首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Growth and carcass data on 7,154 cattle from a purebred project and 1,241 cattle from a crossbred project, comprising 916 first-crosses and 325 purebred Brahman controls, were analyzed to estimate genetic parameters, including the genetic correlations between purebred and crossbred performance (rpc). The data also allowed the estimation of sire breed means for various growth and carcass traits. Crossbred calves were produced using 9 Angus, 8 Hereford, 7 Shorthorn, 14 Belmont Red, and 8 Santa Gertrudis sires bred to Brahman dams. These same sires produced 1,568 progeny in a separate purebreeding project. Cattle in both projects were managed under two finishing regimens (pasture and feedlot) to representative market live weights of 400 (domestic), 520 (Korean), and 600 kg (Japanese). The traits studied included live weight at around 400 d of age (400W), hot carcass weight (CWT), retail beef yield percentage (RBY), intramuscular fat percentage (IMF), rump fat depth (P8), and preslaughter ultrasound scanned eye muscle area (SEMA). Estimated breeding values (EBV) of sires from their BREEDPLAN genetic evaluations were used to assess their value in predicting crossbred performance. Regressions of actual crossbred calf performance on sire EBV for each of the traits differed little from their expectation of 0.5. Angus sires produced crossbred carcasses with the highest P8 and lowest RBY but highest IMF. In contrast, crossbred progeny from Belmont Red sires had the lightest 400W and CWT, lowest P8, and highest RBY. Estimates of rpc were 0.48, 0.48, 0.83, 0.95, 1.00, and 0.78 for 400W, CWT, RBY, IMF, P8, and SEMA, respectively. Commercial breeders selecting sires for crossbreeding programs with Brahman females, based on EBV computed from purebred data, might encounter some reranking of sire's performance for weight-related traits, with little expected change in carcass traits.  相似文献   

2.
Data from 1170 records of fattening calves were collected on growth and carcass traits from a Japanese Black cattle herd located in Miyagi prefecture, Japan. The objective was to determine direct and maternal heritabilities, direct and maternal genetic correlations and phenotypic correlations between bodyweight at the beginning of the fattening period (BWS), bodyweight at the end of the fattening period (BWF), carcass weight (CW), average daily gain during the fattening period (ADG), rib eye area (REA), rib thickness, subcutaneous backfat thickness (SFT), yield estimate (YE) and beef marbling score (BMS). Direct heritability estimates of 0.16 (SFT) and 0.07 (BMS) were low, whereas estimates of the other traits were medium to high and ranged between 0.44 (REA) and 0.78 (CW). Direct genetic correlations were all positive, except those that were between BWS and SFT, and between BWS and YE (?0.49 and ?0.14, respectively). The lowest positive genetic correlation was between BWS and BMS (0.04) and the highest was between BWF and CW (0.99). The phenotypic correlation coefficients ranged between ?0.41 (between SFT and YE) and 0.96 (between BWF and CW). Maternal heritability estimates were generally low and ranged between 0.00 for BMS and 0.08 for BWS, CW and ADG. Selection programs comprising information on growth and carcass traits of calves and maternal traits of dams were suggested.  相似文献   

3.
Knowledge of the genetic control of pork quality traits and relationships among pork quality, growth, and carcass characteristics is required for American swine populations. Data from a 2 x 2 diallel mating system involving Landrace and Duroc pigs were used to estimate heritabilities and genetic correlations among growth (ADG), real-time ultrasonic (US) measures of backfat thickness (BF) and longissimus muscle area (LMA), carcass characteristics, and various pork quality traits. Data were collected from 5,649 pigs, 960 carcasses, and 792 loin chops representing 65, 49, and 49 sires, respectively. Genetic parameters were estimated by REML assuming animal models. Heritability estimates were moderate to high for ADG, USBF, USLMA, carcass BF, and LMA, percentage of LM lipid (IMF), pork tenderness, and overall acceptability. Estimates were low to moderate for percentage of cooking loss, pH, shear force, percentage of LM water, water-holding capacity (WHC), pork flavor, and juiciness. Genetic correlations between US and carcass measures of BF and LMA indicate that selection based on US data will result in effective improvement in carcass characteristics. Selection for increased LMA and(or) decreased BF using US is, however, expected to result in decreased IMF and WHC, increased percentage of LM water and shear value, and in decreased juiciness, tenderness, and pork flavor. Average daily gain was favorably correlated with IMF and unfavorably correlated with shear force. Selection for increased ADG is expected to improve WHC but to decrease the percentage of LM water, with an associated decrease in juiciness. The results of this study suggest the feasibility of including meat quality in selection objectives to improve product quality. Favorable genetic correlations between IMF and eating quality traits suggest the possible merit of including IMF in the selection objective to improve, or restrict change in, pork eating quality.  相似文献   

