首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Initial soil pH determines the direction and magnitude of pH change after residue addition. This study aimed to evaluate the relative importance of initial soil pH and rate of residue application in determining subsequent pH change, nitrogen (N) mineralization, and soil-exchangeable aluminum (Al).

Materials and methods

An incubation experiment was conducted for 102 days on a Plinthudult soil and a Paleudalf soil, where pH gradients were produced after application of direct current (DC). Rates of vetch applications were 0, 5, 15, 30, and 50 g kg?1 soil.

Results and discussion

Increasing rates of vetch application caused greater increases in soil pH, but no consistent increase in soil pH at higher initial pH range (4.40~6.74), because of nitrification. There was a positive correlation between alkalinity production and the initial soil pH at day 14, while correlations became negative at days 56 and 102. Mineral N accumulated as NH4 +–N in low pH soils, due to limited nitrification, while NO3 ?–N dominated in higher pH soils. Application of vetch decreased KCl-extractable Al, probably because of complexation of Al by organic matter and precipitation of Al as a result of increased pH, reductions in Al concentration increased with increasing rates of vetch application. However, this amelioration effect on Al concentration weakened with time in higher pH soils.

Conclusions

Application of vetch residue can significantly increase soil pH and concentrations of mineral N and reduce exchangeable Al. These amelioration effects are enhanced with increased rate of vetch addition and vary with time depending on the initial pH of the soil.  相似文献   

2.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

3.

Purpose

Input of N as NH4 + is known to stimulate nitrification and to enhance the risk of N losses through NO3 ? leaching in humid subtropical soils. However, the mechanisms responsible for this stimulation effect have not been fully addressed.

Materials and methods

In this study, an acid subtropical forest soil amended with urea at rates of 0, 20, 50, 100 mg N kg?1 was pre-incubated at 25 °C and 60 % water-holding capacity (WHC) for 60 days. Gross N transformation rates were then measured using a 15N tracing methodology.

Results and discussion

Gross rates of mineralization and nitrification of NH4 +-N increased (P?<?0.05), while gross rate of NO3 ? immobilization significantly decreased with increasing N input rates (P?<?0.001). A significant relationship was established between the gross nitrification rate of NH4 + and the gross mineralization rate (R 2?=?0.991, P?<?0.01), so was between net nitrification rate of NH4 + and the net mineralization rate (R 2?=?0.973, P?<?0.05).

Conclusions

Stimulation effect of N input on the gross rate of nitrification of NH4 +-N in the acid soil, partially, resulted from stimulation effect of N input on organic N mineralization, which provides pH-favorable microsites for the nitrification of NH4 + in acid soils (De Boer et al., Soil Biol Biochem 20:845–850, 1988; Prosser, Advan Microb Physiol 30:125–181, 1989). The stimulated gross nitrification rate with the decreased gross NO3 ? immobilization rate under the elevated N inputs could lead to accumulation of NO3 ? and to enhance the risk of NO3 ? loss from humid forest soils.
  相似文献   

4.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

5.

Purpose

Long-term manure applications can prevent or reverse soil acidification by chemical nitrogen (N) fertilizer. However, the resistance to re-acidification from further chemical fertilization is unknown. The aim of this study was to examine the effect of urea application on nitrification and acidification processes in an acid red soil (Ferralic Cambisol) after long-term different field fertilization treatments.

Materials and methods

Soils were collected from six treatments of a 19-year field trial: (1) non-fertilization control, (2) chemical phosphorus and potassium (PK), (3) chemical N only (N), (4) chemical N, P, and K (NPK), (5) pig manure only (M), and (6) NPK plus M (NPKM; 70 % N from M). In a 35-day laboratory incubation experiment, the soils were incubated and examined for changes in pH, NH4 +, and NO3 ?, and their correlations from urea application at 80 mg N kg?1(?80) compared to 0 rate (?0).

