首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Scab caused by Gibberella zeae Petch., in common wheat, is one of the most severe diseases in China. A source population C0, bred for scab resistance, was developed through three cycles of multiple-parent crossing and intercrossing by means of the dominant male-sterile gene Ta1 (Ms2), according to Wu's scheme. Phenotypic recurrent selection methods for increasing the resistance to scab-infection of spikelets and seeds with the male-sterile plants were carried out simultaneously in Nanjing and Shanghai and at Jianyang, Fujian Province, for three cycles. The generations from C0 to C3 and two check cultivars were evaluated, using a randomized block design, under conditions of an artificially induced epidemic of scab during 1988–1990. The results indicate that there were significant differences in the resistance to scab between these generations. On average, the percentages of diseased spikelets and seeds of the male-fertile plants were reduced by 9% and 10%, respectively. The frequency of resistant plants was distinctly enhanced by recurrent selection. Analysis of variance showed that no significant differences existed between cycles of recurrent selection in agronomic characters such as plant height, spikes per plant, spike length, numbers of spikelets and seeds per spike, weight of seeds per spike and 100-kernel weight, days to heading and to maturity. Except for plant height, most of these traits tended to be slightly improved with improvement of resistance in the gene pool. The variance for resistance in the generations was decreased under selection. Recurrent selection for scab resistance using the dominant male-sterile gene Ta1 (Ms2) was both an effective and feasible breeding method for producing this character in wheat.  相似文献   

2.
Fusarium head blight (FHB), caused by Fusarium graminearum and Fusarium culmorum, is a devastating disease in cereals. This study was undertaken to estimate progeny means and variances in each of five winter triticale and winter wheat crosses using unselected F2−derived lines in F4 or F5 generation bulked at harvest of the previous generation. Fifty (triticale) and 95 (wheat) progeny per cross were inoculated in two (triticale) or three (wheat) field environments. FHB rating was assessed on a whole-plot basis. Mean disease severities of the parents ranged from 2.3 to 6.4 in triticale and from 3.1 to 6.5 in wheat on a 1-to-9 scale (1 = symptomless, 9 = 100% infected). The midparent values generally resembled the means of their derived progeny. Significant (P < 0.01) genotypic variance was detected within each cross, but genotype × environment interaction and error variances were also high for both crops. Medium to high entry-mean heritabilities (0.6–0.8) underline the feasibility of selecting F2-derived bulks on a plot basis in several environments. Phenotypic correlation of FHB resistance between generation F2:4 and F2:5 was r = 0.87 (P < 0.01) tested across 150 wheat bulks at two locations. Our estimates of selection gain are encouraging for breeders to improve FHB resistance in triticale and wheat by recurrent selection within adapted materials.  相似文献   

3.
Summary Genotype-environment interactions in F1 hybrids between a selection of current commereial varicties as male parents and a balanced tertiary trisomic male-sterile female were investigated. Sixteen environments were employed, comprising eight treatments in each of two seasons. Hybrid stabilities in terms of yield response to changing environments, were found to be very similar to those of the parents, however hybrid yields exceeded parental yields in all but one instance. A heterotic effect for plant height was also observed.  相似文献   

4.
Fusarium head blight (FHB) infects all cereals including maize and is considered a major wheat disease, causing yield losses and mycotoxin contamination. This study aimed to compare the realized selection gain from marker and phenotypic selection in European winter wheat. A double cross (DC) combined three FHB resistance donor-QTL alleles (Qfhs.lfl-6AL and Qfhs.lfl-7BS from ‘Dream’, and one QTL on chromosome 2BL from ‘G16-92’) with two high yielding, susceptible winter wheats, ‘Brando’ and ‘LP235.1’. The base population of 600 DC derived F1 lines was on one hand selected for the respective QTLs by SSR markers (marker-selected cycle, CM), resulting in 35 progeny possessing different combinations of beneficial donor-QTL alleles. On the other hand it was selected phenotypically, only by FHB rating, and the best 20 lines were recombined and selfed (phenotypically selected cycle, CP). The variants CP, CM, and an unselected variant (C0) were tested at four locations by inoculation of Fusarium culmorum. Resistance was measured as the mean of multiple FHB ratings (0–100%). FHB severity was reduced through both phenotypic and marker selection by 6.2 vs. 5.0%, respectively. On a per-year basis, marker selection by 2.5% was slightly superior to phenotypic selection with 2.1%, because the first variant saved 1 year. Marker-selected lines were on average 8.6 cm taller than phenotypically selected lines. A high genetic variation within the marker-selected variant for FHB resistance and the high effect of a resistance-QTL allele on straw length indicate that additional phenotypic selection will further enhance selection gain.  相似文献   

