首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve diverse cacao ( Theobroma cacao ) genotypes were assessed for pod resistance to Phytophthora palmivora at the penetration and post-penetration stages of infection using two inoculation methods. Correlation analysis between a number of pod characteristics (stomatal frequency, stomatal pore length, surface wax, thickness of exocarp/endocarp, hardness of exocarp/mesocarp, moisture content) and resistance indicated a strong relationship between resistance to lesion establishment (lesion frequency) and the joint effect of stomatal frequency and pore length. The epidermal impressions of the pod surfaces bearing germinating zoospores of P. palmivora provided evidence that penetration occurs through stomata, epidermal hair base, scar and by direct penetration. A poor correlation was obtained between the pod characteristics studied and post-penetration resistance, suggesting that this resistance, assessed by lesion size, is not governed by morphological or physical characteristics of the pod, but probably by biochemical factors. The importance of these findings in breeding of cacao for resistance to P. palmivora is discussed.  相似文献   

2.
The effects were studied of four leaf development stages (LDS) and three durations of incubation (DI) on the accuracy of leaf-disc tests on eight cacao (cocoa) clones (C) for predicting field resistance to phytophthora pod rot caused by Phytophthora palmivora . The clones were known to possess different general combining abilities (GCA) for pod resistance in the field, evaluated monthly at harvest over a 9-year period. Disease severity (DS) was affected strongly by C, DI and LDS, with increasing levels of significance. Two- and three-way interaction effects were smaller than the clone effect, but still significant. Clone effects were most significant for LDS3 (i.e. leaves 50–60 days old) and for DI5 and DI7 (observations made 5 and 7 days after inoculation, respectively). Coefficients of rank correlation between DS and field results were significant for seven of the 12 treatments, with highest values obtained again for treatments LDS3/DI5 ( r = 0·87) and LSD3/DI7 ( r = 0·93). Pooling of data for different LDS and DI treatments did not further improve the correlation with field results. However, these correlations were improved (from an average of 0·74 to 0·88) when the GCA values for field resistance were based on weekly observations, carried out in one year, including losses of pods and cherelles. It was concluded that, when carried out in a standardized manner and under optimal conditions, the leaf-disc test may explain 75–90% of the genetic variation for field resistance of cacao genotypes to P. palmivora .  相似文献   

3.
Resistance of cacao leaves to Phytophthora palmivora was studied with regard to the time of leaf collection (morning, afternoon) and the degree of exposure of the leaves to light in the field (low, medium and high). The efficiency of leaf disc inoculations in predicting field resistance of nine clones was compared with that of detached and attached pod inoculations. Significant effects were observed, with leaves exposed to high light intensity and collected early in the afternoon showing highest susceptibility. The effect of time of leaf collection was reduced when leaves were stored overnight and leaf discs prepared and inoculated the following day, as compared to inoculations on the day of collection. Interactions between the main factors were significant, though less substantial than the clone effects. The most significant correlations with pod resistance ( r  = 0·70 to 0·97) were obtained for leaves collected early in the morning and exposed to intermediate shade conditions in the canopy. For other treatments, the correlations with pod resistance were still positive ( r  = 0·23 to 0·83) but often not significant. Pod inoculations in the laboratory were better correlated with field resistance ( r  = 0·92) than pod inoculations in the field ( r  = 0·72). Detached pod inoculations were also better correlated with leaf disc inoculations than those of attached pods. The results confirm the validity of laboratory inoculations of leaves and pods to assess field resistance to Phytophthora . Standardization of the leaf disc test is essential to obtain reliable results.  相似文献   

4.
Among the Phytophthora species that cause black pod of cacao, P. megakarya is the most virulent, posing a serious threat to cacao production in Africa. Correct identification of the species causing the black pod and understanding the virulence factors involved are important for developing sustainable disease management strategies. A simple PCR‐based species identification method was developed using the species‐specific sequences in the ITS regions of the rRNA gene. A phylogenetic tree generated for 119 Phytophthora isolates, based on the 60S ribosomal protein L10 gene and rDNA sequence, verified the PCR‐based identification assay and showed high interspecific variation among the species causing black pod. Phytophthora megakarya isolates were uniformly virulent in an assay using susceptible cacao pod husks inoculated with zoospores, while the P. palmivora isolates showed greater divergence in virulence. The virulence of P. megakarya was associated with earlier production of sporangia and an accelerated induction of necrosis. While zoospore germ tubes of both species penetrated pods through stomata, only P. megakarya produced significant numbers of appressoria. A hypersensitive‐like response was observed when attached SCA‐6 pods were inoculated with P. palmivora. SCA‐6 pods became vulnerable to P. palmivora when wounded prior to zoospore inoculation. Phytophthora megakarya was more aggressive than P. palmivora on attached SCA‐6 pods, causing expanding necrotic lesions with or without wounding. Phytophthora megakarya is predominant in the Volta region of Ghana and it remains to be seen whether it can displace P. palmivora from cacao plantations of Ghana as it has in Nigeria and Cameroon.  相似文献   

