首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the effect of treating a nutrient-poor forest soil in monolith lysimeters with H2SO 4, pH 3.0, for 4.75 yr. The lysimeters were instrumented with porous cup probes to distinguish processes occurring in each soil horizon. In the A horizon base cation exchange and sulphate absorption were the principal proton- consuming processes whereas lower down the profile Al3+ dissolution from hydrous oxides dominated. Acid treatment thus reduced the amount of amorphous Al in the lower horizons, but exchangeable Al was unaffected. Sulphate absorbtion was positively correlated with the distribution of Al hydrous oxides. High rates of nitrification reduced the differences between acid and control monoliths, but acid treatment significantly reduced soil pH down to 75 cm and reduced the levels of exchangeable base cations in the litter and A horizons. Acid treatment increased the leaching rates of base cations and Al. Consideration of the total base cation content shows that acid treatment increased the rate of weathering by 0.7–1.4 k eq ha?1 yr?1. The results should be useful in modelling more realistic rates of acid input to similar soils.  相似文献   

2.
Labile Al in the soil solution measured by 8-hydroxyquinoline (AlHQ) was a better predictor of plant growth than trivalent Al (AlIC3+) measured by ion chromatography (IC). HQ reacted with some organic Al complexes which did not separate during chromatography. In the presence of oxalic acid, AlHQ was greater than AlIC3+, which was the same as the greater than Al3+ (Al3+Calc), whereas in the presence of citric acid, AlHQ was greater than AlIC3+, and both were greater than Al+3Calc, In extracts of soils that had been acidified, Al3+IC was less than AlHQ, which was similar to Al3+Calc, when it was assumed that the only complexing ligands were OH? and F?. The proportion of Al3+IC in the soil solutions decreased more than AlHQ as the pH increased. Organic ligands appeared to form complexes with Al at the expense of AIF complexes. Forms of Al detected by IC differed in CaCl2 extracts and soil solutions. AlHQ in the CaCl2 extracts and soil solution were closely correlated, although the proportion of AlHQ was higher in the CaCl2 extracts. And soil solutions. AlHQ in the CaCl2 extracts and soil solution were closely correlated, although the proportion of AlHQ was higher in the CaCl2 extracts.  相似文献   

3.
The effects of artificial precipitation with different pH levels on soil chemical properties and element flux were studied in a lysimeter experiment. Cambic Arenosol (Typic Udipsamment) in monolith lysimeters was treated for 6 1/2 yr with 125 mm yr?1 artificial rain in addition to natural precipitation. Artificial acid rain was produced from groundwater with H2SO4 added. pH levels of 6.1, 4 and 3 were used. ‘Rain’ acidity was buffered, mainly due to cation exchange with Ca2+ and Mg2+, which were increasingly leached due to the acid input. The H+ retention was not accompanied by a similar increase in the output of Al ions, but a slight increase in the leaching of Al ions was observed in the most acidic treatment. The net flux of SO4 2? from the lysimeters increased with increasing input of H2SO4, but in the most acidified lysimeters significant sorption of SO4 2? was observed. The sorption was, however, most likely a concentration effect. The ‘long-term’ acidification effects on soil were mainly seen in the upper O and Ah-horizons, where an impoverishment of exchangeable Ca2+ and Mg2+ was observed. An increased proportion of Al ions on exchange sites in the organic layer was observed in the pH 3-treated soil. By means of budget calculations the annual release of base cations due to weathering was estimated to be between 33 and 77 mmolc m?2.  相似文献   