5.
R. N. Kulkarni 《Euphytica》1994,78(1-2):103-107
Summary Phenotypic recurrent selection was carried out for oil content in East Indian lemongrass, Cymbopogon flexuosus (Steud) Wats. In each cycle, the top 5% of plants for oil content were selected. Their ramets were used for the establishment of replicated polycross blocks in isolation. Realized gains from selection were determined by evaluating the populations and the best clones from each population in separate two-year replicated trials. Three cycles of recurrent selection increased oil content by 32% per cycle at the population level. Realized gains from selection were slightly smaller or similar to predicted gains. Mean realized heritability for oil content was 0.56. At the clonal level, the best C1 and the best C2 clones had, respectively, a 22% and 73% higher oil content than the best clone from the base population (C0). Selection for oil content did not adversely affect leaf yield, dry matter content or citral content in oil. Probable reasons for the high response to selection are mentioned.  相似文献   

6.
Summary The effect of a recurrent selection procedure was evaluated in a winter barley (Hordeum vulgare L.) population. Cycle zero (C0) was initiated by crossing six high yielding winter barley cultivars with the short straw cv Onice. The F1's were crossed according to a diallel scheme without reciprocals. A total of 750 S0 plants were derived and evaluated; 329 S0 plants were selected and their progenies (S1 lines) tested. Fifteen S1 lines were chosen and used as parents of cycle 1 (C1), by producing 105 F1 hybrids which simulated a random mating offspring. One hundred and three randomly chosen S1 lines belonging to C0, and 103 S1 lines belonging to C1, were evaluated at two locations.For grain yield a significant difference between cycles was observed. From C0 to C1 the grain yield increased with 307 g/m2. This increase was due to a higher number of seeds per m2. For plant height, heading date and 100-kernel weight no differences between cycles were observed.The positive results obtained in this study indicate the potential usefulness of recurrent selection for developing parents or lines superior for grain yield, with little change in other important agronomic traits.  相似文献   

7.
The inheritance of Fusarium head blight (FHB) resistance was investigated in eight western European wheat lines using a half-diallel of F1 crosses. The parents and F1 crosses were point-inoculated, with a highly aggressive isolate of Fusarium graminearum, in replicated field and glasshouse trials. Type II resistance was assessed by measuring the % FHB spread and % wilted tips. There was a good correlation between the two disease parameters, % FHB spread area under the disease progress curve (AUDPC) and % wilted tips AUDPC (r = 0.86, P < 0.01). Correlation coefficients between the field and glasshouse environments were r = 0.46 (P < 0.01) for % FHB spread AUDPC and r = 0.40 (P < 0.05) for % wilted tips AUDPC. Both general combining ability (GCA) and specific combining ability (SCA) effects influenced the inheritance of FHB resistance, suggesting that in this set of parents both additive and non-additive (dominance or epistatic) effects influence the inheritance of type II FHB resistance. Highly significant GCA-by-environment (P < 0.0001) and SCA-by-environment (P < 0.005) interactions were also observed. Specific combinations of western European wheat varieties were identified with type II FHB resistance at a level equal to or more resistant than the winter wheat variety ‘Arina’.  相似文献   