Results and discussion

From urea addition, manure-treated soils exhibited the highest acidification and nitrification rates due to high soil pH (5.75–6.38) and the lowest in the chemical N treated soils due to low soil pH (3.83–3.90) with no N-treated soils (pH 4.98–5.12) fell between. By day 35, soil pH decreased to 5.21 and 5.81 (0.54 and 0.57 unit decrease) in the NPKM-80 and M-80 treatments, respectively, and to 4.69 and 4.53 (0.43 and 0.45 unit decrease) in the control-80 and PK-80 treatments, respectively, with no changes in the N-80 and NPK-80 treatments. The soil pH decrease was highly correlated with nitrification potential, and the estimated net proton released. The maximum nitrification rates (K max) of NPKM and M soils (14.7 and 21.6 mg N kg?1 day?1, respectively) were significantly higher than other treatments (2.86–3.48 mg N kg?1 day?1). The priming effect on mineralization of organic N was high in manure treated soils.

Conclusions

Field data have shown clearly that manure amendment can prevent or reverse the acidification of the red soil. When a chemical fertilizer such as urea is applied to the soil again, however, soil acidification will occur at possibly high rates. Thus, the strategy in soil N management is continuous incorporation of manure to prevent acidification to maintain soil productivity. Further studies under field conditions are needed to provide more accurate assessments on acidification rate from chemical N fertilizer applications.  相似文献   

6.
A laboratory incubation experiment was conducted to investigate the effects of direct incorporation of either wheat straw or its biochar into a cultivated Chernozem on gross N transformations calculated by the 15N pool dilution technique and nitrous oxide (N2O) production rates. Incorporation of wheat straw stimulated gross NH 4 + (ammonium) and NO 3 ? (nitrate) immobilization rates by 302 and 95.2?%, respectively, suppressed gross nitrification rates by 32.2?%, and increased N2O production by 37.7?%. In contrast, the addition of a biochar produced from the wheat straw did not influence any of the above N cycling processes. Therefore, application of biochar could be a possible management strategy for long-term C sequestration (through soil storage of stable C contained in the biochar) in soils without increasing N2O production rates, but could not effectively immobilize NO 3 ? in the soil.  相似文献   

7.

Purpose

Dicyandiamide (DCD) has been used commercially in New Zealand to reduce nitrate leaching and N2O emissions in grazed pastures. However, there is a lack of information in the literature on the optimum rate of DCD to achieve the environmental benefits while at the same time reducing the cost of the technology. The objective of this study was to determine the effect of DCD application rate on its effectiveness to inhibit ammonia oxidizer growth and nitrification rate in a grazed pasture soil.

Materials and methods

The soil was a Templeton silt loam (Immature Pallic Soil; Udic Haplustepts) collected from Lincoln University Research Dairy Farm with a mixed pasture consisting of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) and was incubated alone (control) or with cow urine at 700 kg N/ha with 6 rates of DCD [0, 2.5, 5, 7.5, 10 (applied twice), 15 and 20 kg/ha] in incubation vessels. The incubation vessels were placed randomly in an incubator with a constant temperature of 12 °C. During 112 days of incubation, soil subsamples were taken at different time intervals to measure the concentrations of NO3 ?-N and NH4 +-N and the amoA gene copy numbers of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA).

Results and discussion

DCD applied at all the different rates inhibited nitrification in urine-treated soils, but the effectiveness increased with DCD application rate. In addition, AOB growth and the amounts of nitrate-N in the soil were significantly related to the application rate of DCD. However, AOA population abundance showed no relationship to the application rate of DCD. The DCD rate at which the AOB growth rate and nitrate-N concentration were halved (effective dosage that causes 50 % reduction in nitrification rate, or ED50) was about 10 kg DCD/ha.

Conclusions

These results suggest that DCD applied at relatively low rates still slowed down the nitrification rate, and the current recommended rate of 10 kg DCD/ha for DCD use in New Zealand grazed pastures would result in a 50 % reduction in nitrification rate in this soil. The actual rate of DCD application used would depend on the cost of the product and the environmental and agronomic benefits that would result from its use.  相似文献   

8.

