首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Knowledge of clay dispersion behaviour [which is highly influenced by ion concentration in the aqueous phase and by related surface charge (SC) of colloids] is important for rating soil erosion risk (by water). It can also be useful for improving soil management systems. Clay fractions separated from samples of the A‐horizon of a Vertisol, Ultisol and Oxisol were collected, representing typical soils of North Cameroon. These soils were very different in physicochemical and mineral parameters. The effect of pH and the multivalent ions Ca2+, SO42− and PO43− on SC and dispersion characteristics were determined. The water dispersible clay was found to be higher in the Vertisol and Ultisol than in the Oxisol, indicating that the <2 µm fractions from the Vertisol and Ultisol are more dispersible than that from the Oxisol. The clay dispersion ratio together with the dispersion ratio were found to be in good agreement with water dispersible clay and are negatively correlated with the amount of organic matter and dithionite citrate bicarbonate soluble Fe and Al. Generally, SC of the <2 µm fraction was found to be negative when the pH was in the region of 3 to 9; thus the absolute value is highly pH‐dependent. At pH 6 and 8, CaCl2, Na2SO4 and Na2HPO4 additions had antagonistic effects on SC: Ca2+ increased SC, whereas SO42− and PO43−decreased SC indicating the adsorption of positively as well as negatively charged multivalent ions by soil colloids. Along with the increase of SC, there was a fall in repulsive forces and formation of Ca‐bridges, the addition of Ca2+ induced flocculation more rapidly than SO42− and PO43− amendments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Many empirical approaches have been developed to analyze changes in hydraulic conductivity due to concentration and composition of equilibrium solution. However, in swelling soils these approaches fail to perform satisfactorily, mainly due to the complex nature of clay minerals and soil–water interactions. The present study describes the changes in hydraulic conductivity of clay (Typic Haplustert) and clay‐loam (Vertic Haplustept) soils with change in electrolyte concentration (TEC) and sodium‐adsorption ratio (SAR) of equilibrium solution and assesses the suitability of a model developed by Russo and Bresler (1977) to describe the effects of mixed Na‐Ca‐Mg solutions on hydraulic conductivity. Four solutions encompassing two TEC levels viz., 5 and 50 mmolc L–1 and two SAR levels viz., 2.5 and 30 mmol1/2 L–1/2 were synthesized to equilibrate the soil samples using pure chloride salts of Ca, Mg, and Na at Ca : Mg = 2:1. Diluting 50 mmolc L–1 solution to 5 mmolc L–1 reduced saturated hydraulic conductivity of both soils by 66%, and increasing SAR from 2.5 to 30 mmol1/2 L–1/2 decreased saturated hydraulic conductivity by 82% and 79% in clay and clay‐loam soils, respectively. Near saturation, the magnitude of the change in unsaturated hydraulic conductivity due to the change in TEC and SAR was of 103‐ and 102‐fold, and at volumetric water content of 0.20 cm3 cm–3, it was of 1014‐ and 106‐fold in clay and clay‐loam soils, respectively. Differences between experimental and predicted values of saturated hydraulic conductivity ranged between 0.6% and 11% in clay and between 0.06% and 2.1% in clay‐loam soils. Difference between experimental and predicted values of unsaturated hydraulic conductivity widened with drying in both soils. Predicted values were in good agreement with the experimental values of hydraulic conductivity in clay and clay‐loam soils with R2 values of 0.98 and 0.94, respectively. The model can be satisfactorily used to describe salt effects on hydraulic conductivity of swelling soils in arid and semiarid areas, where groundwater quality is poor.  相似文献   

