self‐incompatibility alleles in rye. Segregation patterns showed that ‘Beagle’, with high crossability to rye, carries either Kr1 or Kr2. The three triticales with low crossability with rye were most likely homozygous for Kr1 and Kr2. Therefore, it is likely that the Kr loci from A and B genomes acting in wheat also play a role in triticale × rye crosses.  相似文献   

12.
Triticum turgidum var. durum cv. ‘Langdon’ and the set of D-genome disomicsubstitutions in ‘Langdon’, produced at Fargo, U.S.A., were grown in a temperature controlled greenhouse and crossed with diploid spring rye (Secale cereals), to determine the effect of each substitution on 1. the crossability with rye, and 2, the viability of the resulting hybrids kernels. None of the disomicsubstitutions lines, with the possible exception of the 5D (5Bj line, gave an appreciable improvement in hybrid kernel set, -development, and -viability over the control, ‘Langdon’ The post-zygotic barrier to endosperm and embryo development, which operates in crosses between durum wheat and rye, could therefore not be suppressed by any specific chromosome of the D-genome.  相似文献   

13.
To assess the tissue-culture response of different karyotypes of spring triticales, immature embryo explants of 20 secondary triticales with a complete karyotype (complete rye genome with or without a 6D/6A substitution) or substituted karyotype (incomplete rye genome with a 2D/2R substitution), two primary triticales with octoploid and two with hexaploid karyotypes, were cultured on MS and on Kao medium supplemented with 2,4-D. Complete triticales produced significantly more embryogenic callus than substituted types. Complete 6D/6A karyotypes showed the highest embryogenic response. Octoploid primary triticales showed high and uniform production of embryogenic callus on both media. These findings complement earlier results on the agronomic and quality differences between the karyotypes.  相似文献   

14.
We produced 15 dissection lines of common wheat carrying segments of chromosome 1R of wild rye (Secale montanum) (1Rm) by the gametocidal system. Using the 1Rm dissection lines and previously established 24 dissection lines of chromosome 1R from cultivated rye (Secale cereale cv. ‘Imperial’) (1Ri), we conducted cytological mapping of 97 markers that were amplified in the 1Ri addition line. Sixty‐eight of the 97 markers were amplified in the 1Rm addition line. To reveal what structural differentiation occurred in chromosome 1R during domestication, we compared the cytological map of chromosome 1Ri with that of chromosome 1Rm, and also with the previously published cytological map of chromosome 1R from wheat cultivar ‘Burgas 2’ (1RB). There was one discrepancy in marker order in the satellite region between chromosomes 1Ri and 1RB, while there were four discrepancies in marker order between chromosomes 1Ri and 1Rm. These results suggested that during the domestication of rye, some intrachromosomal rearrangements had occurred in chromosome 1R, although this chromosome is regarded as the most stable chromosome in the rye genome.  相似文献   

15.
V. Mohler    S. L. K. Hsam    F. J. Zeller  G. Wenzel 《Plant Breeding》2001,120(5):448-450
A sequence‐tagged site marker has been developed from restriction fragment length polymorphism marker probe IAG95 for the rye‐derived powdery mildew resistance Pm8/Pm17 locus of common wheat. This polymerase chain reaction marker enables the amplification of DNA fragments with different sizes from T1AL.1RS and T1BL.1RS wheat‐rye translocation cultivars with chromatin from ‘Insave’ and ‘Petkus’ rye, respectively, and therefore will be very useful in distinguishing Pm8‐carrying cultivars from Pm17‐carrying cultivars. Results obtained with that marker were compared with resistance tests performed on detached primary leaves of 29 wheat lines from two populations derived from doubled haploid production. The molecular assay corresponded well with the resistance tests in all the lines, and therefore will be helpful for the identification of Pm17 in lines in which other Pm genes or quantitative trait loci are present.  相似文献   

16.
Ear emergence time and response to vernalization were investigated in 12 alien substitution lines in which a pair of chromosomes 5A of recipient spring wheat cultivars was replaced by a pair of chromosomes 5R of Siberian spring rye ‘Onokhoiskaya’. The recipients were 12 spring cultivars of common wheat, each carrying different Vrn genes. Spring rye ‘Onokhoiskaya’ had the Sp1 (now called Vrn-R1) gene for spring growth habit located on chromosome 5R, but its expression was weaker. The Vrn-R1 gene had no effect on growth habit, ear emergence time and response to vernalization in wheat-rye substitution lines. Ears emerged significantly later in the 5R(5A) alien substitution lines than in the recipient wheat cultivars with the Vrn-A1/Vrn-B1/vrn-D1 or Vrn-A1/vrn-B1/Vrn-D1 genotypes. No difference in ear emergence time was found between most of the 5R(5A) alien substitution lines and the cultivars carrying the recessive vrn-A1 gene. The presence of the Vrn2a and Vrn2b alleles at the Vrn2 (now called Vrn-B1) locus located on wheat chromosome 5B was confirmed.The replacement of chromosome 5A by chromosome 5R in wheat cultivars ‘Rang’ and ‘Mironovskaya Krupnozernaya’, which carries the single dominant gene Vrn-A1, converted them to winter growth habit. In field studies near Novosibirsk the winter hardiness of 5R(5A) wheat–rye substitution lines of ‘Rang’ and ‘Mironovskaya Krupnozernaya’ was increased by 20–47% and 27–34%, respectively, over the recurrent parents.  相似文献   

