首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative modification of low-density lipoproteins (LDL) may play an important role in the development of atherosclerosis. alpha-Tocopherol functions as a major antioxidant in human LDL. The present study was to test whether green tea catechins (GTC) would protect or regenerate alpha-tocopherol in human LDL. The oxidation of LDL incubated in sodium phosphate buffer (pH 7.4, 10 mM) was initiated by addition of 1.0 mM of 2,2'-azobis(2-amidinopropane) dihydrochloride at 40 degrees C. It was found that alpha-tocopherol was completely depleted within 1 h. Under the same experimental conditions, the longjing GTC extracts demonstrated a dose-dependent protective activity to alpha-tocopherol in LDL at concentrations ranging from 2 to 20 microM. Four pure epicatechin derivatives showed varying protective activity against depletion of alpha-tocopherol in LDL with (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) being less effective than (-)-epicatechin (EC) and (-)-epicatechin gallate (ECG). The results showed that addition of longjing GTC extracts, EC, ECG, and EGCG at 5, 10, and 15 min to the incubation mixture demonstrated a gradual regeneration of alpha-tocopherol in human LDL.  相似文献   

2.
Tea catechins may undergo complex reactions such as oxidation, polymerization, and epimerization during thermal processing. The thermal stability of tea catechins in an aqueous system, including degradation and epimerization reactions, was investigated using a microwave reactor. Reactions were controlled at high temperatures ranging from 100 to 165 degrees C with various durations up to 120 min. Three sources of tea catechins containing different levels of (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), and their epimers were studied. Kinetic models for the degradation/epimerization of tea catechins were developed and validated by the reactions at 145 degrees C. It was shown that the epimerization and degradation of tea catechins followed first-order reactions and the rate constants of reaction kinetics followed the Arrhenius equation. Values of the activation energy (E(a)) for the epimerization of EGCG from epi- to nonepi-structures, the epimerization of GCG from nonepi- to epi-structures, and the total degradation of EGCG and its epimer GCG were 117.6, 84.2, and 42.8 kJ/mol, respectively. For ECG and CG, the E(a) values were 119.3, 96.2, and 41.6 kJ/mol, respectively. The mathematical models may provide a useful prediction for the loss of tea catechins during any thermal processing.  相似文献   

3.
This research was conducted to understand the effects of heat processing and storage on flavanols and sensory qualities of green tea extract. Fresh tea leaves were processed into steamed and roasted green teas by commercial methods and then extracted with hot water (80 degrees C) at 1:160 ratio (tea leaves/water by weight). Green tea extracts were heat processed at 121 degrees C for 1 min and then stored at 50 degrees C to accelerate chemical reactions. Changes in flavanol composition and sensory qualities of green tea extracts during processing and storage were measured. Eight major flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, epicatechin gallate, catechin gallate, epigallocatechin gallate, and gallocatechin gallate) were identified in the processed tea extract. Among them, epigallocatechin gallate and epigallocatechin appeared to play the key role in the changes of sensory qualities of processed green tea beverage. The steamed tea leaves produced a more desirable quality of processed green tea beverage than the roasted ones.  相似文献   

4.
(-)-Epigallocatechin gallate (EGCG) is the most abundant catechin in green tea, which has been linked with many health benefits. To ensure the conceivable health benefits from thermally processed products, a kinetic study on the stability of (-)-EGCG in aqueous system was carried out using a HPLC-UV system and Matlab programming. Simultaneous degradation and epimerization of (-)-EGCG were characterized during isothermal reactions at low temperatures (25-100 degrees C) combined with previously conducted experimental results at high temperature (100-165 degrees C); the degradation and epimerization complied with first-order reaction and their rate constants followed Arrhenius equation. Mathematical models for the stability of (-)-EGCG were established and validated by the reactions at 70 degrees C and with varied concentrations from different catechin sources. Two specific temperature points in the reaction kinetics were identified, at 44 and 98 degrees C, respectively. Below 44 degrees C, the degradation was more profound. Above 44 degrees C, the epimerization from (-)-gallocatechin gallate (GCG) to (-)-EGCG was faster than degradation. When temperature increased to 98 degrees C and above, the epimerization from (-)-GCG to (-)-EGCG became prominent. Our results also indicated that the turning point of 82 degrees C reported in the literature for the reaction kinetics of catechins would need to be re-examined.  相似文献   