3.
Inceptisols and Vertisols are two dominant soil orders that support major agricultural production in India. These soils often exist in semi-arid and arid regions. Low precipitation and high evaporation demand leads to salt accumulation in these areas. The problem of salt accumulation is further compounded by the presence of saline/alkaline groundwaters. We evaluated the effect of modified Ca/Mg waters on ionic composition, dispersion, and clay flocculation of sodic Inceptisols, saline-sodic Inceptisols, and normal Vertisols from different parts of India. A completely randomized factorial design with three replications of individual soils were sequentially leached with five pore volumes of deionized, saline water of 60 and 120 me L?1 total electrolyte concentration (TEC) at a fixed SAR of 5.0 mmol1/2 L?1/2 and Ca:Mg ratio of 2:1, 1:1 and 1:2. Application of saline waters decreased pH and increased EC of the soil leachates after leaching five pore volumes of three Ca/Mg ratios of 60 and 120 me L?1 solutions in sodic Inceptisols and normal Vertisols. In saline-sodic Inceptisols, application of saline waters decreased both pH and electrical conductivity (EC) of the soil leachates. Preferential Ca2+ holding in soil was only noticed in sodic Inceptisols when leaching process was performed with independent saline waters, but Mg2+ has a tendency to hold in soil upon application of independent saline waters for all soils except sodic Inceptisols. Periodic application of deionized water could increase soil dispersion and decreased flocculation of clay particles. Mg2+ ion had less flocculating vis-à-vis high-dispersion effect on soil clays than the Ca2+ ion.  相似文献   

4.
A monitoring study on precipitation and soil solution was conducted to analyze soil acidification processes at the Rolling Land Laboratory (RLL), Hachioji, Tokyo based on the spatial variability of the soil solution chemistry around the Hinoki cypress (Chamaecyparis obtusa) trunk. Soil solution samples were taken at various distances from the tree trunks and at various depths. Soil solution pH at the depth of 10 cm decreased to 4.1–4.2 on the downslope side of large tree trunks, presumably due to the heterogeneity of throughfall input and extensive infiltration of acidic stemflow. Ammonium ions brought by throughfall and stemflow were nitrified and provided large amounts of H+. Protons were replaced with exchangeable cations. When base cations were depleted, aluminum ion became the dominant cation species. On the average, Ca2+ concentration in the soil solutions at the depth of 10 cm decreased from 0.28 mmolc L-1 at the reference site to 0.18 mmolc L-1 on the downslope side and Mg2+ concentration decreased from 0.30 mmolc L-1 to 0.15 mmolc L-1. Arithmetic mean aluminum concentration at the depth of 10 cm on the downslope side was 0.35 mmolc L-1. Here aluminum dissolution was the main acid sink. Based on the spatial variability of the soil solution chemistry, soil solution acidification processes were divided into four stages.  相似文献   

5.
Soils with and without organic manuring from 10 long-term manurial experiments in East Germany were fractionated into organo-mineral particle-size separates by ultrasonic disaggregation and sedimentation/decantation. The cation exchange capacities (CECs) buffered at pH 8.1 were determined for the size fractions fine+medium clay, coarse clay, fine, medium and coarse silt, sand, and for the total soil samples. In the samples from nine field experiments the CECs decreased with increased equivalent diameters (fine+medium clay: 489–8 13 mmolc kg?1, coarse clay: 367–749 mmolc kg?1, fine silt: 202–587 mmolc kg?1. medium silt: 63–345 mmolc kg?1, coarse silt: 12–128 mmolc kg?1 and sand: 10–156 mmolc kg?1. The CECs varied with genetic soil type, mineralogical composition of the <6.3-μm particles, and the C and N contents of the size fractions. In a pot experiment examining the role of various organic materials in the early stages of soil formation, the clay-size fractions had the largest CECs (85–392 mmolc kg?1), followed by the medium-silt (1 9-222 mmolc kg?1) and fine-silt fractions (23–192 mmolc kg?1). The effect of organic amendments on CEC was in general: compost>fresh farmyard manure = straw + mineral fertilizer = mineral fertilizer.  相似文献   