8.
Fusarium head blight (FHB) caused by Fusarium spp. is one of the most important fungal diseases of wheat (Triticum aestivum L.) in regions with wet climatic conditions. Improvement of the FHB resistance by developing new varieties requires sound knowledge on the inheritance of resistance. An 8 × 8 diallel analysis was performed to estimate general (GCA) and specific (SCA) combining ability of resistance to FHB. The F1s and parental lines were evaluated under artificial inoculation at the experimental field of IFA-Tulln, Austria during 2001 and 2002. Disease severity was evaluated by repeated scoring of the percentage of infected spikelets and calculating an area under the disease progress curve (AUDPC). The analysis of combining ability across two years showed highly significant GCA and non-significant SCA effects indicating the importance of additive genetic components in controlling FHB resistance. The significant GCA-by-year interaction presented the role of environmental factors in influencing the FHB reaction of wheat lines. The comparison of the crosses with low FHB infection and GCA effects of their parents showed that such crosses involved at least one parent with high or average negative GCA effect. The results revealed that it is feasible to use highly or moderately resistant genotypes and conventional breeding methods to achieve genetic improvement of FHB resistance in spring wheat.  相似文献   

9.
Summary Recurrent selection, using genetic male sterility to facilitate intermating in Glycine max, was evaluated when selecting among individual space-planted S0 soybean plants for three yield-related traits: 1) seed yield per se (YLD), 2) apparent harvest index (AHI), and 3) a selection index in which seed yield was regressed on maturity (REG). The original intermating population was a combination of the cultivar Century and two F2 populations segregating for male sterility. The selection intensity through three cycles of selection was 20%. The YLD population increased in mean yield by 2.8±2.2 g plant-1 cycle-1 buf shifted significantly toward late maturity by 3.9±0.6 days cycle-1. The AHI population decreased in yield by 4.4±2.6 g cycle-1 while maturity shifted slightly earlier; there was very little change in AHI. The REG population increased in yield by 5.7±2.4 g plant-1 cycle-1 while shifting toward later maturity by only 0.8±0.5 day cycle-1. We concluded that selection among S0 plants in these populations, using the selection index of yield regressed on maturity, was affective in increasing single plant yields without causing a significant shift in maturity. Selecting for yield per se caused an unacceptable shift toward late maturity and selection for AHI was ineffective for increasing yield or AHI.  相似文献   

10.
Summary Recurrent selection programs can be manipulated by varying either the extensiveness of testing used to identify superior lines or the number of intermating generations conducted among the superior lines between cycles of selection. The research was conducted to compare the performance of soybean (Glycine max (L.) Merr.) lines derived from populations developed by recurrent selection for seed yield using a factorial arrangement that combined one or two stages of replicated yield testing to identify superior lines with one or three generations of intermating among the selected lines. The base population AP6, which was used for this evaluation of alternative strategies of recurrent selection, was derived from 40 high-yielding strains of Maturity Groups 0 to IV. For this study, the 40 original parents of AP6 and the lines used as the parents for the most advanced cycle of selections for each of the strategies were evaluated in four Iowa environments. The number of cycles of selection completed for the strategies under evaluation varied from two to five. Strategies with two stages of replicated yield testing to select superior lines resulted in a larger number of high-yielding lines than when only one stage of testing was conducted. A larger number of high-yielding lines was obtained from strategies with one generation of intermating than when three generations were used. With the procedures used for the one-stage and two-stage tests in this study, the results indicated that an appropriate strategy for recurrent selection of seed yield in soybean would involve two stages of replicated yield testing to identify superior lines and one generation of intermating among the selected lines to form a new population.Journal Paper no. J-12025 of the Iowa Agriculture and Home Economics Experiment Station, Projekt 2475, Ames, IA.  相似文献   