4.
The objectives of this study were 1) to investigate the effect of changes in carcass market prices due to bovine spongiform encephalopathy (BSE) occurrences on estimates of genetic parameters and economic weights for carcass traits; and 2) to compare direct and indirect approaches for prediction of genetic merit of Japanese Black cattle for profitability of their progeny. The direct approach utilized estimated breeding values of carcass prices, whereas in the indirect approach, selection indices were constructed as products of economic weights and breeding values of component traits. Data were composed of 80,191 carcass records divided into 5 periods based on changes in carcass prices as a result of occurrences of BSE in Japan and the United States. The periods ranged from a period before occurrence of BSE in Japan to a period of beef import restrictions and a rise in prices. Carcass traits analyzed included HCW, LM area, rib thickness, subcutaneous fat thickness, and marbling score (MS). Price traits included carcass unit price and carcass sale price. Estimates of heritability for price traits were moderate (0.32 to 0.46) and slightly sensitive to changes in carcass market prices. Genetic correlations of HCW and LM area with price traits increased and that between MS and carcass sale price decreased with period, whereas estimates of genetic correlation between MS and carcass unit price were high in all periods (0.96 to 0.98). Economic weights for carcass traits varied with periods because carcass prices were highly sensitive to economic importance of traits. Nevertheless, correlations between within-period breeding values for price traits estimated using direct and indirect approaches were high (0.92 to 0.99). This result indicates that selection realized by direct and indirect approaches will provide very similar results. A comparison among within-approach breeding values estimated in different periods showed that the largest differences in breeding values of sires for price traits were between the periods after occurrences of BSE in Japan and in the United States. Economic effects of BSE occurrences influenced the importance of carcass traits and economic merits of price traits through a change of carcass prices from period to period, irrespective of the approach taken in determining the genetic merit of breeding animals for profitability of their progeny.  相似文献   

5.
Records on 514 bulls from the sire population born from 1978 to 2004, and on 22,099 of their field progeny born from 1997 to 2003 with available pedigree information (total number = 124,458) were used to estimate genetic parameters for feed intake and energy efficiency traits of bulls and their relationships with carcass traits of field progeny. Feed intake and energetic efficiency traits were daily feed intake, TDN intake, feed conversion ratio (FCR), TDN conversion ratio (TDNCR), residual feed intake (RFI), partial efficiency of growth, relative growth rate, and Kleiber ratio. Progeny carcass traits were carcass weight (CWT), yield estimate, ribeye area, rib thickness, subcutaneous fat thickness (SFT), marbling score (MSR), meat color standard (MCS), fat color standard (FCS), and meat quality grade. All measures of feed intake and energetic efficiency were moderately heritable (ranged from 0.24 to 0.49), except for partial efficiency of growth and relative growth rate, which were high (0.58) and low (0.14), respectively. The phenotypic and genetic correlations between FCR and TDNCR were >or=0.93. Selection for Kleiber ratio will improve all of the energetic efficiency traits with no effect on feed intake measures (daily feed intake and TDN intake). The genetic correlations of FCR, TDNCR, and RFI of bulls with most of the carcass traits of their field progeny were favorable (ranged from -0.24 to -0.72), except with fat color standard (no correlation), MCS, and SFT. Positive (unfavorable) genetic correlations of MCS with FCR, TDNCR, and RFI (0.79, 0.70, and 0.51, respectively) were found. The SFT was negatively genetically correlated with FCR and TDNCR (-0.32 and -0.20, respectively); however, the genetic correlation between RFI and SFT was not significantly different from zero (r(g) = -0.08 +/- 0.12). Favorable correlated responses in CWT, yield estimate, ribeye area, rib thickness, MSR, and meat quality grade would be predicted for selection against any measure of energetic efficiency. The correlated responses in CWT and MSR of progeny were greater for selection against RFI than for selection against any other energetic efficiency trait. Results of this study indicate that RFI should be preferred over other measures of energetic efficiency to include in selection programs.  相似文献   