6.
Acid soils in some mediterranean forests were investigated for the composition of the adsorption complex and the gradients in soil pH. The effective CEC (235–838 mmolc kg?1) and base saturation (93–98 %) are highest in ectorganic horizons. In the mineral horizons the effective CEC (23–52 mmolc kg?1) and base saturation (11–40 %) are much lower. The exchange complex of mineral horizons consists for 90 (AEh) to 40 percent (Bw2) of organic matter. The effective CEC of the mineral clay fraction is low (60 mmolc kg?1 clay). The clear trends in soil pH within the ectorganic layer of deciduous and sclerophyllous oak forests are attributed to vertical spatial separation of nitrogen mineralization (ammonification and strongly impeded nitrification) and nutrient uptake by roots (mainly NH4). This leads to a high effective CEC in the fermentation layer and acidification of the uppermost part of the mineral soil. In contrast to the situation in temperate forests this process is impeded in mediterranean coniferous forests, where litter decomposition is extremely slow and both proton production and consumption take place in the organic rich mineral horizon.  相似文献   

7.
The results of physico-chemical investigations of an Ultisol subsoil under a 2-year old fallow in eastern Amazonia are presented. Subsoil chemistry was studied using 4 different approaches: i) concentrations of H, Na, K, Ca, Mg, Mn, Al, and Fe in seepage water were measured under field conditions, ii) the equilibrium soil chemistry was studied in sequential batch experiments where the soil was treated with different solutions, iii) results of batch experiments were simulated with a chemical equilibrium model, and iv) the seepage data were calculated using selectivity coefficients obtained by modelling the batch experiments. The model included multiple cation exchange, precipitation/dissolution of Al(OH)3 and inorganic complexation. Cation selectivity coefficients were pKx/Casel: X = Na: 0.3, K: 0.8, Mg: ?0.1, and Al: 0.4. The amount of cations sorbed ranged from ?0.2 to 2.0 (K), ?0.7 to 2.3 (Mg), ?1.6 to 1.8 (Ca), ?4.8 to 3.6 (Al) and 0.0 to 8.5 (Na) mmolc kg?1. The model predictions were good with values lying within 0.3 pH units (for the pH range 3.7 to 7.2), and 3% of CEC for individual cations. The most important proton buffer reaction seemed to be the dissolution of gibbsite and a large release of Al into the soil solution. When selectivity coefficients obtained by the modelling procedure were used to predict the field data for cation concentrations in the seepage water, they decreased in the following order: Na > K > Ca > Mg > Al. These calculated values were similar to the measured order: Na > Ca > K ≈ Mg > Al. Thus the options for managing these soils should be carefully chosen to avoid soil acidification which may result from inappropriate use of fertilizer during the cropping period.  相似文献   

8.
Abstract

Soils collected from 15 locations from SE Nigeria at the 0‐ to 20‐cm depth were studied for the nutrient elements of fine fractions and their role in the stability of the soils. The objective was to understand the role of these elements in the stability of the aggregates. The fine fractions were clay and silt, and elements measured in the fine fractions were exchangeable sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), exchangeable acidity (EA), cation exchange capacity (CEC), and available phosphorus (P). The aggregate stability was measured at the microlevel with clay dispersible indices and water‐stable aggregate (WSA) <0.25 mm, and at macrolevel with other WSA indices and mean‐weight diameter (MWD). Soils varied from loamy sand to sandy clay. There were more exchangeable cations, CEC, EA, and available P in clay than in the silt fraction. Whereas EA values ranged from 2.8 to 10.4 cmol kg?1, they were between 1.6 and 9.2 cmol kg?1 in silt. The CEC in the clay fraction was from 7.4 to 70 cmol kg?1 and between 4.0 and 32.8 cmol kg?1 in the silt fraction. The WDC were from 50 to 310 g kg?1 while the average dispersion ratio (DR) was generally higher than the corresponding clay‐dispersion ratio (CDR), and the MWD ranged from 0.45 to 2.68 mm. Soils with WSA skewed mostly to higher WSA (>2–1.00 mm) had a higher MWD. Exchangeable Ca2+ in clay correlated significantly with CDR and WSA sizes 1.0–0.5 mm and 0.5–0.25 mm (r=0.45,* 0.51,* and 0.60*), respectively, but negatively correlated with clay flocculation index (CFI) (r=?0.45*). Also, available P in clay correlated respectively with CDR and CFI (r=0.45*, ?0.45*), whereas K+ in silt correlated significantly with WDSi (r=0.64*), CFI (r=0.62*), and CDR (r=?0.65*). Principal component analysis revealed that elemental contents in the silt fraction can play very significant roles in the microaggregate stability.  相似文献   