Purpose

Climate change is arguably the biggest environmental challenge facing humanity today. Livestock production systems are a major source of greenhouse gases that contribute to climate change. Nitrous oxide (N2O) is a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide (CO2). Nitrate (NO3 ?) leaching from soil causes water contamination, and this is a major environmental issue worldwide. Agriculture is identified as the dominant source for NO3 ? in surface and ground waters. In grazed grassland systems where animals graze outdoor pastures, most of the N2O and NO3 ? are from nitrogen (N) returned to the soil in the excreta of the grazing animal, particularly the urine. This paper reviews published literature on the use of nitrification inhibitors (NI) to treat grazed pasture soils to mitigate NO3 ? leaching and N2O emissions.

Materials and methods

This paper provides a review on: ammonia oxidisers, including ammonia oxidising bacteria (AOB) and ammonia oxidising archaea (AOA), that are responsible for ammonia oxidation in the urine patch areas of grazed pastures; the effectiveness of NIs, such as dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP), in inhibiting the growth and activity of ammonia oxidisers; the efficacy of DCD and DMPP in reducing NO3 ? leaching and N2O emissions in grazed pastures; additional benefits of using NI in grazed pasture, including increased pasture production, decreased cation leaching and decreased NO3 ? concentrations in plants; and major factors that may affect the efficacy of NIs.

Results and discussion

Research from a number of laboratory and field studies have conclusively demonstrated that treating grazed pasture soils with a NI, such as DCD, is an effective means of reducing NO3 ? leaching and N2O emissions from grazed livestock production systems. Results show that N2O emissions from animal urine-N can be reduced by an average of 57 % and NO3 ? leaching from animal urine patches can be reduced by 30 to 50 %. The NI technology has been shown to be effective under a wide range of soil and environmental conditions. The NI technology also provides other benefits, including increased pasture production, reduced cation (Ca2+, Mg2+ and K+) leaching and reduced NO3 ? concentration in pasture plants which would reduce the risk of NO3 ? poisoning for the animal.

Conclusions

The use of NIs such as DCD to treat grazed pasture soil is a scientifically sound and practically viable technology that can effectively mitigate NO3 ? leaching and N2O emissions in grazed livestock production systems.
  相似文献   

9.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

10.

Purpose

The aim of the research was to explore the effect of Chinese milk vetch (CM vetch) addition and different water management practices on soil pH change, C and N mineralization in acid paddy soils.

Materials and methods

Psammaquent and Plinthudult paddy soils amended with Chinese milk vetch at a rate of 12 g?kg?1 soil were incubated at 25 °C under three different water treatments (45 % field capacity, CW; alternating 1-week wetting and 2-week drying cycles, drying rewetting (DRW) and waterlogging (WL). Soil pH, dissolved organic carbon, dissolved organic nitrogen (DON), CO2 escaped, microbial biomass carbon, ammonium (NH4 +) and nitrate (NO3 ?) during the incubation period were dynamically determined.

Results and discussion

The addition of CM vetch increased soil microbial biomass concentrations in all treatments. The CM vetch addition also enhanced dissolved organic N concentrations in all treatments. The NO3–N concentrations were lower than NH4–N concentrations in DRW and WL. The pH increase after CM vetch addition was 0.2 units greater during WL than DRW, and greater in the low pH Plinthudult (4.59) than higher pH Paleudalfs (6.11) soil. Nitrogen mineralization was higher in the DRW than WL treatment, and frequent DRW cycles favored N mineralization in the Plinthudult soil.

Conclusions

The addition of CM vetch increased soil pH, both under waterlogging and alternating wet–dry conditions. Waterlogging decreased C mineralization in both soils amended with CM vetch. Nitrogen mineralization increased in the soils subjected to DRW, which was associated with the higher DON concentrations in DRW than in WL in the acid soil. Frequent drying–wetting cycles increase N mineralization in acid paddy soils.  相似文献   

11.

Purpose

Biochar is increasingly being used as a soil amendment to both increase soil carbon storage and improve soil chemical and biological properties. To better understand the shorter-term (10 months) impacts of biochar on selected soil parameters and biological process in three different textured soils, a wide range of loading rates was applied.

Materials and methods

Biochar derived from eucalypt green waste was mixed at 0, 2.5, 5, 10 % (wt/wt) with a reactive black clay loam (BCL), a non-reactive red loam (RL) and a brown sandy loam (BSL) and placed in pots exposed to the natural elements. After 10 months of incubation, analysis was performed to determine the impacts of the biochar rates on the different soil types. Also, microbial biomass was estimated by the total viable counts (TVC) and DNA extraction. Moreover, potential nitrification rate and community metabolic profiles were assayed to evaluate microbial function and biological process in biochar-amended soils.

Results and discussion

The results showed that biochar additions had a significant impact on NH4 and NO3, total C and N, pH, EC, and soil moisture content in both a soil type and loading-dependent manner. In the heavier and reactive BCL, no significant impact was observed on the available P and K levels, or the total exchangeable base cations (TEB) and CEC. However, in the other lighter soils, biochar addition had a significant effect on the exchangeable Al, Ca, Mg, and Na levels and CEC. There was a relatively limited effect on microbial biomass in amended soils; however, biochar additions and its interactions with different soils reduced the potential nitrification at the higher biochar rate in the two lighter soils. Community metabolic profile results showed that the effect of biochar on carbon substrate utilization was both soil type and loading dependent. The BCL and BSL showed reduced rates of substrate utilization as biochar loading levels increased while the opposite occurred for the RL.

Conclusions

This research shows that biochar can improve soil carbon levels and raise pH but varies with soil type. High biochar loading rates may also influence nitrification and the function and activity of microbial community in lighter soils.
  相似文献   

12.
Application of crop residues and its biochar produced through slow pyrolysis can potentially increase carbon (C) sequestration in agricultural production systems. The impact of crop residue and its biochar addition on greenhouse gas emission rates and the associated changes of soil gross N transformation rates in agricultural soils are poorly understood. We evaluated the effect of wheat straw and its biochar applied to a Black Chernozemic soil planted to barley, two growing seasons or 15 months (at the full-bloom stage of barley in the second growing season) after their field application, on CO2 and N2O emission rates, soil inorganic N and soil gross N transformation rates in a laboratory incubation experiment. Gross N transformation rates were studied using the 15N isotope pool dilution method. The field experiment included four treatments: control, addition of wheat straw (30 t ha?1), addition of biochar pyrolyzed from wheat straw (20 t ha?1), and addition of wheat straw plus its biochar (30 t ha?1 wheat straw + 20 t ha?1 biochar). Fifteen months after their application, wheat straw and its biochar addition increased soil total organic C concentrations (p?=?0.039 and <0.001, respectively) but did not affect soil dissolved organic C, total N and NH4 +-N concentrations, and soil pH. Biochar addition increased soil NO3 ?-N concentrations (p?=?0.004). Soil CO2 and N2O emission rates were increased by 40 (p?p?=?0.03), respectively, after wheat straw addition, but were not affected by biochar application. Straw and its biochar addition did not affect gross and net N mineralization rates or net nitrification rates. However, biochar addition doubled gross nitrification rates relative to the control (p?2 and N2O emissions and enhance soil C sequestration. However, the implications of the increased soil gross nitrification rate and NO3 ?-N in the biochar addition treatment for long-term NO3 ?-N dynamics and N2O emissions need to be further studied.  相似文献   

13.
Nitrate (NO3?) can contribute to surface water eutrophication and is deemed harmful to human health if present at high concentrations in the drinking water. In grazed grassland, most of the NO3?‐N leaching occurs from animal urine‐N returns. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3? leaching in three different soils from different regions of New Zealand under two different rainfall conditions (1260 mm and 2145 mm p.a.), and explore the relationships between NO3?‐N leaching loss and ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA). The DCD nitrification inhibitor was found to be highly effective in decreasing NO3?‐N leaching losses from all three soils under both rainfall conditions. Total NO3?‐N leaching losses from the urine patch areas were decreased from 67.7–457.0 kg NO3?‐N/ha to 29.7–257.4 kg NO3?‐N/ha by the DCD treatment, giving an average decrease of 59%. The total NO3?‐N leaching losses were not significantly affected by the two different rainfall treatments. The total NO3?‐N leaching loss was significantly related to the amoA gene copy numbers of the AOB DNA and to nitrification rate in the soil but not to that of the AOA. These results suggest that the DCD nitrification inhibitor is highly effective in decreasing NO3? leaching under these different soil and rainfall conditions and that the amount of NO3?‐N leached is mainly related to the growth of the AOB population in the nitrogen rich urine patch soils of grazed grassland.  相似文献   

14.

Purpose

Hoop pine (Araucaria cunninghamii) is a nitrogen (N)-demanding native Australian softwood plantation species. Litter quality and its effects on soil mineral N and 15N transformations have not been well studied in the hoop pine plantation and adjacent native forest. The present study was conducted to determine the impact of 15N injection depth and litter additions on the dynamics and fate of mineral 15N and also to compare the difference in litter quality, 15N dynamics, and fate between the hoop pine plantation (HP) and the adjacent native forest (NF).

Materials and methods

The experiments were done in the Yarraman State Forest (26°52′ S, 151°51′ E), southeastern Queensland. Materials of litter addition were prepared on the basis of ten random samples of litters taken from the NF and HP sites using a 1?×?1-m quadrat. Litter additions were defined as: SL represented the average condition of forest floor in the forest ecosystems and DL represented the double average amount of litters in the forest ecosystem. Experiment 1 covered 2 forest types (NF and HP)?×?3 litter rates (nil litter, SL, and DL)?×?3 15N injection depths (0, 2.5, and 5.0 cm). Experiment 2 included 2 forest types (NF and HP)?×?2 litter rates (nil litter and SL)?×?3 injection depths (0, 2.5, and 5.0 cm) of distilled water. The in situ core incubation method was used with an incubation period of 28 days. The isotope ratio of mineral N or/and total N (soil and litter) were analyzed using an isotope ratio mass spectrometer with a Eurovector elemental analyzer (Isoprime-EuroEA 3000).

Results

Total N and δ 15N were significantly higher, and C/N ratios and δ 13C were significantly lower in the NF litters than in the HP litters. The NF litters had significantly lower total 15N and total 15N recovery than the HP litters after 15N addition. Litter addition had no significant effect on mineral 15N transformations and δ 15N in the NF soil, but decreased 15NO 3 ? –N, mineral 15N, and δ 15N and increased immobilized 15N in the HP soil. The depth of added 15NH 4 + significantly altered total 15N, δ 15N, and total 15N recovery in the litters, whereas it did not influence 15NH 4 + –N, 15NO 3 ? –N, mineral 15N, or immobilized 15N in soils in the two forest ecosystems.

Discussion

The NF litters had significantly higher δ 15N than the HP litters, indicating that the NF soil had a higher rate of nitrification than the HP soil. Higher litter quality in the NF was an important driving force for N cycling to promote strong N dynamics in the NF soil over the HP soil. The HP litters had significantly higher total 15N than the NF litters after 15N addition, implying that soil mineral N was relatively deficient in the HP in comparison with the NF. Litters decreased nitrification and increased immobilization in the HP soil, showing forest litters resulted in more N immobilization to prevent the loss of substantial quantities of NO 3 ? through leaching or denitrification. The depth of 15N injection did not significantly alter concentrations of 15NH 4 + –N, 15NO 3 ? –N, mineral 15N, and immobilized 15N in the NF and HP soils, suggesting that the depth of 15N injection had no significant influence on the evaluation of soil N transformations.

Conclusions

The NF litters had significantly higher total N and δ 15N and lower C/N ratios and δ 13C than the HP litters. Mineral N was relatively insufficient in the HP soil relative to the NF soil. The HP litters facilitated more N immobilization in the soil to reduce the loss of substantial quantities of NO 3 ? through leaching or denitrification. The depth of 15N added did not significantly alter concentrations of 15NH 4 + –N, 15NO 3 ? –N, mineral 15N, and immobilized 15N in the NF and HP soils. The application of 15N solution by uniform sprinkling onto the soil surface can be used to study in situ field N (including mineral 15N) transformations in the 10-cm depth soils of both forest ecosystems.  相似文献   

15.

Purpose

Soil acidification is universal in soybean-growing fields. The aim of our research was to evaluate the effects of soil additives (N fertilizers and biochar) on crop performance and soil quality with specific emphasis on ameliorating soil acidity.