11.
Fusarium head blight (FHB) is one of the most destructive diseases in wheat. Identification of resistance gene analogs (RGAs) may provide candidate genes for cloning of FHB resistance genes and molecular markers for marker-assisted improvement of wheat FHB resistance. To identify potential RGAs associated with FHB resistance in wheat, 18 primer pairs of RGAs were screened between two parents (Ning7840 and Clark) and seven informative RGA primer combinations were analyzed in their recombinant inbred lines (RILs). Five PCR products amplified from three primer combinations showed significant association with FHB resistance, and their sequences are similar to the gene families of RGAs. Three of them (RGA14-310, RGA16-462, RGA18-356) were putatively assigned to chromosome 1AL and explained 12.73%, 5.57% and 5.9% of the phenotypic variation for FHB response in the F7 population, and 10.37%, 3.37% and 4.53% in F10 population, respectively; suggesting that these RGAs may play a role in enhancing FHB resistance in wheat. Analysis of nucleotide sequence motifs demonstrated that all the RGA markers contain a heat shock factor that initiates the production of heat shock proteins. A sequence tagged site (STS) marker (FHBSTS1A-160) was successfully converted from RGA18-356, and validated in fourteen other cultivars. Significant interaction between the quantitative trait locus (QTL) on 1AL and the QTL on 3BS was detected. The marker FHBSTS1A-160 in combination with markers linked to the major QTL on 3BS could be used in marker-assisted selection (MAS) for enhanced FHB resistance in wheat.  相似文献   

12.
J. Hoogendoorn 《Euphytica》1985,34(2):545-558
Summary A reciprocal F1 monosomic analysis of chromosomal differences between Spica and Bersée was carried out under controlled environment conditions. Chromosomes associated with differences in days to ear emergence, number of leaves and number of spikelets were identified. The results indicated that chromosome 2B of Spica carries a photoperiod insensitivity allele at the Ppd 2 locus. Both Spica and Bersée appear to have a vernalization insensitity allele at the Vrn 2 locus on chromosome 5B. On chromosome 3A, 4B, 4D and 6B factors were found with major effects on earliness per se, diffeences in ear emergence and number of spikelets which were independent of photoperiod and vernalization. The possibility that these factors influence growth rate is discussed.  相似文献   

13.
Summary Stem solidness in the wheat plant provides resistance to the wheat stem sawfly, a pest of wheat in Montana and North Dakota, but some agronomists have been concerned that stem solidness might be related to low grain yields. We evaluated 17 spring wheat crosses for stem solidness, grain yield, and other agronomic traits in F2 through F4 generations from 1972 to 1975.Highly significant correlation (0.735) and regression (0.731) coefficients between F2 and F3 generations verify previous studies showing that stem solidness is highly heritable and that selection in F2 should be successful. Solid-stemmed F4 composites yielded more than hollow stemmed composites at Bozeman and equal yields were obtained at Huntley, indicating that stem solidness is not a deterrent to high grain yield.Joint contribution of Federal Research, Science and Education Administration, U.S. Department of Agriculture and the Montana Agricultural Experiment Station, Bozeman, MT 59717. Published with approval of the Director of the Montana Agricultural Experiment Station as Paper No. 815, Journal Series.  相似文献   

14.
Summary The inheritance of field resistance to downy mildew in lettuce derived from cv. Grand Rapids was studied in F2, F3 and F4 progeny from a cross with the more susceptible cv. Lobjoits Green Cos. The results for 32 randomly produced F3 families and the F2 population corresponded closely although the absolute level of resistance varied from season to season according to disease pressure and environmental conditions. The field resistance character showed a quantitative pattern of inheritance but the rapid response to selection at F3 implied that only a few genes may be involved. F4 families raised from families selected from the two extremes of the F3 distribution fell into distinct categories with resistance levels corresponding to that of their F3 parents. An association between resistance and morphological features of the resistant parent was present at F2 but not in subsequent generations when individuals and families which were as resistant as cv. Grand Rapids and yet bore little morphological resemblance to this cultivar were readily recovered.  相似文献   