6.
Genetic parameters for carcass traits of 1774 field progeny (1281 steers and 493 heifers), and their genetic relationships with feed efficiency traits of their sire population (740 bulls) were estimated with REML. Feed efficiency traits included feed conversion ratio (FCR) and residual feed intake (RFI). RFI was calculated by the residual of phenotypic (RFIphe) and genetic (RFIgen) regression from the multivariate analysis of feed intake on metabolic weight and daily gain. Progeny traits were carcass weight (CWT), rib eye area (REA), rib thickness (RBT), subcutaneous fat, yield estimate (YEM), marbling score (MSR), meat quality grade, meat color, fat color, meat firmness and meat texture. The estimated heritability for CWT (0.70) was high and heritabilities for all the other traits were moderate (ranged from 0.32 to 0.47), except for meat and fat color and meat texture which were low (ranged from 0.02 to 0.25). The high genetic correlation (0.62) between YEM and MSR suggests that simultaneous improvement of high carcass yield and beef marbling is possible. Estimated genetic correlations of RFI (RFIphe and RFIgen) of sires with CWT (− 0.60 and − 0.53) and MSR (− 0.62 and − 0.50) of their progeny were favorably negative indicating that the selection against RFI of sires may have contributed to produce heavier carcass and increase in beef marbling. The correlated responses in CWT, REA and RBT of progeny were higher to selection against RFI than those to selection against FCR of sires. This study provides evidence that selection against RFI is preferred over selection against FCR in sire population for getting better correlated responses in carcass traits of their progeny.  相似文献   

7.
Genetic parameters for feed efficiency traits of 740 Wagyu bulls and growth and carcass traits of 591 of their progeny, and the genetic relationship between the traits of bulls and their progeny were estimated with the residual maximum likelihood procedure. The estimations were made for the test periods of 140 days (77 bulls), 112 days (663 bulls) and 364 days (591 steer progeny). Feed efficiency traits of bulls included feed conversion ratio (FCR), phenotypic residual feed intake (RFIphe) and genetic residual feed intake (RFIgen). Progeny traits were bodyweight at the start of the test (BWS), bodyweight at finish (BWF), average daily gain (ADG), rib eye area (REA), marbling score (MSR), dressing percentage (DRS) and subcutaneous fat thickness (SFT). The estimated heritability for MSR (0.52) was high and for BWS (0.35), BWF (0.40) and ADG (0.30) were moderate, whereas REA, DRS and SFT were low. Positive genetic correlations among BWS, BWF, ADG and SFT and negative genetic correlations between MSR and DRS and between REA and SFT were found. The genetic correlations between residual feed intake (RFIphe and RFIgen) of bulls and bodyweights (BWS and BWF) of their progeny ranged from ?0.27 to ?0.61. Residual feed intake was positively correlated with REA and DRS and negatively correlated with MSR and SFT. No responses in ADG and weakly correlated responses in REA and DRS of progeny were found to select against feed efficiency traits of bulls. The present experiment provides evidence that selection against lower RFI (higher feed efficiency) would be better than selection against lower FCR for getting better correlated responses in bodyweights.  相似文献   

8.
Covariance components were estimated for growth traits (BW, birth weight; WW, weaning weight; YW, yearling weight), visual scores (BQ, breed quality; CS, conformation; MS, muscling; NS, navel; PS, finishing precocity), hip height (HH), and carcass traits (BF, backfat thickness; LMA, longissimus muscle area) measured at yearling. Genetic gains were obtained and validation models on direct and maternal effects for BW and WW were fitted. Genetic correlations of growth traits with CS, PS, MS, and HH ranged from 0.20 ± 0.01 to 0.94 ± 0.01 and were positive and low with NS (0.11 ± 0.01 to 0.20 ± 0.01) and favorable with BQ (0.14 ± 0.02 to 0.37 ± 0.02). Null to moderate genetic correlations were obtained between growth and carcass traits. Genetic gains were positive and significant, except for BW. An increase of 0.76 and 0.72 kg is expected for BW and WW, respectively, per unit increase in estimated breeding value (EBV) for direct effect and an additional 0.74 and 1.43, respectively, kg per unit increase in EBV for the maternal effect. Monitoring genetic gains for HH and NS is relevant to maintain an adequate body size and a navel morphological correction, if necessary. Simultaneous selection for growth, morphological, and carcass traits in line with improve maternal performance is a feasible strategy to increase herd productivity.  相似文献   