9.
Generation of different biowastes is increasing day by day, and ultimate load on agricultural lands has increased. Concerns over increased phosphorus (P) application with nitrogen (N)–based compost application shifted the trend to P‐based applications. But focus on only one or two nutritional elements will not serve the goals of sustainable agriculture. Full insight into nutrient availability from different composts is necessary. The need to understand the nutrient release and uptake from different composts has increased because of the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, current greenhouse studies were designed to evaluate the bioavailability and leachability of some micronutrients [calcium (Ca), magnesium (Mg), and zinc (Zn)] from different biocomposts under chloride (Cl?) and sulfate (SO4 ?2) saline environment. In the first pot experiment, soil was amended with livestock compost (AC), poultry compost (PC), and composted sludge (SC) at the rate of 200 kg P ha?1 equivalent bases. Pots were irrigated with artificial saline water of sodium chloride (NaCl) or sodium sulfate (Na2SO4; 60 mmolc L?1), and leachates were collected for Ca and Mg analysis. As composts were applied on total P bases, which left varying amounts of nutrients in each treatment, it was observed that nutrient uptake and release differed greatly regardless of the total amount applied with each compost type. Amount of Ca applied with PC (3.9 g pot?1) was greater, but Ca concentration in leachate was greater under AC‐amended treatments. Magnesium concentration also varied greatly under compost types. Among the saline irrigation, Ca and Mg concentration in leachate increased under both saline irrigations compared to nonsaline treatment, and SO4 ?2 had relatively greater ionic strength to replace cations than Cl?. Calcium, Mg, and Zn uptake by maize stem and leaves were greater from SC‐amended pots followed by PC, SC, and control. Irrespective of the salt types, Ca and Mg uptake reduced under both saline irrigations, whereas Zn uptake increased as compared to nonsaline treatment. Among the salt types, it was observed that plant growth and nutrient uptake was more influenced by Cl? than SO4 ?2 saline irrigation. In the second experiment, soil was saturated with NaCl and NaSO4 (75 mmolc L?1) and amended with AC. The trend of nutrient uptake under both salt types was similar to first experiment, and the results of AC amendments have been discussed. It can be inferred from the results that regardless of the total amount applied, nutrient uptake greatly varies under different composts and their availability depends upon the source rather than total amount applied. Analogously, sulfate‐dominated irrigation water can increase the leaching of Ca and Mg from root zone more than chloride.  相似文献   

10.
Copper adsorption and desorption under acid conditions by soil clay fractions separated from Vertisol, Planosol and Gleyic Acrisol has been studied in 0.01 M Ca(NO3)2. A Freundlich equation was appropriate to describe Cu adsorption. Within the range of 150 to 2600 mg of copper per kg of soil clay fraction the proportions of Cu not displaced during 5 successive 48-hour desorptions with 0.01 M Ca(NO3)2 decreased with increasing adsorption density and at the lower pHs. The proportions ranged from as high as 0.98 in th case of the Vertisol clay (pH 5.3) to as low as 0.12 (88% desorption) in the Planosol clay (pH 4.5). Measurement of separation factors (ga Cu/Ca) showed that the preference of the clay surface for Cu over Ca decreased in the order: Gleyic Acrisol > Planosol > Vertisol. A considerable amount of sorbed copper could be solubilized by decreasing pH values to 4 when in the Planosol clay 39% was desorbed and 45% was desorbed in the Gleyic Acrisol clay.  相似文献   