4.
It has been suggested that additions of organic residues to acid soils can ameliorate Al toxicity. For this reason the effects of additions of four organic residues to an acid soil on pH and exchangeable and soil solution Al were investigated. The residues were grass, household compost, filter cake (a waste product from sugar mills) and poultry manure, and they were added at rates equivalent to 10 and 20 t ha?1. Additions of residues increased soil pH measured in KCl (pH(KCl)) and decreased exchangeable Al3+ in the order poultry manure > filter cake > household compost > grass. The mechanism responsible for the increase in pH differed for the different residues. Poultry manure treatment resulted in lower soil pH measured in water (pH(water)) and larger concentrations of total (AlT) and monomeric (Almono) Al in soil solution than did filter cake. This was attributed to a soluble salt effect, originating from the large cation content of poultry manure, displacing exchangeable Al3+ and H+ back into soil solution. The considerably larger concentrations of soluble C in soil solution originating from the poultry manure may also have maintained greater concentrations of Al in soluble complexed form. There was a significant negative correlation (r = ?0.94) between pH(KCl) and exchangeable Al. Concentrations of AlT and Almono in soil solution were not closely related with pH or exchangeable Al. The results suggest that although additions of organic residues can increase soil pH and decrease Al solubility, increases in soluble salt and soluble C concentrations in soil solution can substantially modify these effects.  相似文献   

5.
Dissolved organic carbon (DOC) in acid‐sensitive upland waters is dominated by allochthonous inputs from organic‐rich soils, yet inter‐site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH‐related retention of DOC in O horizon soils was influenced by acid‐base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 µeq l?1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH‐DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 µeq l?1), with the greatest decreases occurring in soils with very small % base saturation (BS, < 3%) and/or large capacity for sulphate (SO42?) retention (up to 35% of added SO42?). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid‐base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However, superimposed on this is the capacity of mineral soils to sorb DOC and SO42?, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42?.  相似文献   

6.
A soil acidification model has been developed to estimate long-term chemical changes in soil and soil water in response to changes in atmospheric deposition. Its major outputs include base saturation, pH and the molar Al/BC ratio, where BC stands for divalent base cations. Apart from net uptake and net immobilization of N, the processes accounted for are restricted to geochemical interactions, including weathering of carbonates, silicates and Al oxides and hydroxides, cation exchange and CO2 equilibriums. First, the model's behavior in the different buffer ranges between pH 7 and pH 3 is evaluated by analyzing the response of an initially calcareous soil of 50 cm depth to a constant high acid load (5000 molc ha?1 yr?1) over a period of 500 yr. In calcareous soils weathering is fast and the pH remains high (near 7) until the carbonates are exhausted. Results indicate a time lag of about 100 yr for each percent CaCO3 before the pH starts to drop. In non-calcareous soils the response in the range between pH 7 and 4 mainly depends on the initial amount of exchangeable base cations. A decrease in base saturation by H/BC exchange and Al/BC exchange following dissolution of Al3+ leads to a strong increase in the Al/BC ratio near pH 4. A further decrease in pH to values near 3.0 does occur when the A1 oxides and/or hydroxides are exhausted. The analyses show that this could occur in acid soils within several decades. The buffer mechanisms in the various pH ranges are discussed in relation to Ulrich's concept of buffer ranges. Secondly, the impact of various deposition scenarios on non-calcareous soils is analyzed for a time period of 100 yr. The results indicate that the time lag between reductions in deposition and a decrease in the Al/BC ratio is short. However, substantial reductions up to a final deposition level of 1000 molc ha?1 yr?1 are needed to get Al/BC ratios below a critical value of 1.0.  相似文献   