9.
Genetic parameters and trends in the average daily gain (ADG), backfat thickness (BF), loin muscle area (LMA), lean percentage (LP), and age at 90 kg (D90) were estimated for populations of Landrace and Yorkshire pigs. Additionally, the correlations between these production traits and litter traits were estimated. Litter traits included total born (TB) and number born alive (NBA). The data used for this study were obtained from eight farms during 1999 to 2016. Analyses were carried out with a multivariate animal model to estimate genetic parameters for production traits while bivariate analyses were performed to estimate the correlations between production and litter traits. The heritability estimates were 0.52 and 0.43 for ADG; 0.54 and 0.45 for BF; 0.25 and 0.26 for LMA; 0.54 and 0.48 for LP; and 0.56 and 0.46 for D90 in the Landrace and Yorkshire breeds, respectively. The ADG and D90 showed low genetic correlation with BF and LP. The LMA had ?0.40, ?0.32, 0.49, and 0.39 genetic correlations with ADG, BF, LP, and D90, respectively. Genetic correlations between production and litter traits were generally low, except for the correlations between LMA and TB (?0.23) in Landrace and ADG and TB (?0.16), ADG and NBA (?0.18), D90 and TB (0.19), and D90 and NBA (0.20) in Yorkshire. Genetic trends in production traits were all favorable except for LMA.  相似文献   

10.
Feed intake and efficiency of growth are economically important traits of beef cattle. This study determined the relationships of daily DMI, feed:gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F) and therefore increases as the efficiency of gain decreases and vice versa, residual feed intake (RFI), and partial efficiency of growth (efficiency of ADG, PEG) with growth and carcass merit of beef cattle. Residual feed intake was calculated from phenotypic regression (RFIp) or genetic regression (RFIg) of ADG and metabolic BW on DMI. An F1 half-sib pedigree file containing 28 sires, 321 dams, and 464 progeny produced from crosses between Alberta Hybrid cows and Angus, Charolais, or Alberta Hybrid bulls was used. Families averaged 20 progeny per sire (range = 3 to 56). Performance, ultrasound, and DMI data was available on all progeny, of which 381 had carcass data. Phenotypic and genetic parameters were obtained using SAS and ASREML software, respectively. Differences in RFIp and RFIg, respectively, between the most and least efficient steers (i.e., steers with the lowest PEG) were 5.59 and 6.84 kg of DM/d. Heritabilities for DMI, F:G, PEG, RFIp, and RFIg were 0.54 +/- 0.15, 0.41 +/- 0.15, 0.56 +/- 0.16, 0.21 +/- 0.12, and 0.42 +/- 0.15, respectively. The genetic (r = 0.92) and phenotypic (r = 0.97) correlations between RFIp and RFIg indicated that the 2 indices are very similar. Both indices of RFI were favorably correlated phenotypically (P < 0.001) and genetically with DMI, F:G, and PEG. Residual feed intake was tendentiously genetically correlated with ADG (r = 0.46 +/- 0.45) and metabolic BW (r = 0.27 +/- 0.33), albeit with high SE. Genetically, RFIg was independent of ADG and BW but showed a phenotypic correlation with ADG (r = -0.21; P < 0.05). Daily DMI was correlated genetically (r = 0.28) and phenotypically (r = 0.30) with F:G. Both DMI and F:G were strongly correlated with ADG (r > 0.50), but only DMI had strong genetic (r = 0.87 +/- 0.10) and phenotypic (r = 0.65) correlations with metabolic BW. Generally, the phenotypic and genetic correlations of RFI with carcass merit were not different from zero, except genetic correlations of RFI with ultrasound and carcass LM area and carcass lean yield and phenotypic correlations of RFI with backfat thickness (P < 0.01). Daily DMI had moderate to high phenotypic (P < 0.01) and genetic correlations with all the ultrasound and carcass traits. Depending on how RFI technology is applied, adjustment for body composition in addition to growth may be required to minimize the potential for correlated responses to selection in cattle.  相似文献   