11.
The effects of varying fertilizer application rates [100–15–100 or 300–46–300 mg L‐1 of nitrogen (N)‐phosphorus (P)‐potassium (K)] and pinching dates on nutrient uptake patterns of poinsettias were studied. During the first seven weeks after potting, varying the N‐P‐K fertilization rate from 100–15–100 to 300–46–300 mg L‐1 N‐P‐K had no effect on plant height, dry weight, nutrient concentration, or nutrient content of poinsettias. The uptake ratios for NO3‐N, K, calcium (Ca), and magnesium (Mg) all were <40% of the amount that was available at the 100 mg L"1 N and K fertilization rate, indicating that poinsettias require lower levels of NO3‐N, K, Ca, and Mg than what was available from the 100–15–100 mg L"1 N‐P‐K fertilization rate. The higher uptake ratios of >60% and >70%, respectively, for NH4‐N and P at the 100 mg L"1 N and K fertilization rate indicated the plants utilized a higher percentage of the available NH4‐N and P, indicating that an application rate >18 mg L‐1 NH4‐N and >15 mg L‐1 P would be required by poinsettias from the week before the plants were pinched through three weeks after pinching. The 300–46–300 mg L‐1 N‐P‐K fertilization rate provided excessive nutrients that were not utilized by the plants during the early stages of plant growth.  相似文献   

12.
《Geoderma》2007,137(3-4):455-465
Phosphorus (P) binding to minerals and ion exchange capacity in different clay fractions were examined for a non-calcareous soil in southwest Sweden. The soil had received pig slurry during three decades, 2 kg lower than the recent maximum load of 22 kg P ha 1 year 1 as regulated by livestock density legislation. The topsoil was found to contain 33% clay by weight. Illite was the predominant clay mineral and constituted 13% of total soil. Vermiculite (10%), K-feldspar (14%) and plagioclase (21%) also constituted significant proportions of the mineralogical matrix. Within the most fine-grained clay fraction, 50% of which was less than 0.1 μm in particle size, illite and vermiculite dominated totally, 50 and 23% respectively. In fine-grained (FG), most fine-grained (MFG) and colloidal fractions, there were strong relationships (Pearson correlation coefficient 0.98–1.00) between calcium (Ca) and P. There was a low molar ratio Ca:P in added manure and the presence of Ca–P complexes in the fine soil fractions was indicated. In contrast, in the coarse soil fraction (> 2 μm), there was a clear relationship (Pearson coefficient 0.97) between P and iron oxide (Fe2O3) and between P and aluminium oxide (Al2O3) throughout the soil profile. Thus even for non-calcareous soils, formation of Ca–P complexes should be taken into account with regards to losses of colloidal P to drainage water.  相似文献   

13.
The effect of changing pH and electrolyte concentration on the dispersion and zeta potential of Na-and Ca-forms of kaolinite, illite and smectite was investigated in relation to changes in their net negative charge. The percentage of dispersible Na-clay and the percentage increase in net negative charge was positively correlated with pH, but the slopes varied from clay to clay. In general, the net negative charge was the primary factor in clay dispersion, and the pH affected clay dispersion by changing the net charge on clay particles. Na-smectite had larger net charge at all pHs than Na-illite and Na-kaolinite, and it always had larger flocculation values. The role of electrolyte concentration could be due to its effect both on flocculation and variable charge component of the clay minerals. The zeta potential at different pHs also reflected the same trend of clay dispersion with net particle charge. In Ca-clays the trends were similar to Na-clays up to pH 7.0. In more alkaline solution CaCO3 formation led to charge reduction on clay particles, resulting in flocculation and reduction of zeta potential. At similar pHs the electrophoretic mobilities of all the clays showed constant potential behaviour. However, the zeta potentials of Ca-clays were always smaller than those of sodic clays because the clays were more aggregated. Net particle charge was the most important factor in controlling clay dispersion for the whole range of pH and ionic strength and for all types of cations.  相似文献   