7.
Reports of sugarcane yield responses to silicon (Si), coupled with mounting evidence that elevated crop Si levels reduce both biotic and abiotic stresses, account for the interest in the Si nutrition of this crop. In terms of managing Si supplies to sugarcane in South Africa, uncertainties exist regarding, first, the reserves of plant-available Si in soils, and second, the reliability of soil-test methods for predicting Si availability. In this study, extractable Si was measured in 112 soils collected from sugarcane-producing fields in South Africa. Soils were selected on the basis of dominant soil types and included Inceptisols, Alfisols, Mollisols, Vertisols, Oxisols, Entisols, and Ultisols, varying widely in chemical properties, texture, and extent of weathering. Extractants employed were 0.01 M calcium chloride (CaCl2) and 0.02 N sulfuric acid (H2SO4). Silicon extracted with 0.02 N H2SO4 ranged from 2 to 293 mg kg?1, whereas with 0.01 M CaCl2 the range was 5 to 123 mg kg?1. With both extractants, extractable Si decreased significantly with decreasing pH, exchangeable calcium (Ca), and total cations. In soils with potassium chloride (KCl)–extractable Al+H levels of greater than 0.5 cmolcL?1, extractable Si levels were consistently low, suggesting that soluble Al is implicated in reducing plant-available Si levels. Extractable Si levels were not related to the Bache and Williams P-sorption indices of soils. In the second part of the investigation, sugarcane leaf Si concentrations from 28 sites were related to soil extractable Si levels. The CaCl2 soil test proved markedly superior to H2SO4 as a predictive test for leaf Si levels.  相似文献   

8.
Purpose

Several interactions between Al and the solid phase of soil influence Al buffering in soil solution. This work evaluated soils cultivated with Pinus taeda L. to determine Al forms in organic and mineral horizons using various extraction methods and to relate acidity with clay mineralogy.

Materials and methods

Organic and mineral horizons of 10 soil profiles (up to 2.1 m deep) in southern Brazil were sampled. Organic horizons were separated into fresh, aged, and fermented/humified litter. The following Al extraction methods were utilized: 0.5 mol L?1 pH 2.8 CuCl2–Al complexed in organic matter; 1.0 mol L?1 KCl–exchangeable Al; water–Al soluble in soil solution; HF concentrated?+?HNO3 concentrated?+?H2O2 30% (v/v)–total Al. Six sequential extractions were carried out to isolate different forms of amorphous minerals that can buffer Al on soil solution: 0.05 and 0.1 mol L?1 sodium pyrophosphate; 0.1 and 0.2 mol L?1 ammonium oxalate; 0.25 and 0.5 mol L?1 NaOH. Samples of clay were also analyzed by XRD.

Results and discussion

There was a clear effect of litter age on increasing total Al concentration. In the aged litter and fermented and/or humified litter, levels of total Al were 1.4 to 3.8 and 1.5 to 7.8 times greater than in fresh litter, respectively. The CuCl2 method had higher Al extraction capacity than the KCl method for litter. The lowest Al–pyrophosphate values were observed in the Oxisol, which also had a predominance of gibbsite and the lowest levels of Al–KCl and Al–CuCl2. There was an inverse relationship between degree of soil weathering and soluble and exchangeable Al in soils. Available Al increased with higher Si proportion in minerals of the clay fraction (2:1?>?1:1?>?0:1).

Conclusions

The worst scenario was soils with the combination of high soluble and exchangeable Al levels and high concentrations of amorphous forms of Al minerals. The best predictors of Al accumulation in the youngest litter horizon were extractions of amorphous minerals with pyrophosphate and NaOH. These extractors are normally used to predict the level of Al buffering in soils. Organic matter had less influence on Al dynamics in soils.

  相似文献   

9.
The study aimed at evaluating whether salt-induced mobilization of acidity may be modified by the type of anion. For this purpose, the effects of different neutral salts on the solution composition of acid soils were investigated. The results were compared with those of the addition of acids. Two topsoil (E and A) and two subsoil horizons (Bs and Bw) were treated with NaCl, Na2SO4, MgCl2, MgSO4, HCl, and H2SO4 at concentrations ranging from 0 to 10 mmol dm?3. With increasing inputs of Cl? the pH of the equilibrium soil solution dropped, the concentrations of Al and Ca increased, and the molar Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios decreased. These effects were the least pronounced when NaCl was added and the most at the HCl treatments. According to the release of acidity, the topsoils were more sensitive for salt-induced soil solution acidification whereas on base of the molar Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios, the salt effect seems to be more important for the subsoils. Addition of S042? salts and H2SO4 induced higher pH and lower Al concentrations than the corresponding Cl? treatments due to the SO42? sorption, especially in the subsoils. The Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios were higher than those of the corresponding Cl? treatments. In subsoils even after H2SO4 additions these ratios were not higher than those of the NaCl treatments. The results indicate (I) that speculation about the effects of episodic salt concentrations enhancement on soil solution acidification not only need to consider the ionic strength and the cation type but also the anion type, (II) that salt-induced soil solution composition may be more crucial in subsoils than in topsoils, and (III) that in acid soils ongoing input of HNO3 due to the precipitation load may induce an even more acidic soil solution than the inputs of H2SO4 of the last decade.  相似文献   