15.
Fusarium head blight (FHB) is a destructive disease of wheat worldwide. FHB resistance genes from Sumai 3 and its derivatives such as Ning 7840 have been well characterized through molecular mapping. In this study, resistance genes in Wangshuibai, a Chinese landrace with high and stable FHB resistance, were analyzed through molecular mapping. A population of 104 F2-derived F7 recombinant inbred lines (RILs) was developed from the cross between resistant landrace Wangshuibai and susceptible variety Alondras. A total of 32 informative amplified fragment length polymorphism (AFLP) primer pairs (EcoRI/MseI) amplified 410 AFLP markers segregating among the RILs. Among them, 250 markers were mapped in 23 linkage groups covering a genetic distance of 2,430 cM. In addition, 90 simple sequence repeat (SSR) markers were integrated into the AFLP map. Fifteen markers associated with three quantitative trait loci (QTL) for FHB resistance (P < 0.01) were located on two chromosomes. One QTL was mapped on 1B and two others were mapped on 3B. One QTL on 3BS showed a major effect and explained up to 23.8% of the phenotypic variation for type II FHB resistance.  相似文献   

16.
Summary Several hybrids between Oryza sativa and O. glaberrima and their backcrosses with O. sativa were studied. Their seed sterility was very different; large differences were also observed in the level of pollen sterility and in the earliness of microspore failure. The proportion of aborted embryo sacs was much lower than the rate of sterile male gametophytes. The backcross populations were much more sterile than the corresponding F1 hybrids. On the base of our observations and according to the literature, we may conclude that genic unbalance is the main cause of sterility of these hybrids, but that physiological factors may also be involved. Thus a restoration of fertility is generally possible by selection. On the other hand, male-sterile lines could be bred from some of these hybrids.  相似文献   

17.
An intraspecific (Tetir × ILL 323) and an interspecific (Alpo × L. odemensis) lentil hybrid were multiplied in vitro in three consecutive micropropagation cycles to increase the production of F2 seeds. Cloning efficiencies were slightly higher for Tetir × ILL323 (83%) compared to Alpo × L. odemensis (67%). A total of 982 F2 seeds were produced in the experiment with Alpo × L. odemensis, consisting of the 334 F2 seeds of the original hybrid and 648 F2 seeds produced by the 12 plants cloned; consequently, F2 seed production was increased three-fold over the original hybrid (194%). A total of 6050 F2 seeds were produced in the experiment with Tetir × ILL 323, made up of the 483 F2 seeds of the original hybrid and 5567 F2 seeds produced by the 15 plants cloned; therefore, F2 seed production was increased by more than twelve-fold over the original hybrid (1153%). In both hybrids the F2 seed production of cloned plants diminished in the three consecutive multiplication cycles, with the plants having experienced less vegetative development. In lentil, F2 seed production of cloned plants is related for the first time to the length of their period of vegetative development. In conclusion, micropropagation of hybrids is an interesting tool to construct from a single individual large F1 populations that enable to increase by a manifold the production of F2 seeds useful for genetic studies and breeding.  相似文献   

18.
B. Maris 《Euphytica》1990,46(1):15-33
Summary To determine whether in potatoes the tetraploid level is preferable to the diploid level, especially regarding tuber yield, four diploid (2n=2×=24) Solanum phureja x dihaploid S. tuberosum hybrid parents and their vegetatively doubled, tetraploid (2n=4×=48) counterparts were intermated, which resulted in two F1 hybrid families at both levels of ploidy. The parents and clones of the F1 families and their offspring were used in crosses in such a way that in addition Sib1, Sib2, F1×Sib1, BC1 and Sib1×Sib1 families were produced. Of the first clonal generation of the 12 2 x families and their 12 counterpart 4 x families two tubers per clone were planted in three replications in a field experiment at Sturgeon Bay in 1969; of the parents six tubers were planted in each replication. Data were recorded on 16 characters, including plant height at four different times.The ANOVA's showed significant clone effects within each family for all characters. Computed from all family means as well as from the family means per ploidy level, differences due to family were also significant for all characters except one.As at the 2 x level and at the 4 x level of ploidy the mean phenotypic correlations between characters were of similar magnitude, it is concluded that they are independent of ploidy level.With the exception of eye depth, the mean coefficient of variation was greater at the 2 x than at the 4 x level of ploidy, indicating the greatest response to selection for those characters at the 2 x level. From the differences in family means between the 4 x and the 2 x level of ploidy it was apparent that the 4 x families generally had significantly taller plants, later maturity, fewer tubers, higher mean tuber weight, more tuber yield and more dry matter yield than their counterpart 2 x families. In contrast, the 4 x parents had on the average shorter plants, lower mean tuber weight, much lower tuber yield and lower dry matter yield than their 2 x counterparts.The phenotypic correlation and Spearman's rank correlation between the family means of the 2 x and the 4 x level of ploidy were positive for almost all characters and significant for nearly half of them.From the results it is concluded that 1. in potatoes the 4 x level of ploidy is preferable to the 2 x level, and 2. the performance of 4 x families is predictable from the performance of their counterpart 2 x families.Based on results mentioned in the literature and on the present results, a continued use of S. tuberosum dihaploids in potato breeding needs to be dissuaded.  相似文献   