14.
The effect of total electrolyte concentration (TEC) and sodium adsorption ratio (SAR) of water on ESR‐SAR relationships of clay (Typic Haplustert), clay loam (Vertic Haplustept) and silt loam (Lithic Haplorthent) soils was studied in a laboratory experiment. Twenty four solutions, encompassing four TEC levels viz., 5, 10, 20, and 50 mmolc l—1 and six SAR levels viz., 2.5, 5, 10, 15, 20, and 30 mmol1/2l—1/2 were synthesized to equilibrate the soil samples using pure chloride salts of calcium, magnesium, and sodium at Mg:Ca = 1:2. SAR of equilibrium solution decreased as compared to the equilibrating solution and more so in waters of low salt concentration and high SAR. At low electrolyte concentration, high SAR values were not attained in the equilibrium solution because of addition of calcium and magnesium from the mineral dissolution and from the exchange phase. Irrespective of TEC, exchangeable sodium in all the soils increased by about 4.5 to 5‐fold and irrespective of SAR, it increased by about 1.4‐ to 1.8‐fold. A positive interaction of TEC and SAR influenced the ESP build‐up and CEC played a major role in the visual disparity in sodication of these soils. At higher TEC levels, considerable increase in ESP was observed when it was corrected for anion exclusion and more so in silt loam followed by clay loam and clay soils. The values for Gapons' constant were in the range 0.0110—0.0176, 0.0142—0.0246, and 0.0189—0.0344 mmol—1/2l1/2 in clay, clay loam, and silt loam soils, respectively. Increase in TEC from 5 to 50 mmolc l—1 resulted in 5.84, 8.33, and 9.77 % decrease in Gapons' constant of clay, clay loam, and silt loam soils, respectively. The soils exhibited differential affinity for Ca2+, Mg2+ or Na+ under different quality waters. Regression coefficients of ESR‐SAR relationship were lower for low TEC as compared with high TEC waters. The exchange equilibrium was strongly affected by TEC of the solution phase. Variation in soil pH was gradual with respect to TEC and SAR of equilibrating solution and no sharp change was observed. Soluble salt concentration was doubled upon equilibration with low salt waters at all SAR levels in all the soils. However, the salt concentration remained unchanged upon equilibration with high salt waters. Considering pH 8.5 a boundary between soil salinity and sodicity, ESP values attained at TEC 5 mmolc l—1 were 7.34, 8.02, and 14.32 for clay, clay loam, and silt loam soils, respectively.  相似文献   

15.
李成保 《土壤学报》1989,26(1):16-22
用红壤、赤红壤和砖红壤3种土壤胶体,测定胶体悬液在不同频率时的电导和直流电导,用以观察频散现象。结果表明,各种胶体的电导频散能力因土壤类型而异,红壤最强,赤红壤次之,砖红壤最弱。呈现明显频散所需要的频率,红壤和赤红壤为10千赫左右,砖红壤约为100千赫。可变电荷土壤的类型对电导频散的影响与土壤胶体所带的电荷总量密切相关。对于同一种胶体,悬液相对电导率(某一频率时的电导率与300赫时的电导率之比)随胶体浓度的增加而变大。红壤悬液在各种电解质存在时的电导频散曲线的形状不同,其中KCl者为一斜上直线,Ca(NO3)2,和CaCl2,者则为上翘的曲线。在1到100千赫之间,频散的顺序为:KCl>Ca(NO3)2>CaCl2。呈现明显频散所需要的频率,对KCl者为1千赫左右,Ca(NO3)2者约为10千赫,CaCl2者高达100千赫左右。在同一频率下,红壤胶体悬液的相对电导率随KCl溶液浓度的增加(10-5—10-3mol/L)而减小。  相似文献   

16.
Purpose

Several interactions between Al and the solid phase of soil influence Al buffering in soil solution. This work evaluated soils cultivated with Pinus taeda L. to determine Al forms in organic and mineral horizons using various extraction methods and to relate acidity with clay mineralogy.

Materials and methods

Organic and mineral horizons of 10 soil profiles (up to 2.1 m deep) in southern Brazil were sampled. Organic horizons were separated into fresh, aged, and fermented/humified litter. The following Al extraction methods were utilized: 0.5 mol L?1 pH 2.8 CuCl2–Al complexed in organic matter; 1.0 mol L?1 KCl–exchangeable Al; water–Al soluble in soil solution; HF concentrated?+?HNO3 concentrated?+?H2O2 30% (v/v)–total Al. Six sequential extractions were carried out to isolate different forms of amorphous minerals that can buffer Al on soil solution: 0.05 and 0.1 mol L?1 sodium pyrophosphate; 0.1 and 0.2 mol L?1 ammonium oxalate; 0.25 and 0.5 mol L?1 NaOH. Samples of clay were also analyzed by XRD.