10.
Purpose

The purpose of this study is to determine the critical soil pH, exchangeable aluminum (Al), and Al saturation of the soils derived from different parent materials for maize.

Materials and methods

An Alfisol derived from loess deposit and three Ultisols derived from Quaternary red earth, granite, and Tertiary red sandstone were used for pot experiment in greenhouse. Ca(OH)2 and Al2(SO4)3 were used to adjust soil pH to target values. The critical soil pH was obtained by two intersected linear lines of maize height, chlorophyll content, and yield of shoot and root dry matter changing with soil pH.

Results and discussion

In low soil pH, Al toxicity significantly decreased plant height, chlorophyll content, and shoot and root dry matter yields of maize crops. The critical values of soil pH, exchangeable Al, and Al saturation varied with soil types. Critical soil pH was 4.46, 4.73, 4.77, and 5.07 for the Alfisol derived from loess deposit and the Ultisol derived from Quaternary red earth, granite, and Tertiary red sandstone, respectively. Critical soil exchangeable Al was 2.74, 1.99, 1.93, and 1.04 cmolckg?1 for the corresponding soils, respectively. Critical Al saturation was 5.63, 12.51, 14.84, and 15.16% for the corresponding soils.

Conclusions

Greater soil cation exchange capacity and exchangeable base cations led to lower critical soil pH and higher critical soil exchangeable Al and Al saturation for maize.

  相似文献   

11.
The effects of artificial acid rain on soil leachate composition were studied in a lysimeter experiment. Cambic Arenosol (Typic Udipsamment) in monolith lysimeters was treated for 6 1/2 yr with 125 mm yr?1 artificial rain in addition to natural precipitation. Artificial acid rain was produced from groundwater with H2SO4 added. pH levels of 6.1, 4 and 3 were used. Increasing content of H2SO4 in the artificial rain increased the concentration of Ca2+ and Mg2+ in the leachate significantly. The pH of the leachate was slightly reduced only by the most acidic treatment (pH 3). The H+? retention was not accompanied by a proportionate increase in the Al ion concentration. A slight increase in the Al ion concentration was only observed in the leachate from the pH 3-treated lysimeter. We conclud that cation exchange and/or weathering were the main buffer mechanisms in the soil. The study supports conclusions from other acidification studies, that acidic precipitation is likely to increase the leaching of Ca2+ and Mg2+ from soils.  相似文献   