5.
Guest D 《Phytopathology》2007,97(12):1650-1653
ABSTRACT Pathogens of the Straminipile genus Phytophthora cause significant disease losses to global cocoa production. P. megakarya causes significant pod rot and losses due to canker in West Africa, whereas P. capsici and P. citrophthora cause pod rots in Central and South America. The global and highly damaging P. palmivora attacks all parts of the cocoa tree at all stages of the growing cycle. This pathogen causes 20 to 30% pod losses through black pod rot, and kills up to 10% of trees annually through stem cankers. P. palmivora has a complex disease cycle involving several sources of primary inoculum and several modes of dissemination of secondary inoculum. This results in explosive epidemics during favorable environmental conditions. The spread of regional pathogens must be prevented by effective quarantine barriers. Resistance to all these Phytophthora species is typically low in commercial cocoa genotypes. Disease losses can be reduced through integrated management practices that include pruning and shade management, leaf mulching, regular and complete harvesting, sanitation and pod case disposal, appropriate fertilizer application and targeted fungicide use. Packaging these options to improve uptake by smallholders presents a major challenge for the industry.  相似文献   

6.
Artificial pod inoculation was used to compare the relative aggressiveness of seven Colombian isolates of Moniliophthora roreri (the causal agent of moniliasis or frosty pod disease), representing four major genetic groupings of the pathogen in cacao (cocoa), when applied to five diverse cacao genotypes (ICS-1, ICS-95, TSH-565, SCC-61 and CAP-34) at La Suiza Experimental Farm, Santander Department, Colombia. The following variables were evaluated 9 weeks after inoculation of 2- to 3-month-old pods with spore suspensions (1·2 × 105 spores mL−1): (i) disease incidence (DI); (ii) external severity (ES); and (iii) internal severity (IS). IS was found to be of greatest value in classifying the reaction of the host genotype against M. roreri . Genetic variation reported between isolates and cacao genotypes was not matched by similar diversity in their aggressiveness. All isolates were generally highly aggressive against most cacao genotypes, with only two isolates showing reduced IS and ES reactions. There was considerable variation between clones in the IS and ES scores, but one cultivated clone (ICS-95) displayed a significant level of resistance against all seven isolates. This clone may be useful in cacao breeding initiatives for resistance to moniliasis of cacao.  相似文献   

7.
Difficulties in the accurate identification of the Phytophthora species responsible for black pod disease of cocoa continue to hamper effective disease control. A re-evaluation of morphological characters ( Brasier & Griffin, 1979 ) and a detailed morphometric analysis of 161 Phytophthora isolates largely associated with black pod disease of cocoa from 17 countries worldwide have shown considerable inter- and intraspecific variation. Stable and more reliable parameters for the identification of the species responsible for the disease have been determined. Colony characteristics such as pattern and growth rate on V8 agar are reasonably characteristic for the cocoa Phytophthora species, and can be used to make preliminary identification to species level. Significant sporangial character variation was found within isolates of species from the same and different sources, highlighting the difficulties in making accurate identification on the basis of raw morphological data. Pedicel length was found to be the most consistent species-linked sporangial characteristic. Cluster plots of length/breadth ratios of sporangia versus reciprocals of sporangial pedicel length clearly separated all isolates into distinct species groups ( P. capsici , P. citrophthora , P. palmivora and P. megakarya ) and can be used reliably to identify accurately those pathogens involved in black pod disease outbreaks.  相似文献   