Results and discussion

There was a clear effect of litter age on increasing total Al concentration. In the aged litter and fermented and/or humified litter, levels of total Al were 1.4 to 3.8 and 1.5 to 7.8 times greater than in fresh litter, respectively. The CuCl2 method had higher Al extraction capacity than the KCl method for litter. The lowest Al–pyrophosphate values were observed in the Oxisol, which also had a predominance of gibbsite and the lowest levels of Al–KCl and Al–CuCl2. There was an inverse relationship between degree of soil weathering and soluble and exchangeable Al in soils. Available Al increased with higher Si proportion in minerals of the clay fraction (2:1?>?1:1?>?0:1).

Conclusions

The worst scenario was soils with the combination of high soluble and exchangeable Al levels and high concentrations of amorphous forms of Al minerals. The best predictors of Al accumulation in the youngest litter horizon were extractions of amorphous minerals with pyrophosphate and NaOH. These extractors are normally used to predict the level of Al buffering in soils. Organic matter had less influence on Al dynamics in soils.

  相似文献   

17.
Historically many towns in inland Australia disposed of their treated sewage by pumping into local rivers. This is no longer a feasible proposition. Alternatives to river pumping include irrigation and/or aquaculture. As treated sewage effluent may contain large amounts of nitrogen, phosphorus and sodium salts, if not managed carefully, soil salinity, sodicity and nutrient accumulation could increase. The objective of this study was to evaluate if gypsum application had any effect on soil‐quality changes in a Vertisol due to irrigating a cotton–wheat rotation with tertiary treated sewage effluent. The treatments were application of 2·5 t ha−1 of gypsum in June 2000 before commencing irrigation and an untreated control. Annually, between June 2000 and April 2004, irrigation water quality and soil changes in nitrate‐N, EC1:5, pH, organic carbon, Cl, dispersion index, and exchangeable cations to a depth of 1·8 m were measured and deep drainage inferred with the chloride mass balance method. Cotton lint yield and fibre characteristics were also evaluated. Irrigation with treated sewage effluent increased exchangeable Na in all depths, and exchangeable Ca and K in the clayey‐textured surface 0·6 m, but decreased exchangeable Ca and K, and SOC in the coarser clay‐loam‐textured depths > 0·6 m. Nitrate‐N leaching, associated with deep drainage had occurred, as the crops had not used all the N in irrigation water. Gypsum application decreased exchangeable Ca, increased dispersion and during the 2003–2004 season deep drainage, but had no effect on salinity, sodicity or pH. Application of commercial gypsum at sub‐optimal rates with sodium‐rich irrigation water is, therefore, unlikely to improve soil properties. Stubble incorporation before sowing cotton in 2003 appears to have mobilized gypsum applied during 2000. Gypsum application reduced cotton lint yield and fibre quality during 2003–2004. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Twenty surface soils from four main Soil Groups in Malawi and their sub-soils were divided into three groups based on cation exchange capacity (group I, CEC < 50; group II, 50–100; and group III > 100μeq g–1). In each soil group the maximum amounts of K removed by successive extraction with 0.005 M CaCl2 solution were well related to the potassium potential pK–0.5p(Ca + Mg), exchangeable K, ‘step K’, and the quotient ‘step K’/CR.K, where CR.K is ‘constant-rate’potassium. In Group III soils only, ‘step K’/CR.K values were significantly correlated with pH, clay, and CEC, and this suggested that the soils were relatively rich in K+ specific binding sites. In 27 soils from an NPK factorial experiment on tea, the rate of depletion of extractable K reserve increased with ammonium sulphate treatment, whereas K fertilizers tended to off-set significantly (P= 0.001) the depletion of K reserve. The values for the change in free energy ΔG =RT In aK/ (a(Ca+Mg)) ½, ranged from –12 to –16 kJ mol–1, and field observations showed that tea plants growing on soils having ΔG values less than –15 kJ mol–1 responded to K fertilizers. The investigation has indicated that heavily cropped soils are likely to show crop responses if the intensive cropping system does not include supplementation of K.  相似文献   