5.
在啤酒酿造工艺的煮沸和主发酵阶段分别添加乌龙茶,探讨茶叶不同添加方式对啤酒理化特性、抗氧化能力、啤酒贮存稳定性以及感官特性的影响。结果显示,与未添加茶叶的啤酒产品(对照组CG)相比,在煮沸阶段(煮沸添加组BG)和主发酵阶段(主发酵添加组MG)分别添加0.3g/L的茶叶均提高了酵母发酵速率;添加茶叶的两个茶啤酒产品(煮沸添加组和主发酵添加组)的DPPH自由基清除能力分别提升至82.74%和89.21%、ABTS+自由基清除能力分别提升至41.53%和51.49%、铁离子还原能力分别提升至36.49和43.83 mg/L,且成品茶啤酒贮藏期间的抗老化能力提高;茶啤酒中总酚以及儿茶素(EGC、C、EGCG、EC、GCG、ECG)和咖啡碱(CAF)含量升高,其中,主发酵添加组茶啤酒样品总酚和EGCG含量显著高于对照组和煮沸添加组啤酒(P0.05),分别达到734.40和8.43 mg/L。进一步的感官品评结果显示添加茶叶提高了啤酒产品的茶香气和茶滋味,其中主发酵添加组啤酒的茶香气、茶滋味及酒体协调性最好。由此可知,在啤酒酿造工艺中添加茶叶提高了酵母发酵速率,增强了啤酒中酚类物质含量及其抗氧化和抗老化性能,同时也为啤酒增添了新的茶风味产品。  相似文献   

6.
Protection against nitric oxide toxicity by tea   总被引:2,自引:0,他引:2  
It is found that green tea and black tea are able to protect against nitric oxide (NO(*)) toxicity in several ways. Both green tea and black tea scavenge NO(*) and peroxynitrite, inhibit the excessive production of NO(*) by the inducible form of nitric oxide synthase (iNOS), and suppress the LPS-mediated induction of iNOS. The NO(*) scavenging activity of tea was less than that of red wine. The high activity found in the polyphenol fraction of black tea (BTP) could not be explained by the mixed theaflavin fraction (MTF) or catechins [epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate (EGCG)], which were tested separately. Synergistic effects between the compounds, or the presence of a potent, unidentified NO(*) scavenger, may explain the high activity of BTP. The peroxynitrite scavenging of tea was comparable to that of red wine. The main activity was found in the polyphenol fraction. MTF and the catechins were found to be potent peroxynitrite scavengers. Tea and tea components were effective inhibitors of iNOS. Of the tea components tested, only MTF had an activity higher than that of the tea powders. The polyphenol fractions of tea were much more active than the tea powders in suppressing the induction of iNOS. On the basis of its abundance and activity, EGCG was the most active inhibitor. The protective effect of tea on NO(*) toxicity is discussed in relation to the beneficial effect of flavonoid intake on the occurrence of cardiovascular heart disease.  相似文献   

7.
The health benefits associated with tea consumption have resulted in the wide inclusion of green tea extracts in botanical dietary supplements, which are widely consumed as adjuvants for complementary and alternative medicines. Tea contains polyphenols such as catechins or flavan-3-ols including epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate (EGCG), as well as the alkaloid, caffeine. Polyphenols are antioxidants, and EGCG, due to its high levels, is widely accepted as the major antioxidant in green tea. Therefore, commercial green tea dietary supplements (GTDS) may be chemically standardized to EGCG levels and/or biologically standardized to antioxidant capacity. However, label claims on GTDS may not correlate with actual phytochemical content or antioxidant capacity nor provide information about the presence and levels of caffeine. In the current study, 19 commonly available GTDS were evaluated for catechin and caffeine content (using high-performance liquid chromatography) and for antioxidative activity [using trolox equivalent antioxidant capacity (TEAC) and oxygen radical antioxidant capacity (ORAC) assays]. Product labels varied in the information provided and were inconsistent with actual phytochemical contents. Only seven of the GTDS studied made label claims of caffeine content, 11 made claims of EGCG content, and five specified total polyphenol content. Caffeine, EGCG, and total polyphenol contents in the GTDS varied from 28 to 183, 12-143, and 14-36% tablet or capsule weight, respectively. TEAC and ORAC values for GTDS ranged from 187 to 15340 and from 166 to 13690 mumol Trolox/g for tablet or capsule, respectively. The antioxidant activities for GTDS determined by TEAC and ORAC were well-correlated with each other and with the total polyphenol content. Reliable labeling information and standardized manufacturing practices, based on both chemical standardization and biological assays, are recommended for the quality control of botanical dietary supplements.  相似文献   