11.
Genetic parameters for a range of sheep production traits have been reviewed from estimates published over the last decade. Weighted means and standard errors of estimates of direct and maternal heritability, common environmental effects and the correlation between direct and maternal effects are presented for various growth, carcass and meat, wool, reproduction, disease resistance and feed intake traits. Weighted means and confidence intervals for the genetic and phenotypic correlations between these traits are also presented. A random effects model that incorporated between and within study variance components was used to obtain the weighted means and variances. The weighted mean heritability estimates for the major wool traits (clean fleece weight, fibre diameter and staple length) and all the growth traits were based on more than 20 independent estimates, with the other wool traits based on more than 10 independent estimates. The mean heritability estimates for the carcass and meat traits were based on very few estimates except for fat (27) and muscle depth (11) in live animals. There were more than 10 independent estimates of heritability for most reproduction traits and for worm resistance, but few estimates for other sheep disease traits or feed intake. The mean genetic and phenotypic correlations were based on considerably smaller numbers of independent estimates. There were a reasonable number of estimates of genetic correlations among most of the wool and growth traits, although there were few estimates for the wool quality traits and among the reproduction traits. Estimates of genetic correlations between the groups of different production traits were very sparse. The mean genetic correlations generally had wide confidence intervals reflecting the large variation between estimates and relatively small data sets (number of sires) used. More accurate estimates of genetic parameters and in particular correlations between economically important traits are required for accurate genetic evaluation and development of breeding objectives.  相似文献   

12.
Using a multitrait animal model BLUP, selection was conducted over seven generations for growth rate (ADG), real-time ultrasound LM area (LMA), backfat thickness (BF), and intramuscular fat content (IMF) to develop a new line of purebred Duroc pigs with enhanced meat production and meat quality. This selection experiment examined 543 slaughtered pigs (394 barrows and 153 gilts) from the first to the seventh generation for meat quality traits. Further, electric impedance and collagen content of loin meat were measured from the fourth to sixth generation. The present study was intended to estimate genetic parameters of the correlated traits of tenderness (TEND), meat color (pork color standard: PCS; lightness = L*), drip loss (DL), cooking loss (CL), pH (PH), electric impedance (IMP), and collagen (COL) of the LM, and the genetic trends of these traits. Respective heritability estimates for IMF, TEND, DL, CL, PCS, L*, PH, IMP, and COL were 0.39, 0.45, 0.14, 0.09, 0.18, 0.16, 0.07, 0.22, and 0.23. Genetic correlations of IMF with ADG and BF were low and positive, but low and negative with LMA. Tenderness was correlated negatively with ADG (-0.44) and BF (-0.59), but positively correlated with LMA (0.32). The genetic correlation between LMA and DL was positive and high (0.64). The genetic correlations of TEND with IMF and COL were low (-0.09 and 0.26, respectively), but a moderate genetic correlation (0.43) between COL and IMF was estimated, suggesting related increases of IMF and connective tissue. Genetic correlations among meat quality traits suggested that when IMF increases, the water holding capacity improves. Genetic trends of meat quality traits showed increased IMF and lighter meat color.  相似文献   

13.
This paper's objectives were to estimate the genetic (co)variance components of the Gompertz growth curve parameters and to evaluate the relationship of estimated breeding values (EBV) based on average daily gain (ADG) and Gompertz growth curves. Finnish Yorkshire central test station performance data was obtained from the Faba Breeding (Vantaa, Finland). The final data set included 121,488 weight records from 10,111 pigs. Heritability estimates for the Gompertz growth parameters mature weight (alpha), logarithm of mature weight to birth weight ratio (beta) and maturation rate (kappa) were 0.44, 0.55 and 0.31, respectively. Genotypic and phenotypic correlations between the growth curve parameters were high and mainly negative. The only positive relationship was found between alpha and beta. Pearson and Spearman rank correlation coefficients between EBV for ADG and daily gain calculated from Gompertz growth curves were 0.79. The Spearman rank correlation between the sire EBV for ADG and Gompertz growth curve parameter-based ADG for all sires with at least 15 progeny was 0.86. Growth curves differ significantly between individuals and this information could be utilized for selection purposes when improving growth rate in pigs.  相似文献   

14.
Bovine respiratory disease (BRD) is the most costly feedlot disease in the United States. Selection for disease resistance is one of several possible interventions to prevent or reduce the economic loss associated with animal disease and to improve animal welfare. Undesirable genetic relationships, however, may exist between production and disease resistance traits. The objectives of this study were to estimate the phenotypic, environmental, and genetic correlations of BRD with growth, carcass, and LM palatability traits. Health records on 18,112 feedlot cattle over a 15-yr period and slaughter data on 1,627 steers over a 4-yr period were analyzed with bivariate animal models. Traits included ADG, adjusted carcass fat thickness at the 12th rib, marbling score, LM area, weight of retail cuts, weight of fat trim, bone weight, Warner-Bratzler shear force, tenderness score, and juiciness score. The estimated heritability of BRD incidence was 0.08 +/- 0.01. Phenotypic, environmental, and genetic correlations of the observed traits with BRD ranged from -0.35 to 0.40, -0.36 to 0.55, and -0.42 to 0.20, respectively. Most correlations were low or negligible. The percentage of carcass bone had moderate genetic, phenotypic, and environmental correlations with BRD (-0.42, -0.35, and -0.36, respectively). Hot carcass weight and weight of retail cuts had moderate, undesirable phenotypic correlations with BRD (0.37 and 0.40, respectively). Correlations of BRD with LM palatability and ADG were not detected. Low or near zero estimates of genetic correlations infer that selection to reduce BRD in feedlot cattle would have negligible correlated responses on growth, carcass, and meat palatability traits or that selection for those traits will have little effect on BRD susceptibility or resistance.  相似文献   