8.
In this study, actinomycetes and endospore-forming bacteria were isolated from the surface of cacao pods. The activity of these microorganisms againstCrinipellis perniciosa andPhytophthora palmivora, causal agents of witches’ broom and black pod diseases of cacao, respectively, was investigated. A total of 336 isolates of actinomycetes and endosporeforming bacteria were tested on a detached pod assay againstC. perniciosa. The screening procedure used proved to be fast and inexpensive, allowing the selection of five actinomycetes as the most promising isolates for the biocontrol ofC. perniciosa. Under laboratory conditions the actinomycetes were able to inhibit 100% ofC. perniciosa basidiospore germination. However, under field conditions the selected actinomycetes were unable to protect cacao pods against both pathogens. In these experiments, inhibition ofC. perniciosa ranged from 6% to 21% in relation to the control, whereas there was no inhibition of black pod caused byP. palmivora. Formulations need to be improved in order to enhance the activity of the actinomycetes against cacao pathogens in the field. Molecular identification of the selected isolates showed that they are species of the genusStreptomyces.  相似文献   

9.
Frosty pod rot (FPR) (Moniliophthora roreri), along with black pod rot (Phytophthora species) and witches’ broom disease (Moniliophthora perniciosa) constitute the main phytosanitary problems limiting cacao (Theobroma cacao) production causing severe yield losses. One of the main sought after methods of pod rot management is the selection of tolerant cacao genotypes. Typically, the selection is carried out through the quantification of the percentage of diseased pods (PDP). However, PDP does not consider the relative productivity, or production potential (PT) of the genotype. Production potential can vary among cacao genotypes. Consequently, genotypes with similar PT can have similar or vastly different disease tolerance levels as measured by PDP. The disease and production index (DPI) was developed to integrate a genotype's tolerance to M. roreri and other diseases as measured by PDP, with its PT. Here, we evaluated the number of healthy pods, number of diseased pods, and weight of fresh seed for 29 clones grown in replicated five-tree plots over 4 years. The data obtained was used to calculate PDP and DPI for each clone for three different disease combinations: frosty pod rot alone, pod rots other than frosty pod rot, and the combination of all pod rots. Multivariate analysis verified that DPI discriminated between clones based on productivity and disease tolerance. Surprisingly, there was a close ranking of clones between resistance to FPR and resistance to all other pod rots. The DPI can be used in breeding programmes focused on the selection of high yielding disease-tolerant cacao genotypes.  相似文献   

10.
ABSTRACT Field observations were conducted from 1998 to 2001 at the International Cocoa Genebank, Trinidad, to evaluate 57 cacao clones for resistance to black pod (BP) and witches'-broom (WB) diseases (caused by Phytophthora sp. and Crinipellis perniciosa, respectively). Each month ripe pods were harvested and the number of healthy and diseased was recorded. The number of brooms on vegetative shoots was recorded three times a year on selected branches. Twenty-three clones showed less than 10% of infection for both BP and WB on pods. Among those, eight clones showed an absence of brooms on the observed branches: IMC 6, MAN 15/60 [BRA], PA 67 [PER], PA 195 [PER], PA 218 [PER], PA 296 [PER], PA 303 [PER], and POUND 32/A [POU]. Broad-sense heritability was estimated at 0.38 and 0.57 for WB disease on pods and shoots, respectively, and at 0.51 for BP disease. Genetic correlation between WB disease on pods and on shoots was low and estimated at 0.39, whereas the correlation between WB and BP diseases on pods was 0.48. To choose putative parents for breeding schemes, it is suggested that clones are first assessed for their level of resistance to WB on shoots, and the most promising individuals are screened for BP with a detached pods test. Further studies are needed to confirm whether the level of resistance to WB on pods can be predicted using an early test on seedlings.  相似文献   

11.
Molecular analysis of the major Phytophthora species on cocoa   总被引:1,自引:0,他引:1  
The internally transcribed spacer (ITS) regions of the ribosomal RNA (rRNA) gene cluster of 161 isolates of Phytophthora species involved in pod rot, stem canker and leaf blight of cocoa were analysed to determine inter- and intraspecific variation in this disease complex. The species P. palmivora , P. megakarya , P. capsici , P. citrophthora and P. nicotianae could all be clearly distinguished by PCR amplification of the ITS region followed by restriction analysis with Hae III, Hinf I, Pvu II and Alu I. This method provided a relatively rapid identification procedure for these species, and was able to distinguish isolates that had previously been misidentified by morphological methods. Sequence analysis showed that the four main cocoa-associated species formed two distinct groups, one comprising P. capsici and P. citrophthora , and the other P. palmivora and P. megakarya . Detailed sequence analysis and comparison with published literature suggested that P. capsici isolates from cocoa may be closely related to P. tropicalis , a species recently described from Cyclamen and Dianthus .  相似文献   