12.
Two sequential extractions with unbuffered 0.1 m BaCl2 were done to study the release of salt-exchangeable H+ and Al from mineral horizons of five Podzols and a Cambisol. Released Al was found to have a charge close to 3+ in all horizons and in both extractions. This finding was supported by the near-equality of the titrated exchangeable acidity (EAT) and the sum of exchangeable acids (EA = He + 3Ale, calculated from the pH and Al concentration of the extract). The ratio between EA of the second and the first extraction was over 0.50 in the Bs2 and C horizons and smaller in the other horizons. H+ was assumed to be in equilibrium with weak acid groups, and the modified Henderson–Hasselbach equation, pKHH = pH ? n log (α/(1 ? α)), was used to explain pH of the extract. The degree of dissociation (α) was calculated as the ratio between effective and potential cation exchange capacity. Value of the empirical constant n was found to be near unity in most horizons. When the monoprotic acid dissociation was assumed in all horizons, pKHH had the same value in both extractions. For Al3+, two equilibrium models were evaluated, describing (i) complexation reactions of Al3+ with soil organic matter, and (ii) equilibrium with Al(OH)3. Apparent equilibrium constants were written as (i) pKo = xpH ? pAl3+, and (ii) log Qgibbs= log Al3+ ? 3log H+. The two extractions gave an average reaction stoichiometry x close to 2 in all horizons. Results suggest that an equilibrium with organic Al complexes can be used to express dissolved Al3+, aluminium being apparently bound to bidentate sites. The value of log Qgibbs was below the solubility of gibbsite (log Kgibbs = 8.04) in many horizons. In addition, log Qgibbs of the second extraction was greater than that of the first extraction in all horizons except the C horizon. This indicates that equilibrium with Al(OH)3 cannot explain dissolved Al3+ in the soils. We propose that the models of pKHH and pKo can be used to simulate exchangeable H+ and Al3+ in soil acidification models.  相似文献   

13.
Abstract

Aluminum (Al)–humus complexes are abundant in the A horizons of non-allophanic Andosols and contribute to the unique properties of volcanic ash soils, such as high reactivity with phosphate ions and a low bulk density. Natural non-allophanic Andosols commonly show Al toxicity to plant roots. There have been very few studies examining the contribution of Al–humus complexes to the Al toxicity of plant roots, although the complexes are the probable source of the toxic Al. We extracted humic substances from the A horizon of a non-allophanic Andosol using NaOH solution and reacted the humic substances and partially neutralized the AlCl3 solution at three pH conditions (pH 4.0, 4.5 and 5.5) to prepare pure Al–humic substance complexes. The Al solubility study (equilibrium study in 10?2 mol L?1 CaCl2) and the Al release study (a stirred-flow method using 10?3 mol L?1 acetate buffer solution adjusted to pH 3.5) indicated that all the synthetic complexes easily and rapidly release monomeric Al into the liquid phase with slight changes in pH and ion strength, although the Al contents and their extent of polymerization are considerably different among the complexes. A plant growth test was conducted using a medium containing the Al–humic substance complexes and perlite mixture. Root growth in burdock (Arctium lappa) and barley (Hordeum vulgare L.) was reduced equally by all three complex media, and the roots showed the typical injury symptoms of Al toxicity. These results indicate that in soils dominated by Al–humus complexes the Al released from the Al–humus complexes, as well as the exchangeable Al adsorbed by soil minerals, is definitely toxic to plant roots.  相似文献   

14.
A model deciduous forest soil (Schaffenaker loamy sand) was treated for 8 mo in the greenhouse in 25 cm reconstructed columns with simulated throughfall at pH 6.0 or 4.0, and SO4 2? levels of 12.8 or 24.8 mg L?1. Red oak seedlings grown in the microcosms showed no growth or foliar element response to the treatments. Sulfate loading had a greater impact on soil and leachate chemistry than pH. Higher available soil P in the A, horizon was associated with the pH 6.0 and high SO4 2?2 treatment combination. High SO4 2? loading also reduced exchangeable K+ in the A1?. Other soil horizons were unaffected by either treatment. Leachate chemistry was not significantly altered by througfall pH, but significantly greater export of Na+, Ca2+, Mg2+, Al3+, and NO3 ?, and lower SO4 2? loss, occurred with low SO4 ? input. Comparatively half as much NO3 ? loss was associated with high SO4 2? deposition. The high rate of NO3 ? leaching appeared responsible for greater equivalent mass loss of cations from the low SO4 2? treatment. Leachate removal of SO4 2? approximated input after 8 mo. The capacity of this soil to adsorb SO4 2? appeared relatively limited in the absence of normal element cycling. The sulfate component of simulated deciduous forest throughfall was shown to have a potentially greater impact than pH on ion leaching from forest soil. Additional consideration of the role of SO2? 4 deposition, in the context of throughfall rather than incident precipitation, is warranted in studies of acidic deposition effects on internal forest soil processes.  相似文献   