19.
A 90‐day laboratory incubation study was carried out using six contrasting subtropical soils (calcareous, peat, saline, noncalcareous, terrace, and acid sulfate) from Bangladesh. A control treatment without nitrogen (N) application was compared with treatments where urea, ammonium sulfate (AS), and ammonium nitrate (AN) were applied at a rate of 100 mg N (kg soil)–1. To study the effect of N fertilizers on soil carbon (C) turnover, the CO2‐C flux was determined at nine sampling dates during the incubation, and the total loss of soil carbon (TC) was calculated. Nitrogen turnover was characterized by measuring net nitrogen mineralization (NNM) and net nitrification (NN). Simple and stepwise multiple regressions were calculated between CO2‐C flux, TC, NNM, and NN on the one hand and selected soil properties (organic C, total N, C : N ratio, CEC, pH, clay and sand content) on the other hand. In general, CO2‐C fluxes were clearly higher during the first 2 weeks of the incubation compared to the later phases. Soils with high pH and/or indigenous C displayed the highest CO2‐C flux. However, soils having low C levels (i.e., calcareous and terrace soils) displayed a large relative TC loss (up to 22.3%) and the added N–induced TC loss from these soils reached a maximum of 10.6%. Loss of TC differed depending on the N treatments (urea > AS > AN >> control). Significantly higher NNM was found in the acidic soils (terrace and acid sulfate). On average, NNM after urea application was higher than for AS and AN (80.3 vs. 71.9 and 70.9 N (kg soil)–1, respectively). However, specific interactions between N‐fertilizer form and soil type have to be taken into consideration. High pH soils displayed larger NN (75.9–98.1 mg N (kg soil)–1) than low pH soils. Averaged over the six soils, NN after application of urea and AS (83.3 and 82.2 mg N (kg soil)–1, respectively) was significantly higher than after application of AN (60.6 mg N (kg soil)–1). Significant relationships were found between total CO2 flux and certain soil properties (organic C, total N, CEC, clay and sand content). The most important soil property for NNM as well as NN was soil pH, showing a correlation coefficient of –0.33** and 0.45***, respectively. The results indicate that application of urea to acidic soils and AS to high‐pH soils could be an effective measure to improve the availability of added N for crop uptake.  相似文献   

20.
Sodium (Na+) dominated soils reduce saturated hydraulic conductivity (Ks) by clay dispersion and plugging pores, while gypsum (CaSO4•2H2O) application counters these properties. However, variable retrieval of texturally different saline–sodic soils with gypsum at soil gypsum requirement (SGR) devised to define its quantity best suited to improve Ks, leach Na+ and salts. This study comprised loamy‐sand (LS), sandy loam (SL), and clay loam (CL) soils with electrical conductivity of saturation extract (ECe) of ~8 dS m−1, sodium adsorption ratio (SAR) of ~44 (mmol L−1)1/2 and exchangeable sodium of ~41%, receiving no gypsum (G0), gypsum at 25% (G25), 50% (G50) and 75% (G75) of SGR. Soils packed in lysimeters were leached with low‐carbonate water [EC at 0·39 dS m−1, SAR at 0·56 (mmol L−1)1/2 and residual sodium carbonate at 0·15 mmolc L−1]. It proved that a rise in gypsum rate amplified Ks of LS ≫ SL > CL. However, Ks of LS soil at G25 and others at G75 remained efficient for salts and Na+ removal. Retention of calcium with magnesium (Ca2+ + Mg2+) by LS and SL soils increased by G50 and decreased in G75, while in CL, it also increased with G75. The enhanced Na+ leaching efficiency in LS soil with G25 was envisaged by water stay for sufficient time to dissolve gypsum and exchange and leach out Na+. Overall, the superiority of gypsum for LS at G25, SL at G50 and CL at G75 predicted cost‐effective soil reclamation with a decrease in ECe and SAR below 0·97 dS m−1 and 5·92 (mmol L−1)1/2, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号