12.
Evans HC 《Phytopathology》2007,97(12):1640-1643
ABSTRACT This paper reviews the significant advances by the diseases themselves, as well as by the scientists, in the intervening period since the disease trilogy was first delimited in 1989. The impact of these diseases, black pod, witches' broom, and frosty pod rot, has increased dramatically. In addition, there have been radical changes in the taxonomic profiles of these pathogens, which have been based on both traditional (morphological, cytological) and modern (molecular) approaches. Black pod is caused by a complex of Phytophthora species, in which P. palmivora still is the most important worldwide. However, recent invasion of the principal cacao-growing countries of West Africa by the more virulent P. megakarya has been cause for concern. The latter evolved in the ancient forests straddling the Cameroon-Nigerian border as a primary coloniser of fallen fruit. Conversely, frosty pod rot, caused by Moniliophthora roreri, and witches' broom, caused by M. (Crinipellis) perniciosa, both neotropical diseases, are hemibiotrophic, coevolved pathogens. Respectively, M. roreri arose on Theobroma gileri in submontane forests on the north-western slopes of the Andes, whereas M. perniciosa developed as a complex of pathotypes with a considerably wider geographic and host range within South America; the cacao pathotype evolved on that host in the Amazon basin. The inter-relationships of these vicariant species and their recent spread are discussed, together with control strategies.  相似文献   

13.
Experiments were conducted using small-scale, detached pod evaluation methods to compare the likely effectiveness in controlling black pod of cuprous oxide-metalaxyl mixtures with these fungicides alone at approximately equivalent cost doses. All fungicide treatments were about equally effective and persistent except when rain fell soon afterspraying. Treatments containing cuprous oxide then gave very poor control of artificialinoculations with Phytophthora palmivora zoospores . Further laboratory' scale tests confirmed that cuprous oxide was readily leached by washing before the deposit completely dried whereas metalaxyl was very rapidly adsorbed on to ihe pods. A black pod control strategy is proposed using metalaxyi during critical wet periods and cuprous oxide for the rest of the year to reduce the possibility of metalaxyl resistance becoming apractical problem.  相似文献   

14.
ABSTRACT Phytophthora nicotianae and P. palmivora infect and cause rot of fibrous roots of susceptible and tolerant citrus rootstocks in Florida orchards. The infection and colonization by the two Phytophthora spp. of a susceptible citrus host, sour orange (Citrus aurantium), and a tolerant host, trifoliate orange (Poncirus trifoliata), were compared using light and electron microscopy. Penetration by both Phytophthora spp. occurred within 1 h after inoculation, regardless of the host species. No differences were observed in mode of penetration of the hypodermis or the hosts' response to infection. After 24 h, P. palmivora had a significantly higher colonization of cortical cells in susceptible sour orange than in tolerant trifoliate orange. Intracellular hyphae of both Phytophthora spp. were observed in the cortex of sour orange, and cortical cells adjacent to intercellular hyphae of P. palmivora were disrupted. In contrast, the cortical cells of sour orange and trifoliate orange adjacent to P. nicotianae hyphae and the cortical cells of trifoliate orange adjacent to P. palmivora were still intact. After 48 h, the cortical cells of both hosts adjacent to either Phytophthora spp. were disrupted. After 48 and 72 h, P. palmivora hyphae colonized the cortex of sour orange more extensively than the cortex of trifoliate orange; P. palmivora also colonized both hosts more extensively than P. nicotianae. A higher rate of electrolyte leakage among host-pathogen combinations reflected the combined effects of greater cell disruption by P. palmivora than by P. nicotianae, and the higher concentration of electrolytes in healthy roots of trifoliate orange than of sour orange. Although cellular responses unique to the tolerant host were not observed, reduced hyphal colonization by both pathogens in the cortex of trifoliate orange compared with sour orange is evidence for a putative resistance factor(s) in the trifoliate orange roots that inhibits the growth of Phytophthora spp.  相似文献   