15.
Spring-born purebred Brahman bull calves (n = 467) with known pedigrees, sired by 68 bulls in 17 private herds in Louisiana, were purchased at weaning from 1996 through 2000 to study variation in growth, carcass, and tenderness traits. After purchase, calves were processed for stocker grazing on ryegrass, fed in a south Texas feedlot, and processed in a commercial facility. Carcass data were recorded 24 h postmortem. Muscle samples and primal ribs were taken to measure calpastatin activity and shear force. An animal model was used to estimate heritability, genetic correlations, and sire EPD. Relatively high heritability estimates were found for BW at slaughter (0.59 +/- 0.16), HCW (0.57 +/- 0.15), LM area (0.50 +/- 0.16), yield grade (0.46 +/- 0.17), calpastatin enzyme activity (0.45 +/- 0.17), and carcass quality grade (0.42 +/- 0.16); moderate heritability estimates were found for hump height (0.38 +/- 0.16), marbling score (0.37 +/- 0.16), backfat thickness (0.36 +/- 0.17), feedlot ADG (0.33 +/- 0.14), 7-d shear force (0.29 +/- 0.14), and 14-d shear force (0.20 +/- 0.11); relatively low heritability estimates were found for skeletal maturity (0.10 +/- 0.10), lean maturity (0.00 +/- 0.07), and percent KPH (0.00 +/- 0.07). Most genetic correlations were between -0.50 and +0.50. Other genetic correlations were 0.74 +/- 0.27 between calpastatin activity and 7-d shear force, 0.72 +/- 0.25 between calpastatin activity and 14-d shear force, (0.90 +/- 0.30 between yield grade and 7-d shear force, and -0.82 +/- 0.27 between backfat thickness and 7-d shear force. Heritability estimates and genetic correlations for most traits were similar to estimates reported in the literature. Sire EPD ranges for carcass traits approached those reported for sires in other breeds. The magnitude of heritability estimates suggests that improvement in carcass yield, carcass quality, and consumer acceptance traits can be made within the Brahman population.  相似文献   

16.
Residual feed intake (RFI) is a measure of feed efficiency defined as the difference between the observed feed intake and that predicted from the average requirements for growth and maintenance. The objective of this study was to evaluate the response in a selection experiment consisting of a line selected for low RFI and a random control line and to estimate the genetic parameters for RFI and related production and carcass traits. Beginning with random allocation of purebred Yorkshire littermates, in each generation, electronically measured ADFI, ADG, and ultrasound backfat (BF) were evaluated during a approximately 40- to approximately 115-kg of BW test period on approximately 90 boars from first parity and approximately 90 gilts from second parity sows of the low RFI line. After evaluation of first parity boars, approximately 12 boars and approximately 70 gilts from the low RFI line were selected to produce approximately 50 litters for the next generation. Approximately 30 control line litters were produced by random selection and mating. Selection was on EBV for RFI from an animal model analysis of ADFI, with on-test group and sex (fixed), pen within group and litter (random), and covariates for interactions of on- and off-test BW, on-test age, ADG, and BF with generations. The RFI explained 34% of phenotypic variation in ADFI. After 4 generations of selection, estimates of heritability for RFI, ADFI, ADG, feed efficiency (FE, which is the reciprocal of the feed conversion ratio and equals ADG/ ADFI), and ultrasound-predicted BF, LM area (LMA), and intramuscular fat (IMF) were 0.29, 0.51, 0.42, 0.17, 0.68, 0.57, and 0.28, respectively; predicted responses based on average EBV in the low RFI line were -114, -202, and -39 g/d for RFI (= 0.9 phenotypic SD), ADFI (0.9 SD), and ADG (0.4 SD), respectively, and 1.56% for FE (0.5 SD), -0.37 mm for BF (0.1 SD), 0.35 cm(2) for LMA (0.1 SD), and -0.10% for IMF (0.3 SD). Direct phenotypic comparison of the low RFI and control lines based on 92 low RFI and 76 control gilts from the second parity of generation 4 showed that selection had significantly decreased RFI by 96 g/d (P = 0.002) and ADFI by 165 g/d (P < 0.0001). The low RFI line also had 33 g/d lower ADG (P = 0.022), 1.36% greater FE (P = 0.09), and 1.99 mm less BF (P = 0.013). There was not a significant difference in LMA and other carcass traits, including subjective marbling score, despite a large observed difference in ultrasound-predicted IMF (-1.05% with P < 0.0001). In conclusion, RFI is a heritable trait, and selection for low RFI has significantly decreased the feed required for a given rate of growth and backfat.  相似文献   