17.
Wheat, rye and wheat-rye addition lines have been investigated regarding their developmental and organ-specific isozyme patterns of aspartate amino-transferase (AAT) and endopeptidase (EP). Evidence is given, that development-specific isozymes of AAT are encoded by chromosomes 3R and 4R of ‘Imperial’ rye which can be used as biochemical markers up to leaf age of 14 days. Organ-specific increase of intensity of bands for AAT in stems could be assigned to genes or alleles of chromosome 3A of ‘Chinese Spring’ wheat. For EP new markers were localized on chromosomes 4R and 6R of ‘Imperial’ rye showing variability. Utilization of these markers is possible at all developmental stages of the leaves. Mechanisms of gene regulation are discussed.  相似文献   

18.
In hexaploid bread wheat, Triticum aestivum (2n = 6x = 42), little work has been carried out to study the genetic control of the synthesis of reduced, non‐reduced and total non‐structural carbohydrates and soluble proteins in aerial and rooting structures. The aim of this paper was to determine the chromosomal location of genes determining carbohydrate and protein synthesis that could be used for diagnostic selection in segregating breeding populations. A set of wheat intervarietal chromosome substitution lines [‘Chinese Spring’ (CS) × synthetic wheat (Triticum diccocoides×Aegilops squarrosa) (Syn)], was used. Plants were cultivated in hydroponic solutions to the fully expanded third leaf stage. Carbohydrate and protein contents and dry matter were determined for aerial and root parts. The root dry weight did not show significant differences between the parental varieties and the substitution lines, except for 5A, 2B and 6B, which had significantly lower dry weights. The aerial dry weight was significantly higher for Syn and the 2A substitution line. The ratio aerial dry weight/root dry weight was significantly higher in Syn, 1A, 2A and 4B. The protein content of the plant showed highly significant differences between both parental lines but 6A and 1D of the substitution lines showed highly significant differences, with contents as high as that for Syn. Syn produced significantly lower total aerial carbohydrates. The substitution lines 2A, 5A, 6A, 7A, 2B, 3D, 5D and 6D showed highly significant total carbohydrate content increases in the aerial parts compared with both parental lines. The non‐reduced carbohydrate contents showed a pattern similar to that of the total carbohydrates. Syn had a lower reduced carbohydrate content than CS. Only the 5A, 2B, and 1D substitution lines had a highly significantly different content of reduced carbohydrates than CS. In roots, Syn produced the lowest values for every type of sugar. The highest significant values for total carbohydrates were found in substitution lines 2B, 4B, 5B, 6B, 1D and 6D. The non‐reduced carbohydrate levels were significantly higher than CS in 2B, 5B, 6B and 6D substitution lines. Only the substitution lines 3B and 1D showed a significantly higher reduced carbohydrate content in roots compared with CS. The photoassimilate partitioning in Syn, 1 A, 2A and 4B favoured the aerial parts but, in contrast, higher partitioning to the roots was found in the 7B, 1D and 3D substitution lines. Both groups appear to carry interesting patterns worth incorporating in wheat cultivars.  相似文献   

19.
Chromosomal location of aluminium tolerance genes in rye   总被引:4,自引:0,他引:4  
A. Aniol 《Plant Breeding》2004,123(2):132-136
Rye is known for its high tolerance of aluminium in the soils in comparison with wheat and other cereals. To localize the major gene/ genes controlling aluminium tolerance on the rye chromosomes, four series of wheat‐rye addition lines, two sets of triticale D(R) substitution lines and several wheat/rye translocation lines were tested in experiments on seedlings grown in nutrient solutions with various concentrations of aluminium. The results indicate that the major locus responsible for Al tolerance in rye is located on the short arm of chromosome 3R. The importance of these results for controlled introgressions into cereals is discussed.  相似文献   

20.
K. K. Nkongolo    K. C. Armstrong    A. Comeau    C. A. St.  Pierre 《Plant Breeding》1992,109(2):123-129
Common wheat × hexaploid triticale hybrids were produced and evaluated for tolerance to barley yellow dwarf virus disease (BYD). The BYD tolerance expression varied with wheat × triticale combination. The selection for BYD tolerance increased the recovery of tolerant genotypes in the next generations. Homozygous tolerant and susceptible lines were obtained in advanced generations. The rye chromosomes 1R, 2R, and 4R with 7R were transmitted as disomic or monosomic, disomic, and double disomic substitution to the late generations of ‘Musala’ (common wheat) בMuskox 658’ (triticale), ‘Encruzilhada’ (common wheat) בNord Kivu’ (triticale) and ‘Encruzilhada’× 12th. International Triticale Screening Nursery 267 (12ITSN267) (triticale), respectively. A clear association was established between the 1R chromosome of the ‘Muskox 658’ triticale line and the tolerance to BYDV. Results suggest that the 2R chromosome may be involved in BYD tolerance of ‘Nord Kivu’ triticale line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号