8.
Metabolic profiles of broiler chickens were examined after the ingestion of green tea, tea polyphenols, and (-)-epigallocatechin-3-gallate (EGCG). Solid-phase extraction of serum and litters yielded free catechins and their metabolites, which were then identified and quantified by liquid chromatography-tandem mass spectrometry. In plasma samples, (-)-gallocatechin, (+)-catechin, and EGCG were detected in the green tea group; pyrogallol acid, (epi)catechin-O-sulfate, 4'-O-methyl-(epi)gallocatechin-O-glucuronide, and (epi)catechin-3'-O-glucuronide were detected in the tea polyphenols group; and EGCG, (-)-gallocatechin gallate (GCG), and 4'-O-methyl-(epi)gallocatechin-O-glucuronides were detected in the EGCG group. In litters, gallic acid, EGCG, GCG, and ECG were detected in the green tea and tea polyphenols groups; EGCG and ECG were detected in the EGCG group. The conjugated metabolites, 4'-O-methyl-(epi)gallocatechin-O-glucuronide, (epi)catechin-3'-glucuronide, and 4'-O-methyl-(epi)catechin-O-sulfate, were identified in the green tea group; 4'-O-methyl-(epi)catechin-O-sulfate and 4'-O-methyl-(epi)gallocatechin-O-sulfate were identified in the tea polyphenols group; only 4'-O-methyl-(epi)gallocatechin-O-sulfate was detected in the EGCG group. The excretion of tea catechins was 95.8, 87.7, and 97.7% for the green tea, tea polyphenols, and EGCG groups, respectively.  相似文献   

9.
The effects of tea polyphenols on the invasion of highly metastatic human fibrosarcoma HT1080 cells through a monolayer of human umbilical vein endothelial cells (HUVECs) and the accompanying basal membrane were investigated. Among the tea polyphenols tested, epicatechin gallate (ECg), epigallocatechin gallate (EGCg), and theaflavin strongly suppressed the invasion of HT1080 cells into the monolayer of HUVECs/gelatin membrane, whereas epicatechin, epigallocatechin, tea flavonols, tea flavones, and gallate derivatives had no effect. Both theaflavin-digallate and theasinensin D showed a weak invasion inhibitory effect. ECg significantly inhibited the invasion without cytotoxicity against cancer cells and HUVECs. Ester-type catechins (ECg and EGCg) and theaflavin strongly suppressed the gelatin degradation mediated by matrix metalloproteinase (MMP) 2 and MMP-9, which were secreted into the conditioned medium of HT1080 cells. In conclusion, among the tea polyphenols tested, ECg was considered to be the agent with the most potential antimetastasis activity because it inhibited invasion in the absence of cytotoxicity.  相似文献   

10.
Lignocellulose prepared from sawdust was investigated for its potential application in obtaining a raw decaffeinated tea polyphenol fraction from tea extract. Tea polyphenols having gallate residues, namely, (-)epigallocatechin gallate (EGCg) and (-)epicatechin gallate (ECg), were adsorbed on the lignocellulose column, while caffeine was passed through it. Adsorbed polyphenols were eluted with 60% ethanol, and the elute was found to consist mainly of EGCg and ECg. The caffeine/EGCg ratio was 0.696 before lignocellulose column treatment, but it became 0.004 after the column treatment. These results suggest that the lignocellulose column provides a useful and convenient process of purification of tea polyphenol fraction accompanied by decaffeination.  相似文献   