15.
ABSTRACT Moniliophthora roreri, the cause of frosty pod rot (FP), is a specialized fungal pathogen (family Marasmiaceae) that invades only actively growing pods of cacao, Theobroma cacao, and related species of Theobroma and Herrania. FP damages pods and the commercially important seeds that some of these species produce. M. roreri was confined to northwestern South America until the 1950s. Its appearance in Panama in 1956 signaled a change in its geographic distribution. Now, it is found in 11 countries in tropical America. The fungus is currently in an active dispersal phase, possibly due to an increase in human-mediated spread. FP is more destructive than black pod (Phytophthora spp.) and more dangerous and difficult to control than witches' broom, caused by Moniliophthora (Crinipellis) perniciosa. The aggressiveness of M. roreri, its capacity to survive different environmental conditions, its rapid natural dispersal, its propensity for man-mediated dispersal, and the susceptibility of most commercial cacao genotypes, all indicate that FP presents a substantial threat to cacao cultivation worldwide.  相似文献   

16.
Sanogo S 《Phytopathology》2007,97(1):37-43
ABSTRACT Phytophthora capsici and Verticillium dahliae are two mycelial microorganisms associated with wilt symptoms on chile pepper (Capsicum annuum). Both pathogens occur in the same field and can infect a single plant. This study examined the nature of the co-occurrence of P. capsici and V. dahliae. Chile pepper plants were inoculated with each pathogen separately or with both pathogens concomitantly or sequentially. In concomitant inoculations, plants were inoculated with a mixture of zoospores of P. capsici and conidia of V. dahliae. In sequential inoculations, plants were inoculated with zoospores of P. capsici 4 days prior to inoculation with conidia of V. dahliae, or plants were inoculated with conidia of V. dahliae 4 days prior to inoculation with zoospores of P. capsici. Stem necrosis and leaf wilting were visible 3 to 4 days earlier in plants inoculated with both P. capsici and V. dahliae than in plants inoculated with P. capsici alone. Stem necrosis and generalized plant wilting were observed in plants inoculated with P. capsici alone, and stem necrosis, generalized plant wilting, and vascular discoloration were observed in plants inoculated with both P. capsici and V. dahliae by 21 days after inoculation. These symptoms were not observed in control plants or plants inoculated with V. dahliae alone. The frequency of recovery of V. dahliae from stems was approximately 85 to 140% higher across inoculum levels when plants were inoculated with both P. capsici and V. dahliae than when plants were inoculated by V. dahliae alone. Similarly, the frequency of recovery of V. dahliae from roots was approximately 13 to 40% higher across inoculum levels when plants were inoculated with both P. capsici and V. dahliae than when plants were inoculated by V. dahliae alone. There was no apparent antagonism between the two pathogens when they were paired on growth media. In general, when P. capsici and V. dahliae were paired on growth media, mycelial growth of each pathogen grown alone was not significantly different from mycelial growth when the pathogens were paired. Results suggest that wilt development is hastened by the presence of both P. capsici and V. dahliae in the same plants. The presence of P. capsici and V. dahliae in the same inoculum court enhanced infection and colonization of chile pepper by V. dahliae.  相似文献   

17.
The cocoa industry in Sulawesi, the main region of cocoa production in Indonesia, is threatened by destructive diseases, including vascular-streak dieback (VSD) caused by the basidiomycete Oncobasidium theobromae and stem canker and Phytophthora pod rot (PPR) or black pod, caused by Phytophthora palmivora. Using the considerable genetic diversity of cocoa on farms, host resistance was identified and tested with the participation of farmers. Forty-nine local and international cocoa selections with promising resistance characteristics (as well as susceptible controls) were side-grafted onto mature cocoa in a replicated trial with single-tree plots. Developing grafts were assessed in the dry season for severity of VSD infection, scored from 0 (no infection) to 4 (graft death). All of the 49 clones in the trial became infected with VSD in at least some replicates. Average severity varied from 0.2 to 1.6. Potential VSD-resistance was found in eight clones, including DRC 15, KA2 106 and a local Sulawesi selection, VSD2Ldg. Some of the most susceptible clones were local Sulawesi selections from areas with a history of little or no VSD. Thirty-four pod-bearing clones were evaluated over a 2-year period for yield, quality and resistance to natural infections of PPR. Cumulative PPR incidence for all clones was 22% but varied from 8.6 to 43% among clones. Clones with less than 15% PPR incidence were designated as resistant, including DRC 16 and local Sulawesi selections, Aryadi 1, Aryadi 3 and VSD1Ldg. Scavina 12 was moderately resistant in the trial with a PPR incidence of 23%. Cumulative incidences of the mirid, Helopeltis spp., determined in the same evaluation period, indicated that DRC16 was the most susceptible clone with an incidence of 52% in ripe pods and 23% in immature pods. In comparison, KKM4 showed evidence of resistance to Helopeltis spp., with incidences of 34 and 0.8% in ripe and immature pods, respectively. The impact of diseases and pests (including cocoa pod borer) on bean losses and bean quality varied between clones but generally the bean size (or bean count) was affected more than the fat content or shell content.  相似文献   