19.
Summary Fertility restoration genes in Triticum aestivum L. in Texas Restorer Composite (TRC), D6301, and four CIMMYT restorer lines were studied, and selection was made for higher fertility in TRC. Mean-while, outcrossing percentages of seed set for 27 spring habit cytoplasmic male sterile (cms) varieties were evaluated for 3 to 5 years at Davis. The winter-habit TRC material did not restore reasonably good fertility, and the response to selection for higher fertility seemed to be slow. This poor fertility could be partly due to its late winter growth habit causing flowering at a period of high temperature and low humidity at Davis. The highest F1 fertility was 46.6% in the cross cms Ramona x TRC-6, and its F2 segregated into the ratio of 15 fertile to 1 sterile, with fertility ranging from 3.2 to 100%. Suggested for its improvement was intensive selection in the original TRC material and in the segre-gating F2 population, followed by intercrossing. D6301 has 2 fertility restoration genes with different strengths which restore fertility up to 45.2% when both genes are heterozygous. D6301 is quite likely heterogeneous for these genes. Four CIMMYT restorer lines, D7464, D7465, D7466, and D7467, had satisfactory F1 fertility restoration after crossing with cms Ramona 50. In 1975, the fertilities of the F1's ranged from 71 to 85% and were over 90% in 1976. The F2 population of the cross cms Ramona 50 × D7464 segregated into a ratio of 3 fertile to 1 sterile, indicating that D7464 has a single dominant gene for fertility restoration. The F2's of crosses cms Ramona 50 × D7465, cms Ramona 50 × D7466, and cms Ramona 50 × D7467 gave a ratio of 15 fertile to 1 sterile, indicating that two gene pairs in these three lines were responsible for the fertility restoration. The best of this group was D7467 which restored fertility fully after being crossed with cms Ramona 50 (T. timopheevi cytoplasm).The early-flowering cms male-sterile varieties had higher outcrossing rates (16 to 38%) than late varieties (6 to 30%) over a 5-year period. This was due to hot and dry weather during the late growing season as well as to the rarity of windborne pollen. In 1970, 1971, 1972, and 1976, the variation among varieties was rather great. Some of them such as Roque 66 and Bajio 67, had consistently high outcrossing rates. This outcrossing ability seemed to be inherited and probably associated with the open-flowering characteristics of each variety.  相似文献   

20.
Summary Aspects of selection for yield and harvest index were investigated by simulating selection using data from random pedigreed F2, F3, F4 and F5 derived lines from two crosses grown in plots at two sites over two years.Improvement in yield through selection was obtained when the response was measured at the same site and in the same year as the selection. Selecting the best 10 per cent of F2 to F4 derived lines gave F5 derived lines that outyielded random selections by 19 to 53 per cent for one cross and 5 to 23 per cent for the second cross. These lines were 41 to 50 per cent better than the mid-parent in one cross, but were less than the mid-parent in the other cross.However, the response to selection when measured in a different year was little better than random selection. The effect of different sites also reduced the effectiveness of selection.Selection of harvest index in early generations for improvement of yield was ineffective when response was measured at the same site in the same year, or in different years.Contrary to some theoretical proposals, the same improvement in yield was obtained by selecting in early or late generations. While high yielding genotypes may be lost by delaying selection, this is counteracted by the better predictive value of late generations due to their greater homozygosity and homogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号