15.
Solute budgets and nitrogen use were quantified in two 400 m2 forested lysimeters in St. Arnold, Nordrhein-Westfalen. The lysimeters are covered by a mixture of oak-beech and Weymouth pine, respectively. The average bulk deposition between May 1985 and May 1987 of NH, SO and NO3 was 1.1, 1.7, and 0.4 kmolc ha?1 yr?1 in the deciduous stand and 2.1, 2.1, and 0.8 kmolc ha?1 yr?1 in the coniferous stand. The input of N is almost completely retained in the deciduous stand. In the coniferous stand about 30% of this N-input is leached as NO3. Due to N-transformations, total proton turnover is 4.4 kmolc ha?1 yr?1 in the coniferous stand and only 2.5 kmolc ha?1 yr?1 in the deciduous stand. Ca-mobilization is the major acid buffering process in both lysimeters. Only the deciduous stand was limed in 1980 (90 kmolc/ha). Mobilization of Al is only relevant down to a soil depth of 30 cm. Below a 30 cm depth, Al is immobilized. The amounts of exchangeable and silicate-bound Ca in the soil underlying the coniferous stand are very small, but no evidence was found for explanation of the observed high Ca-mobilization by artificial Ca-sources.  相似文献   

16.
Acid irrigation (pH 2.7 to 2.8; mean annual input 4.1 kmol H+ ha?1 as H2SO4) has caused significant changes in the chemistry of the soil of a mature Norway spruce stand (Picea abies [L.] KARST.) after 4 years of treatment. In the surface humus layer around 20% of the exchangeable Ca, Mg, K and Mn ions were leached. This was connected with a decrease of pH and cation exchange capacity. In the mineral soil no changes of pH and cation adsorption were observed. However there was a significant increase of Al3+ ions in the soil solution, exceeding 20 mg L?1, mainly caused by dissolution of Al-hydroxides and Al-hydroxosulphates. Also the concentrations of ionic Cu, Zn and Cd were nearly doubled. Manganese concentrations are fluctuating according to periods with and without acid irrigation, showing reduction and oxidation phases. In contrast to microorganisms, certain moss species and Oxalis acetosella, the mature spruce stand was not severely damaged up to now. It is hypothesized that Ca/Al and Mg/Al ratios of single horizons are insufficient for characterizing Al stress in the field. Liming (4 Mg ha?1) led to a significant increase of dissolved organic C, which is associated with mobilization of metals such as Pb, Cu and Al in organic complexation. Also nitrification increased in the surface humus layer. As a consequence the nitrate concentrations in the seepage water exceeded 250 mg NO3 L?1.  相似文献   

17.
The charge characteristics of A1 or Ap and B2 horizon samples of total 23 Ultisols, Alfisols and Oxisols in Korea and Thailand were studied by measuring the retention of NH4+ and NO3? at different pH values (4–8) and NH4NO3 concentrations (0.1–0.005 m ). The magnitude of their negative charge (σ?; meq/100g) was dependent on pH and NH4NO3 concentration (C; m ) as represented by a regression equation: log σ?=apH +blogC +c. The values of the coefficient a (0.04–0.226), b (0.03–0.264) and c (–0.676–1.262) were correlated with the kinds of the soil and horizon and with the region where the soil exists. The retention of NO3? was less than 1 and 2–3 meq/100 g for the A1 or Ap and B2 horizon samples, respectively. The sum of exchangeable base and Al (‘effective’ CEC) was close to and higher than the magnitude of permanent charge (=σ? measured at pH = 4.3 and at C = 0.005 m ) for one-third and two-thirds of samples, respectively. A σ? value of 16 meq/100 g clay at pH = 7 and C = 0.01 m was found appropriate to separate the B2 horizons of Thai Ultisols and Oxisols from those of Korean Ultisols and Alfisols. