首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Sunscreen and sunblock are crucial skincare products to prevent photoaging and photocarcinogenesis through the addition of chemical filters to absorb or block ultraviolet (UV) radiation. However, several sunscreen and sunblock ingredients, mostly UV filters, have been associated with human and environmental safety concerns. Therefore, the exploration and discovery of promising novel sources of efficient and safer compounds with photoprotection-related activities are currently required. Marine invertebrates, particularly their associated microbiota, are promising providers of specialized metabolites with valuable biotechnological applications. Nevertheless, despite Actinobacteria members being a well-known source of bioactive metabolites, their photoprotective potential has been poorly explored so far. Hence, a set of methanolic extracts obtained from Cliona varians-derived actinomycetes was screened regarding their antioxidant and UV-absorbing capacities (i.e., photoprotection-related activities). The active extract-producing strains were identified and classified within genera Streptomyces, Micrococcus, Gordonia, and Promicromonospora. This is the first report of the isolation of these microorganisms from C. varians (an ecologically important Caribbean coral reef-boring sponge). The in vitro cytotoxicity on dermal fibroblasts of oxybenzone and the selected active extracts revealed that oxybenzone exerted a cytotoxic effect, whereas no cytotoxic effect of test extracts was observed. Accordingly, the most active (SPFi > 5, radical scavenging > 50%) and nontoxic (cell viability > 75%) extracts were obtained from Streptomyces strains. Finally, LC-MS-based characterization suggested a broad chemical space within the test strains and agreed with the reported streptomycetes’ chemodiversity. The respective metabolite profiling exposed a strain-specific metabolite occurrence, leading to the recognition of potential hits. These findings suggest that marine Streptomyces produce photoprotectants ought to be further explored in skincare applications.  相似文献   

2.
Biological control agents offer one of the best alternatives to reduce the use of pesticides. This investigation studied the tolerance to fungicides and integrated use of the potential biocontrol agent Streptomyces sp. A6 for control of Fusarium wilt of pigeon pea, Cajanus cajan. Streptomyces sp. A6 exhibited strong tolerance towards most of the fungicides used in the study at concentrations higher than those recommended for field applications. The isolate showed enhanced growth and mycolytic enzyme production in the presence of sulphur, mancozeb, carbendazim, fosetyl aluminium and triadimefon. The fungicides mancozeb, sulphur and carbendazim were selected for further studies. Effective concentrations (EC50 values) of the test fungicides that reduced Fusarium spore germination and fungal biomass by 50% were determined. Similarly, the EC50 for inhibiting fungal spore germination and reducing fungal biomass to 50% by Streptomyces sp. A6 and culture filtrate (CF) were also determined. Combining the EC50 dose of the culture and CF with test fungicides was found to be more effective for controlling Fusarium infection in C. cajan compared to the sum of the effects of the individual treatments. Such combined use of biocontrol agent with fungicides can reduce the dosage of toxic fungicides in agricultural fields, thereby reducing environmental risks. Tolerance and synergistic interaction of Streptomyces sp. A6 with frequently used fungicides suggested its potential in integrated pest management. To the best our knowledge, this is the first extensive study on integrated use of Streptomyces species with fungicides.  相似文献   

3.
Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8) isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1), 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2), and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3) that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont.  相似文献   

4.
The deep-sea constitutes a true unexplored frontier and a potential source of innovative drug scaffolds. Here, we present the genome sequence of two novel marine actinobacterial strains, MA3_2.13 and S07_1.15, isolated from deep-sea samples (sediments and sponge) and collected at Madeira archipelago (NE Atlantic Ocean; Portugal). The de novo assembly of both genomes was achieved using a hybrid strategy that combines short-reads (Illumina) and long-reads (PacBio) sequencing data. Phylogenetic analyses showed that strain MA3_2.13 is a new species of the Streptomyces genus, whereas strain S07_1.15 is closely related to the type strain of Streptomyces xinghaiensis. In silico analysis revealed that the total length of predicted biosynthetic gene clusters (BGCs) accounted for a high percentage of the MA3_2.13 genome, with several potential new metabolites identified. Strain S07_1.15 had, with a few exceptions, a predicted metabolic profile similar to S. xinghaiensis. In this work, we implemented a straightforward approach for generating high-quality genomes of new bacterial isolates and analyse in silico their potential to produce novel NPs. The inclusion of these in silico dereplication steps allows to minimize the rediscovery rates of traditional natural products screening methodologies and expedite the drug discovery process.  相似文献   

5.
Three new acylated aminooligosaccharide (1–3), along with five known congeners (4–8), were isolated from the marine-derived Streptomyces sp. HO1518. Their structures were fully elucidated by extensive spectroscopic analysis, mainly based on 1D-selective and 2D TOCSY, HSQC-TOCSY, and HRESIMS spectrometry measurements, and by chemical transformations. All of the compounds were evaluated for their α-glucosidase and pancreatic lipase inhibitory activities. Among the isolates, D6-O-isobutyryl-acarviostatin II03 (3) and D6-O-acetyl-acarviostatin II03 (8), sharing acarviostatin II03-type structure, showed the most potent α-glucosidase and lipase inhibitory effects, far stronger than the antidiabetic acarbose towards α-glucosidase and almost equal to the anti-obesity orlistat towards lipase in vitro. This is the first report on inhibitory activities against the two major digestive enzymes for acylated aminooligosaccharides. The results from our investigation highlight the potential of acylated aminooligosaccharides for the future development of multi-target anti-diabetic drug.  相似文献   

6.
7.
Marine sediments host diverse actinomycetes that serve as a source of new natural products to combat infectious diseases and cancer. Here, we report the biodiversity, bioactivities against ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) and ovarian cancer, and metabolites variation among culturable actinomycetes isolated from the marine sediments of Visayan Sea, Philippines. We identified 15 Streptomyces species based on a 16S rRNA gene sequence analysis. The crude extracts of 10 Streptomyces species have inhibited the growth of ESKAPE pathogens with minimum inhibitory concentration (MIC) values ranging from 0.312 mg/mL to 20 mg/mL depending on the strain and pathogens targeted. Additionally, ten crude extracts have antiproliferative activity against A2780 human ovarian carcinoma at 2 mg/mL. To highlight, we observed that four phylogenetically identical Streptomyces albogriseolus strains demonstrated variation in antibiotic and anticancer activities. These strains harbored type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes in their genomes, implying that their bioactivity is independent of the polymerase chain reaction (PCR)-detected bio-synthetic gene clusters (BGCs) in this study. Metabolite profiling revealed that the taxonomically identical strains produced core and strain-specific metabolites. Thus, the chemical diversity among these strains influences the variation observed in their biological activities. This study expanded our knowledge on the potential of marine-derived Streptomyces residing from the unexplored regions of the Visayan Sea as a source of small molecules against ESKAPE pathogens and cancer. It also highlights that Streptomyces species strains produce unique strain-specific secondary metabolites; thus, offering new chemical space for natural product discovery.  相似文献   

8.
Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis.  相似文献   

9.
Mangrove actinomycetia are considered one of the promising sources for discovering novel biologically active compounds. Traditional bioactivity- and/or taxonomy-based methods are inefficient and usually result in the re-discovery of known metabolites. Thus, improving selection efficiency among strain candidates is of interest especially in the early stage of the antibiotic discovery program. In this study, an integrated strategy of combining phylogenetic data and bioactivity tests with a metabolomics-based dereplication approach was applied to fast track the selection process. A total of 521 actinomycetial strains affiliated to 40 genera in 23 families were isolated from 13 different mangrove soil samples by the culture-dependent method. A total of 179 strains affiliated to 40 different genera with a unique colony morphology were selected to evaluate antibacterial activity against 12 indicator bacteria. Of the 179 tested isolates, 47 showed activities against at least one of the tested pathogens. Analysis of 23 out of 47 active isolates using UPLC-HRMS-PCA revealed six outliers. Further analysis using the OPLS-DA model identified five compounds from two outliers contributing to the bioactivity against drug-sensitive A. baumannii. Molecular networking was used to determine the relationship of significant metabolites in six outliers and to find their potentially new congeners. Finally, two Streptomyces strains (M22, H37) producing potentially new compounds were rapidly prioritized on the basis of their distinct chemistry profiles, dereplication results, and antibacterial activities, as well as taxonomical information. Two new trioxacarcins with keto-reduced trioxacarcinose B, gutingimycin B (16) and trioxacarcin G (20), together with known gutingimycin (12), were isolated from the scale-up fermentation broth of Streptomyces sp. M22. Our study demonstrated that metabolomics tools could greatly assist classic antibiotic discovery methods in strain prioritization to improve efficiency in discovering novel antibiotics from those highly productive and rich diversity ecosystems.  相似文献   

10.
The wireworm Agriotes lineatus (L.) (Coleoptera: Elateridae) is a serious agricultural pest of various vegetables and fruits throughout the world. To find an effective and safe biological control agent against this pest, we investigated the bacterial flora of A. lineatus. Nineteen different bacterial strains were isolated and identified as Paenibacillus sp. (Ag1), Cellulomonas sp. (Ag2), Bacillus subtilis (Ag3), Staphylococcus sp. (Ag4), Enterococcus mundtii (Ag5), Staphylococcus sp. (Ag6), Sphingobacterium sp. (Ag7), Staphylococcus pasteuri (Ag8), Arthrobacter gandensis (Ag9), Bacillus sp. (Ag10), Chryseobacterium sp. (Ag11), Streptomyces sp. (Ag12), Oerskovia turbata (Ag13), Bacillus thuringiensis (Ag14), Pseudomonas fluorescens (Ag15), Oerskovia jenensis (Ag16), Arthrobacter gandavensis (Ag17), B. thuringiensis (Ag18), and Pseudomonas plecoglossicida (Ag19) based on conventional and molecular tests. A. gandavensis and P. plecoglossicida were isolated for the first time from any insect. The insecticidal effects of these 19 bacterial isolates and the additional 11 isolates belonging to Bacillus genus isolated from different hosts were tested on third instar larvae of A. lineatus. Ag17 (A. gandavensis), Ag18 (B. thuringiensis), and Ag19 (P. plecoglossicida) from the bacterial flora of A. lineatus, and two Bacillus isolates (Bacillus circulans Ar1 from Anoplus roboris and B. thuringiensis subsp. kurstaki BnBt from Balanicus nucum) showed 100% mortality 10 days after treatment. Our results indicate that the bacterial isolates tested in this study may be considered as a possible microbial control agent against A. lineatus.  相似文献   

11.
Filamentous fungi are widely used for enzyme production for the biofuel industry. The ascomycetous fungus Chrysosporium lucknowense C1 was isolated as a natural producer of neutral cellulases. It is at present an attractive alternative to well known fungi like Aspergillus sp. and Trichoderma reesei for protein production on a commercial scale. Besides many cellulases, a large number of hemicellulases (particularly xylanases and arabinofuranosidases) and esterases (acetyl xylan esterases and ferulic acid esterases) encoding genes have also been identified in the C1 genome. Many of these extracellular enzymes have been selectively expressed in C1 and then purified and characterized. Four arabinofuranosidases, two acetyl xylan esterases, two ferulic acid esterases, an α-glucuronidase and four xylanases have been purified and characterized. All these enzymes were found to be active towards arabinoxylans, demonstrating the high potential of C1 as a producer of hemicellulolytic enzymes.  相似文献   