17.
Our objectives were to estimate genetic parameters for carcass traits and evaluate the influence of slaughter end point on estimated breeding values (BV). Data provided by the American Simmental Association were divided into three sets: 1) 9,604 records of hot carcass weight (CW) and percentage retail cuts (PRC), 2) 6,429 records of CW, PRC, and marbling score (MS), and 3) 1,780 records of CW, PRC, MS, fat thickness (FT), and longissimus muscle area (LMA). Weaning weights (WW) from animals with carcass data and from their weaning contemporaries were used. Data were analyzed with a multiple-trait animal model and REML procedures to estimate genetic parameters and BV on an age-, CW-, MS-, or FT-constant basis. The model for carcass traits included fixed contemporary group and covariates for breed, heterozygosity, and slaughter end point and random additive direct genetic and residual effects. Weaning weight was preadjusted for founder effects, direct and maternal heterosis, age of dam, and age of calf. The model for WW included fixed contemporary group and random additive direct genetic, maternal genetic, maternal permanent environment, and residual effects. Heritabilities from data set 1 were 0.34 for CW and 0.25 for PRC on an age-constant basis and 0.25 for PRC on a CW end point. Heritabilities for data set 2 were 0.35, 0.24, and 0.36 for CW, PRC, and MS, respectively, on an age-constant basis. Data set 2 heritabilities were 0.25 for PRC and 0.34 for MS on a CW-constant basis and 0.33 for CW and 0.25 for PRC at a constant MS end point. Heritabilities on an age-constant basis for data set 3 were as follows: CW, 0.32; PRC, 0.09; MS, 0.12; FT, 0.10; and LMA, 0.26. Heritability estimates for data set 3 on a CW-, MS-, and FT-constant basis were similar to those on an age-constant basis. Heritabilities were 0.12 for PRC, 0.12 for MS, 0.14 for FT, and 0.22 for LMA on a CW-constant basis; 0.30 for CW, 0.09 for PRC, 0.10 for FT, and 0.28 for LMA at a constant MS end point; and 0.33, 0.17, 0.13, and 0.29 for CW, PRC, MS, LMA on a FT-constant basis. Genetic correlations among traits varied across groups and end points but suggested that it should be possible to select for improved lean yield without sacrificing quality grade. Correlations were calculated among BV computed at different end points. Adjustment to various end points resulted in some changes in BV and reranking of sires, especially for PRC; however, the number of records available had a larger influence than slaughter end point.  相似文献   

18.
Knowledge of breed effects on carcass and pork quality traits is required to develop commercial crossbreeding programs that emphasize product quality. A 2 x 2 diallel mating system involving Landrace and Duroc pigs was used to estimate individual heterosis, direct breed effects and reciprocal cross differences for post-weaning growth, real-time ultrasound, carcass, and pork quality traits. Data from 5,649 pigs and 960 carcasses representing 65 and 49 sires, respectively, were analyzed assuming animal models. Duroc-sired pigs had 2.1 cm shorter carcasses with 7.3 mm less 10th rib backfat (BF), 4.4 cm2 larger longissimus muscle area (LMA), yielded 2.1 kg more estimated fat standardized lean (FSL), gained 16.5 g more estimated lean per day of age (LDOA), and had 1.0% less water (PWAT) and 1.9% more intramuscular fat (IMF) in the longissimus muscle than did Landrace-sired pigs (P less than .01), adjusted to an off-farm live weight of 111 kg. Reciprocal cross differences were detected for BF, LMA, FSL, LDOA and for subjective marbling, firmness, and muscling scores (P less than .01). Durocsired F1 barrows had 6.3 mm less BF and 5.9 cm2 larger LMA, yielded 3.2 kg more FSL, gained 22.3 g more LDOA, and had less marbling in the longissimus muscle and heavier ham muscling than reciprocal cross barrows. Heterosis estimates (P less than .05) were 27.6 g/d (3.2%) for ADG, -5.8 d (-3.6%) for off-test age, 2.7 cm (3.4%) for carcass length, 1.5 kg (7.2%) for FSL, 14.7 g (5.7%) for LDOA, -.07 (-3.6%) for muscle color, -.5% (-13.2%) for IMF, and .3% (.3%) for PWAT. Breed effects were not detected (P greater than .10) for muscle pH, cooking loss, shear value, and water-holding capacity or for eating quality traits. Reciprocal cross differences suggest an advantage in using the Duroc as a terminal sire, but improved carcass composition and higher intramuscular fat did not seem to affect eating quality traits.  相似文献   

19.
A study was conducted to evaluate differences in performance and in carcass composition and tissue deposition rates between purebred Duroc pigs sired by boars currently available and those sired by boars from the mid-1980s. Two lines were developed by randomly allocating littermate and half-sib pairs of females to matings by current time period (CTP) or old time period (OTP) boars. Pigs from 2 replications were placed on test at a group mean BW of 63.5 kg. Serial ultrasonic measurements of the 10th-rib LM area (LMA), off-midline backfat (BF10), and intramuscular fat percentage (IMF) were collected every 2 wk in the first replication and used to assess deposition rate differences. Off-test ultrasonic LMA, BF10, and IMF measurements from a total of 557 pigs from 23 CTP sires and 232 pigs from 15 OTP sires across 2 replications and at a mean BW of 109 kg were evaluated. All available barrows and randomly selected gilts (n = 277) were sent to a commercial abattoir, and carcass measurements of 10th-rib backfat, last-rib backfat, last lumbar backfat, and LMA were collected. Analysis of serial backfat measurements revealed a linear relationship between back-fat and BW between 73 and 118 kg for pigs from both time periods. Pigs sired by OTP boars deposited more backfat (P < 0.05) at a faster rate than pigs sired by CTP boars over the entire test period. A curvilinear cumulative tissue deposition pattern was revealed for ultrasonically estimated LMA and IMF within both time periods. Significant linear and quadratic regression coefficient differences between lines indicated that pigs sired by CTP boars deposited more LMA and less IMF per kilogram of BW gain than pigs sired by OTP boars. Pigs sired by CTP boars had more LMA and less BF10 (P < 0.05), whereas pigs sired by OTP boars had more IMF (P = 0.04). Carcass evaluation revealed more (P < 0.01) carcass measurements of LMA and less (P < 0.05) carcass measurements of 10th-rib backfat, carcass measurements of last-rib backfat, and carcass measurements of last lumbar backfat for pigs sired by CTP boars. No difference (P > 0.05) between the time periods was found for ADG over the entire test period. Results from this study illustrate that significant progress in carcass composition has been realized within the Duroc breed since the mid-1980s. The long-term selection response in carcass leanness has also resulted in changes in deposition rates of correlated traits such as LMA and IMF.  相似文献   

20.
Analyses of variance were computed for records on growth and body composition traits made in 1983 by 255 boars and gilts in selected and control lines of Durocs and Yorkshires and their reciprocal crossbreds. Previous selection over a period of several generations was mainly on an index of sow productivity including preweaning litter sizes and weight. Animals in the select lines were selected for high index values; animals in the control lines were selected to average near the mean index values of that year and line. Breeding animals in all four lines during that period were basically randomly selected with regard to growth rate or body composition traits. The same boars sired both purebred and crossbred litters in 1983. Traits analyzed were average daily gain (ADG) during a standard test period from 56 d of age to 90.7 kg and average backfat thickness (ABF) and longissimus muscle area (LMA) from ultrasonic scans at 90.7 kg. Crossbred pigs had greater (P less than .01) ADG than purebred pigs, but did not differ (P greater than .05) in ABF or LMA. Heterosis was 8.2% for ADG. Crossbreds with Yorkshire dams had thinner (P less than .01) ABF and larger (P less than .01) LMA than crossbreds with Duroc dams. Boars had greater (P less than .05) ADG, thinner (P less than .01) ABF and smaller (P less than .01) LMA than gilts. Correlations between 38 half-sib family averages of purebred and crossbred pigs of the same sex and the same sires were .07, .37 and .24 for ADG, ABF and LMA, respectively. Implications of the above and additional findings for swine breeding strategies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号