18.
ABSTRACT Epidemics of citrus brown rot from 1994 to 1997 in the south-central and east-coast citrus areas of Florida were characterized and the causal Phytophthora spp. identified. Two species of Phytophthora, P. palmivora and P. nicotianae, were consistently associated with brown rot. Epidemics caused by P. palmivora appeared to be initiated on immature fruit dropped on the orchard floor. The soilborne fungus infected and sporulated on these fruit and was then disseminated to fruit above 1 m in the canopy. In contrast, infection by P. nicotianae, the common cause of root rot, was confined to the lowest 1 m of the canopy. Fruit infected by P. palmivora produced large amounts of ellipsoidal sporangia available for splash dispersal, whereas those infected by P. nicotianae produced far fewer spherical sporangia. Isolates from brown rot epidemics were compared with P. nicotianae from citrus in Florida and Texas, P. citrophthora in California, P. palmivora, and selected Phytophthora spp. from other hosts. Brown rot symptoms produced by the different pathogenic citrus isolates on inoculated fruit were indistinguishable. Morphology, mating behavior, and isozyme patterns of brown rot isolates from 1988 to 1997 matched P. palmivora from citrus roots, other host plants, and other locations, but were different from characterized isolates of P. citrophthora in California and P. nicotianae in Florida and Texas. Cellulose acetate electrophoresis of the isozyme glucose-6-phosphate isomerase rapidly identified the causal citrus pathogen from infected fruit and soil isolation plates. Although P. palmivora is an aggressive pathogen of citrus roots, bark, and fruit, populations in orchard soils were low compared with P. nicotianae.  相似文献   

19.
BACKGROUND: A number of synthetic fungicides are not effective when confronted by oomycete pathogens because many fungicide targets are absent from oomycetes. Moreover, resistance to fungicides has already arisen in oomycete species, and thus development of new, effective and safe compounds for use in oomycete disease control is necessary.RESULTS: Zoospore lysis began at 10 microg mL(-1) of thiobutacin, and most of the zoospores were collapsed at 50 microg mL(-1). Thiobutacin also revealed inhibitory activity against the cyst germination and hyphal growth of Phytophthora capsici at 50 microg mL(-1). Treatment with thiobutacin exhibited protective activity against development of Phytophthora disease on pepper plants.CONCLUSION: The authors verified in vitro antioomycete activity of thiobutacin against P. capsici and its control efficacy against Phytophthora blight in vivo. This is the first report to demonstrate in vivo antioomycete activity of the novel antibiotic thiobutacin against P. capsici infection.  相似文献   

20.
ABSTRACT Phytophthora root rot of citrus in Florida is caused by Phytophthora nicotianae and P. palmivora. A naturally occurring isolate of P. nicotianae (Pn117) was characterized as hypovirulent on citrus roots. Pn117 infected and colonized fibrous roots, but caused significantly less disease than the virulent isolates P. nicotianae Pn198 and P. palmivora Pp99. Coincident inoculation of rootstock seedlings of Cleopatra mandarin (Citrus reticulata) or Swingle citrumelo (C. paradisi x Poncirus trifoliata) with the hypovirulent Pn117 and the virulent isolates Pn198 and Pp99 did not reduce the severity of disease caused by the virulent Phytophthora spp. When either rootstock was inoculated with the hypovirulent Pn117 for 3 days prior to inoculation with virulent isolates, preinoculated seedlings had significantly less disease and greater root weight compared with seedlings inoculated with the virulent isolates alone. Recovery of the different colony types of Phytophthora spp. from roots of sweet orange (C. sinensis) or Swingle citrumelo was evaluated on semiselective medium after sequential inoculations with the hypovirulent Pn117 and virulent Pp99. Pn117 was isolated from roots at the same level as the Pp99 at 3 days post inoculation. Preinoculation of Pn117 for 3 days followed by inoculation with Pp99 resulted in greater recovery of the hypovirulent isolate and lower recovery of the virulent compared with coincident inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号