12.
A total of 137 actinomycetes cultures, isolated from 25 different herbal vermicomposts, were characterized for their antagonistic potential against Fusarium oxysporum f. sp. ciceri (FOC) by dual-culture assay. Of the isolates, five most promising FOC antagonistic isolates (CAI-24, CAI-121, CAI-127, KAI-32 and KAI-90) were characterized for the production of siderophore, cellulase, protease, hydrocyanic acid (HCN), indole acetic acid (IAA) and antagonistic potential against Rhizoctonia bataticola, which causes dry root rot in chickpea (three strains viz. RB-6, RB-24 and RB-115) and sorghum (one strain). All of the five FOC antagonistic isolates produced siderophore and HCN, four of them (except KAI-90) produced IAA, KAI-32 and KAI-90 produced cellulase and CAI-24 and CAI-127 produced protease. In the dual-culture assay, three of the isolates, CAI-24, KAI-32 and KAI-90, also inhibited all three strains of R. bataticola in chickpea, while two of them (KAI-32 and KAI-90) inhibited the tested strain in sorghum. When the FOC antagonistic isolates were evaluated further for their antagonistic potential in the greenhouse and wilt-sick field conditions on chickpea, 45-76% and 4-19% reduction of disease incidence were observed, respectively compared to the control. The sequences of 16S rDNA gene of the isolates CAI-24, CAI-121, CAI-127, KAI-32 and KAI-90 were matched with Streptomyces tsusimaensis, Streptomyces caviscabies, Streptomyces setonii, Streptomyces africanus and an identified species of Streptomyces, respectively using the BLAST searching. This study indicated that the selected actinomycete isolates have the potential for biological control of Fusarium wilt disease in chickpea.  相似文献   

13.
Black foot disease is a serious disease of grapevine crops in most areas where vines are grown. Mainly two species of Cylindrocarpon, C. destructans and C. macrodidymum, are associated with this disease. Recent studies have revealed a tremendous molecular variation within the former but only slight molecular variation within the latter, indicating that C. destructans presents a complex of several species The present study elucidates the taxonomic status of C. destructans-like isolates associated with black foot disease of grapevines. Grapevine isolates were studied morphologically, subjected to DNA analyses of their ITS and partialβ -tubulin genes, and were mated in all combinations in vitro. Cylindrocarpon destructans strains isolated from grapevines in Europe and South Africa appeared morphologically and genetically identical, and had identical ITS and partial β-tubulin gene sequences. Phylogenetic analyses placed these strains in a clade closely related but clearly distinct from other clades with C. destructans-like anamorphs obtained from various herbaceous or woody hosts. Only the ex-type strain of Cylindrocarpon liriodendri had identical sequences to strains isolated from grapevines, and could also not be distinguished by morphological characters. The grapevine isolates are therefore reidentified here as Cylindrocarpon liriodendri. Cylindrocarpn liriodendri formed perithecia in heterothallic conditions and the holomorph of this species is described as Neonectria liriodendri sp. nov. Neonectria liriodendri is genetically distinct from the ex-type strain of Neonectria radicicola, which originated from Cyclamen in Sweden. Both ex-type strains also differ from at least two other clades comprising additional C. destructans-like strains. Many of these strains originated from Panax sp., which is the host of the type of C. destructans. Our phylogenetic analyses indicate that C. destructans is not the anamorph of N. radicicola and that N. liriodendri, N. radicicola and several C. destructans-like taxa may have evolved independently within the same phylogenetic species complex.Taxonomic novelty: Neonectria liriodendri Halleen, Rego& Crous sp. nov.  相似文献   

14.
The cause of deep-pitted scab of potatoes   总被引:2,自引:0,他引:2  
By use of a tyrosine-casinate-nitrate medium,Streptomyces atroolivaceous, S. cinerochromogenes, S. corchorusii, S. diastatochromogenes, S. lydicus, S. malachiticus, and three unidentifiedStreptomyces spp. were isolated from deep-pitted scab lesions on potato cultivars Green Mountain, Red Pontiac, Russet Burbank, and Saco. Over 90% of the deep-pitted lesions contained one or more of theseStreptomyces spp., butS. scabies the cause of shallow scab was not isolated. Isolates ofStreptomyces spp. were also consistently isolated from aseptically excised non-necrotic tissue near the edge of lesions. TheseStreptomyces spp. appeared to be the primary colonizers of this tissue. Alternaria spp.,Fusarium spp.,Penicillium spp.,Rhizopus spp.,Trichoderma spp., and several unidentified non-sporulating fungi as well asBacillus spp.,Pseudomonas spp., andMicrococcus spp. were isolated from deep-pitted scab lesions. Fungal and bacterial isolates varied from one scab lesion to another and except for anAlternaria sp., were not pathogenic. Most of theStreptomyces spp. isolates used to infest heat pasteurized field soil caused deep and/or shallow scab on tubers of the potato cultivar Kennebec in greenhouse and outdoor plantings. Re-isolations from resulting scab lesions yieldedStreptomyces spp. similar in morphology to those used as inoculum. We concluded that a number ofStreptomyces spp. probably includingS. scabies (ATCC 3352 = S.griseus) may cause deep and shallow scab.  相似文献   

15.
Quinomycin G (1), a new analogue of echinomycin, together with a new cyclic dipeptide, cyclo-(l-Pro-4-OH-l-Leu) (2), as well as three known antibiotic compounds tirandamycin A (3), tirandamycin B (4) and staurosporine (5), were isolated from Streptomyces sp. LS298 obtained from a marine sponge Gelliodes carnosa. The planar and absolute configurations of compounds 1 and 2 were established by MS, NMR spectral data analysis and Marfey’s method. Furthermore, the differences in NMR data of keto-enol tautomers in tirandamycins were discussed for the first time. Antibacterial and anti-tumor activities of compound 1 were measured against 15 drug-sensitive/resistant strains and 12 tumor cell lines. Compound 1 exhibited moderate antibacterial activities against Staphylococcuse pidermidis, S. aureus, Enterococcus faecium, and E. faecalis with the minimum inhibitory concentration (MIC) values ranged from 16 to 64 μg/mL. Moreover, it displayed remarkable anti-tumor activities; the highest activity was observed against the Jurkat cell line (human T-cell leukemia) with an IC50 value of 0.414 μM.  相似文献   

16.
Penicillium sp. WC-29-5 was co-cultured with Streptomyces fradiae 007 to produce five natural products (1–3, 4a and 4b) that were isolated and characterized by spectroscopic analysis. Interestingly, these compounds were found to be different from those produced in discrete fungal and bacterial controls. Among these compounds, the absolute configurations of compounds 4a and 4b were determined for the first time by X-ray single crystal diffraction experiments and electronic circular dichroism (ECD) calculations. An evaluation of the cytotoxic activities of these compounds revealed that 4b was moderately cytotoxic towards HL-60 and H1975 tumor cells with IC50 values of 3.73 and 5.73 µM, respectively, whereas compound 4a was only moderately cytotoxic towards H1975 cells with an IC50 value of 3.97 µM.  相似文献   

17.
Cladophialophora is a genus of black yeast-like fungi comprising a number of clinically highly significant species in addition to environmental taxa. The genus has previously been characterized by branched chains of ellipsoidal to fusiform conidia. However, this character was shown to have evolved several times independently in the order Chaetothyriales. On the basis of a multigene phylogeny (nucLSU, nucSSU, RPB1), most of the species of Cladophialophora (including its generic type C. carrionii) belong to a monophyletic group comprising two main clades (carrionii- and bantiana-clades). The genus includes species causing chromoblastomycosis and other skin infections, as well as disseminated and cerebral infections, often in immunocompetent individuals. In the present study, multilocus phylogenetic analyses were combined to a morphological study to characterize phenetically similar Cladophialophora strains. Sequences of the ITS region, partial Translation Elongation Factor 1-α and β-Tubulin genes were analysed for a set of 48 strains. Four novel species were discovered, originating from soft drinks, alkylbenzene-polluted soil, and infected patients. Membership of the both carrionii and bantiana clades might be indicative of potential virulence to humans.Taxonomic novelties: Cladophialophora samoënsis Badali, de Hoog & Padhye, sp. nov., Cladophialophora subtilis Badali & de Hoog, sp. nov., Cladophialophora mycetomatis Badali, de Hoog & Bonifaz, sp. nov., Cladophialophora immunda Badali, Satow, Prenafeta-Boldú, Padhye & de Hoog, sp. nov.  相似文献   

18.
It is widely accepted that the commensal gut microbiota contributes to the health and well-being of its host. The solitary tunicate Ciona intestinalis emerges as a model organism for studying host–microbe interactions taking place in the gut, however, the potential of its gut-associated microbiota for marine biodiscovery remains unexploited. In this study, we set out to investigate the diversity, chemical space, and pharmacological potential of the gut-associated microbiota of C. intestinalis collected from the Baltic and North Seas. In a culture-based approach, we isolated 61 bacterial and 40 fungal strains affiliated to 33 different microbial genera, indicating a rich and diverse gut microbiota dominated by Gammaproteobacteria. In vitro screening of the crude microbial extracts indicated their antibacterial (64% of extracts), anticancer (22%), and/or antifungal (11%) potential. Nine microbial crude extracts were prioritized for in-depth metabolome mining by a bioactivity- and chemical diversity-based selection procedure. UPLC-MS/MS-based metabolomics combining automated (feature-based molecular networking and in silico dereplication) and manual approaches significantly improved the annotation rates. A high chemical diversity was detected where peptides and polyketides were the predominant classes. Many compounds remained unknown, including two putatively novel lipopeptides produced by a Trichoderma sp. strain. This is the first study assessing the chemical and pharmacological profile of the cultivable gut microbiota of C. intestinalis.  相似文献   

19.
Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychrobacter (33/65), Psychromonas (10/65) and Polaribacter (8/65) were the predominant groups. Moreover, 21 alginate lyase-excreting strains were further screened from these Laminaria-associated bacteria. These alginate lyase-excreting strains belong to five genera. Psychromonas (8/21), Psedoalteromonas (6/21) and Polaribacter (4/21) are the predominant genera, and Psychrobacter, Winogradskyella, Psychromonas and Polaribacter were first found to produce alginate lyases. The optimal temperatures for the growth and algiante lyase production of many strains were as low as 10–20 °C, indicating that they are psychrophilic bacteria. The alginate lyases produced by 11 strains showed the highest activity at 20–30 °C, indicating that these enzymes are cold-adapted enzymes. Some strians showed high levels of extracellular alginate lyase activity around 200 U/mL. These results suggest that these algiante lyase-excreting bacteria from the Arctic alga are good materials for studying bacterial cold-adapted alginate lyases.  相似文献   

20.
Two new α-pyrone derivatives, violapyrones H (1) and I (2), along with known violapyrones B (3) and C (4) were isolated from the fermentation broth of a marine actinomycete Streptomyces sp. The strain was derived from a crown-of-thorns starfish, Acanthaster planci, collected from Chuuk, Federated States of Micronesia. The structures of violapyrones were elucidated by the analysis of 1D and 2D NMR and HR-ESIMS data. Violapyrones (1–4) exhibited cytotoxicity against 10 human cancer cell lines with GI50 values of 1.10–26.12 μg/mL when tested using sulforhodamine B (SRB) assay. This is the first report on the cytotoxicity of violapyrones against cancer cell lines and the absolute configuration of violapyrone C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号