Materials and methods

Four nitrogen treatments were applied as follows: no nitrogen (N0), urea (N1), potassium nitrate (N2), and ammonium sulfate (N3), each providing 30 kg N ha?1. Half plot area of the N1, N2, and N3 treatments was also treated with biochar (19.5 t ha?1) to form N-biochar treatments (N1C, N2C, N3C). Both bulk and rhizosphere soils were sampled separately for the following analyses: pH, exchangeable base cations (EBC), exchangeable acidity (EA), total inorganic N (IN), total N (TN), and microbial phospholipid fatty acids (PLFAs). Soybean biomass and nutrient contents were also determined. Correlation analysis was applied to analyze the relationships between soil chemical properties and soybean plant parameters.

Results and discussion

With N-biochar additions (N1C, N2C, N3C), soil chemical properties changed as follows: pH increased by 0.6–1.2 units, EBC, IN, and TN increased by 175–419, 38.5–54.7, and 136–452 mg kg?1, respectively, and PLFAs increased by 23.6–40.9 nmol g?1 compared to the N0 in the rhizosphere. Microbial PLFAs had positive correlations with soil pH; EBC; exchangeable K, Ca, Na, and Mg; TN; IN; NH4 +; and NO3 ? (r?=?0.66–0.84, p?<?0.01). There were negative correlations between PLFAs and EA or exchangeable Al (r?=??0.64, ?0.66, p?<?0.01), which indicated that the additives increased microbial biomass by providing a suitable environment with less acid stress and more nutrients. The additives increased soil NH4 + and NO3 ? by promoting soil organic N mineralization and reducing NH4 + and NO3 ? leaching. Moreover, the soybean seed biomass and the nutrient contents in seeds increased with N-biochar additions, especially in the N3C treatment.

Conclusions

N-biochar additions were effective in ameliorating soil acidity, which improved the microenvironment for more microbial survival. N-biochars influenced N transformations at the plant–soil interface by increasing organic N mineralization, reducing N leaching, and promoting N uptake by soybeans. The soil additive ammonium and biochar (N3C) were best in promoting soybean growth.
  相似文献   

16.

Purpose

The main objective of this study was to evaluate the potential of a counter-current leaching process (CCLP) on 14 cycles with leachate treatment at the pilot scale for Pb, Cu, Sb, and Zn removal from the soil of a Canadian small-arms shooting range.

Materials and methods

The metal concentrations in the contaminated soil were 904?±?112 mg Cu kg–1, 8,550?±?940 mg Pb kg–1, 370?±?26 mg Sb kg–1, and 169?±?14 mg Zn kg–1. The CCLP includes three acid leaching steps (0.125 M H2SO4?+?4 M NaCl, pulp density (PD)?=?10 %, t?=?1 h, T?=?20 °C, total volume?=?20 L). The leachate treatment was performed using metal precipitation with a 5-M NaOH solution. The treated effluent was reused for the next metal leaching steps.

Results and discussion

The average metal removal yields were 80.9?±?2.3 % of Cu, 94.5?±?0.7 % of Pb, 51.1?±?4.8 % of Sb, and 43.9?±?3.9 % of Zn. Compared to a conventional leaching process, the CCLP allows a significant economy of water (24,500 L water per ton of soil), sulfuric acid (133 L H2SO4 t–1), NaCl (6,310 kg NaCl t–1), and NaOH (225 kg NaOH t–1). This corresponds to 82 %, 65 %, 90 %, and 75 % of reduction, respectively. The Toxicity Characteristic Leaching Procedure test, which was applied on the remediated soil, demonstrated a large decrease of the lead availability (0.8 mg Pb L–1) in comparison to the untreated soil (142 mg Pb L–1). The estimated total cost of this soil remediation process is 267 US$ t–1.

Conclusions

The CCLP process allows high removal yields for Pb and Cu and a significant reduction in water and chemical consumption. Further work should examine the extraction of Sb from small-arms shooting range.  相似文献   

17.
Impact of organic matter addition on pH change of paddy soils   总被引:1,自引:1,他引:0  

Purpose

The objective of the present study was to explore the effect of initial pH on the decomposition rate of plant residues and the effect of residue type on soil pH change in three different paddy soils.