11.
12.
The oxidation of green tea catechins by polyphenol oxidase/O2 and peroxidase/H2O2 gives rise to o-quinones and semiquinones, respectively, which inestability, until now, have hindered the kinetic characterization of enzymatic oxidation of the catechins. To overcome this problem, ascorbic acid (AH2) was used as a coupled reagent, either measuring the disappearance of AH2 or using a chronometric method in which the time necessary for a fixed quantity of AH2 to be consumed was measured. In this way, it was possible to determine the kinetic constants characterizing the action of polyphenol oxidase and peroxidase toward these substrates. From the results obtained, (-) epicatechin was seen to be the best substrate for both enzymes with the OH group of the C ring in the cis position with respect to the B ring. The next best was (+) catechin with the OH group of the C ring in the trans position with respect to the B ring. Epigallocatechin, which should be in first place because of the presence of three vecinal hydroxyls in its structure (B ring), is not because of the steric hindrance resulting from the hydroxyl in the cis position in the C ring. The epicatechin gallate and epigallocatechin gallate are very poor substrates due to the presence of sterified gallic acid in the OH group of the C ring. In addition, the production of H2O2 in the auto-oxidation of the catechins by O2 was seen to be very low for (-) epicatechin and (+) catechin. However, its production from the o-quinones generated by oxidation with periodate was greater, underlining the importance of the evolution of the o-quinones in this process. When the [substrate] 0/[IO4 (-)] 0 ratio = 1 or >1, H2O2 formation increases in cases of (-) epicatechin and (+) catechin and practically is not affected in cases involving epicatechin gallate, epigallocatechin, or epigallocatechin gallate. Moreover, the antioxidant power is greater for the gallates of green tea, probably because of the greater number of hydroxyl groups in its structure capable of sequestering and neutralizing free radicals. Therefore, we kinetically characterized the action of polyphenol oxidase and peroxidase on green tea catechins. Furthermore, the formation of H2O2 during the auto-oxidation of these compounds and during the evolution of their o-quinones is studied.  相似文献   

13.
14.
Green tea and tea catechins must be stable in finished products to deliver health benefits; however, they may be adversely affected by tea processing/storage conditions and the presence of other components. The objective of this study was to determine the effects of storage relative humidity (RH) and addition of other ingredients on catechin stability in simulated dry beverage mixtures. Samples of green tea powder alone and mixed with sucrose, citric acid, and/or ascorbic acid were prepared and stored in desiccators at 22 degrees C and 0-85% RH for up to 3 months. Epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate were determined by high-performance liquid chromatography (HPLC). Formulation and the interaction of formulation and RH significantly promoted catechin degradation ( P < 0.0001). The chemical degradation of total and individual catechins in green tea powder formulations was significantly increased ( P < 0.0001) by exposure to increasing RH, and the degradation was exacerbated at > or = 58% RH by the presence of powdered citric acid and at > or = 75% RH by the presence of ascorbic acid. Catechins degraded the most in formulations containing both acids. Although catechin chemical stability was maintained at < or = 43% RH in all samples stored at 22 degrees C for 3 months, caking was observed in samples at these relative humidities. These results are the first to demonstrate that addition of other dry components to tea powders may affect catechin stability in finished dry blends and highlight the importance of considering the complex interplay between a multicomponent system and its environment for developing stable products.  相似文献   

15.
Freeze-dried extracts from Camellia sinensis var. assamica IAC-259 cultivar named Brazilian green tea were prepared by hot water and ultrasound-assisted extractions using leaves harvested in spring and summer. Their caffeine and catechin contents were measured by high performance liquid chromatography-diode array detector. The antioxidant activity of the major green tea compounds and Brazilian green tea extracts was evaluated using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The levels of caffeine were higher in the summer samples (p < 0.05); otherwise, there were no significant variations related to the catechin contents between spring and summer samples. The sonication method using water/acetone as solvent had a high efficiency to extract not only epigallocatechin gallate but also epicatechin gallate (p < 0.05). Antioxidant activities of the Brazilian green tea extracts were not significantly different among seasons and extraction systems. The antioxidant data (IC50) of the Brazilian green tea extracts showed a significant correlation with their epigallocatechin gallate and epicatechin gallate contents (p < 0.05).  相似文献   

16.
Epidemiological and animal studies have found that green tea is associated with lower plasma cholesterol. This study aimed to further elucidate how green tea modulates cholesterol metabolism. When HepG2 cells were incubated with the main green tea constituents, the catechins, epigallocatechin gallate (EGCG) was the only catechin to increase LDL receptor binding activity (3-fold) and protein (2.5-fold) above controls. EGCG increased the conversion of sterol regulatory element binding protein-1 (SREBP-1) to its active form (+56%) and lowered the cellular cholesterol concentration (-28%). At 50 microM, EGCG significantly lowered cellular cholesterol synthesis, explaining the reduction in cellular cholesterol. At 200 microM EGCG, cholesterol synthesis was significantly increased even though cellular cholesterol was lower, but there was a significant increase seen in medium cholesterol. This indicates that, at 200 microM, EGCG increases cellular cholesterol efflux. This study provides mechanisms by which green tea modulates cholesterol metabolism and indicates that EGCG might be its active constituent.  相似文献   