Materials and methods

Two variable charge paddy soils (Psammaquent soil and Plinthudult soil) and one constant charge paddy soil (Paleudalfs soil) were used to be incubated at 45 % of field capacity for 105 days at 25 °C in the dark after three plant residues (Chinese milk vetch, wheat straw, and rice straw) were separately added at a level of 12 g?kg?1 soil. Soil pH, CO2 escaped, DOC, DON, MBC, MBN, NH 4 + , and NO 3 ? during the incubation period were dynamically determined.

Results and discussion

Addition of the residues increased soil pH by 0.1–0.8 U, and pH reached a maximum in the Psammaquent and Plinthudult soils with low initial pH at day 105 but at day 3 in the Paleudalfs soil with high initial pH. Incorporation of Chinese milk vetch which had higher concentration of alkalinity (excess cations) and nitrogen increased soil pH more as compared with incorporation of rice and wheat straws. Microbial activity was the highest in Chinese milk vetch treatment, which resulted in the highest increase of soil pH as compared with addition of rice and wheat straws. However, nitrification seemed to be inhibited in the variable charge soils of Psammaquent and Plinthudult but not in the constant charge soil of Paleudalfs.

Conclusions

The effectiveness of increasing soil pH after incorporation of the plant materials would be longer in low initial pH soils of Psammaquent and Plinthudult than in high initial pH soil of Paleudalfs. In order to achieve the same degree of pH improvement, higher amounts of plant residues should be applied in constant charge soils than in variable charge soils.  相似文献   

18.

Purpose

Two recent discoveries in nitrogen (N) cycling processes, i.e., archaeal ammonia oxidizers and anaerobic ammonia (ammonium) oxidation (anammox), have triggered great interest in studying microbial ammonia oxidation processes. The purpose of this review is to highlight recent progress in ammonia oxidation processes in soils and sediments and to propose future research activities in this topic.

Results and discussion

Aerobic ammonia oxidation and anammox processes are linked through the production and consumption of nitrite, respectively, thereby removing the reactive N (NH4 +, NO2 ?, NO3 ?) from soil and sediment ecosystems. Ammonia-oxidizing microorganisms are widely distributed in soils and sediments, and increasing evidence suggests that ammonia-oxidizing archaea and bacteria are functionally dominant in the ammonia oxidation of acid soils and other soils, respectively. The widespread occurrence and great variation in the abundance of anammox bacteria indicate their heterogeneous distribution and niche differentiation. Therefore, the worldwide distribution of both microbial groups in nature has stimulated researchers to investigate the physiology and metabolism of related groups, as well as appraising their contribution to N cycling.

Conclusions

We summarized the current progress and provided future perspectives in the microbiology of aerobic and anaerobic ammonia oxidation in soils and sediments. With increasing concern and interest in soil and sediment ammonia oxidation processes, studies in the microbial mechanisms underlying nitrification and anammox, as well as their interactions, are essential for understanding their contribution to the loss of N either through nitrate leaching or N-related gas emissions.  相似文献   

19.

Purpose

In this study, a soil-washing process was investigated for arsenic (As) and pentachlorophenol (PCP) removal from polluted soils. This research first evaluates the use of chemical reagents (HCl, HNO3, H2SO4, lactic acid, NaOH, KOH, Ca(OH)2, and ethanol) for the leaching of As and PCP from polluted soils.

Materials and methods

A Box–Behnken experimental design was used to optimize the main operating parameters for soil washing. A laboratory-scale leaching process was applied to treat four soils polluted with both organic ([PCP] i ?=?2.5–30 mg kg?1) and inorganic ([As] i ?=?50–250 mg kg?1, [Cr] i ?=?35–220 mg kg?1, and [Cu] i ?=?80–350 mg kg?1) compounds.

Results and discussion

Removals of 72–89, 43–62, 52–68, and 64–98 % were obtained for As, Cr, Cu, and PCP, respectively, using the optimized operating conditions ([NaOH]?=?1 N, [cocamidopropylbetaine] i ?=?2 % w w?1, t?=?2 h, T?=?80 °C, and PD?=?10 %).

Conclusions

The use of NaOH, in combination with the surfactant, is efficient in reducing both organic and inorganic pollutants from soils with different levels of contamination.  相似文献   

20.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号