17.
The inhibitory effects of tea catechins, the O-methylated derivatives of (-)-epigallocatechin-3-O-gallate (EGCG), and the polyphenol extracts from tea leaves (Camellia sinensis L.) on oxazolone-induced type IV allergy in male ICR mice were investigated. Four major tea catechins and two O-methylated derivatives, (-)-epigallocatechin-3-O-(3-O-methyl)gallate (EGCG3' 'Me) and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG4' 'Me), showed significant inhibitory effects on mouse type IV allergy after a percutaneous administration at a dose of 0.13 mg/ear. Among tea catechins, the compounds including galloyl moieties, such as EGCG and (-)-epicatechin-3-O-gallate (ECG), showed the strongest inhibitory activities on mouse type IV allergy. The inhibitory activities of EGCG3' 'Me and EGCG4' 'Me were higher than that of EGCG at a dose of 0.05 mg/ear. Polyphenol extract from tea leaves of Benihomare cultivar, which includes EGCG3' 'Me, strongly inhibited mouse type IV allergy after percutaneous administration in comparison with that from Yabukita cultivar, which does not include EGCG3' 'Me, at doses of 0.05 and 0.13 mg/ear. EGCG3' 'Me is thought to contribute, at least in part, to the inhibitory ability of Benihomare tea leaves on mouse type IV allergy. EGCG and the polyphenol extracts from Benihomare and Yabukita tea leaves also inhibited mouse type IV allergy by oral administration at 1 h before the sensitization and at 1 h before the challenge with oxazolone. Therefore, daily intake of tea drinks could have potential to prevent type IV allergy.  相似文献   

18.
The inhibitory effects of C-2 epimeric isomers of (-)-epigallocatechin-3-O-gallate (EGCG) and two O-methylated EGCG derivatives, (-)-epigallocatechin-3-O-(3-O-methyl)gallate (EGCG3'Me) and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG4'Me), against oxazolone-induced type IV allergy in male mice were investigated. These compounds exhibited strong antiallergic effects by percutaneous administration at a dose of 0.13 mg/ear. The inhibition rates of (-)-gallocatechin-3-O-gallate (GCG), (-)-gallocatechin-3-O-(3-O-methyl)gallate (GCG3'Me), and (-)-gallocatechin-3-O-(4-O-methyl)gallate (GCG4'Me) on mouse type IV allergy were 52.1, 53.3, and 54.8%, respectively. However, the antiallergic effects were weaker than those of their corresponding original tea catechins (2R,3R type). The inhibition rates of those were 88.0, 73.2, and 77.6%, respectively. For all of the catechins tested, oral administration at a dose of 50 mg/kg body weight significantly suppressed the allergic symptoms. The inhibitory rates varied from 24.0 to 60.6%. No significant differences were observed between the effects of the epimers (2S,3R type) and their corresponding original catechins (2R,3R type). The antiallergic effects of tea catechins and their C-2 epimers observed in this study were dose-dependent. These results suggest that C-2 epimers of tea catechins, which are produced during heat processing at high temperatures, could be disadvantageous for the antiallergic effects on type IV allergy.  相似文献   

19.
Tea enhances insulin activity   总被引:9,自引:0,他引:9  
The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.  相似文献   

20.
Epimerization at C-2 of O-methylated catechin derivatives and four major tea catechins were investigated. The epimeric isomers of (-)-epicatechin (I), (-)-epicatechin-3-O-gallate (II), (-)-epigallocatechin (III), (-)-epigallocatechin-3-O-gallate (IV), and (-)-epigallocatechin-3-O-(3-O-methyl)gallate (V) in green tea extracts increased time-dependently at 90 degrees C. The epimerization rates of authentic tea catechins in distilled water are much lower than those in tea infusion or in pH 6.0 buffer solution. The addition of tea infusion to the authentic catechin solution accelerated the epimerization, and the addition of ethylenediaminetetraacetic acid, disodium salt (Na(2)EDTA) decreased the epimerization in the pH 6.0 buffer solution. Therefore, the metal ions in tea infusion may affect the rate of epimerization. The proportions of the epimers to authentic tea catechins [III, IV, V, and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (VI)] in pH 6.0 buffer solution after heating at 90 degrees C for 30 min were 42.4%, 37.0%, 41.7%, and 30.4%, respectively. These values were higher than those of I and II (23.5% and 23.6%, respectively). The O-methylated derivatives at the 4'-position on the B ring of IV and VI were hardly epimerized. These results suggest that the hydroxyl moiety on the B ring of catechins plays an important role in the epimerization in the order 3',4',5'-triol type > 3',4'-diol type > 3',5'-diol type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号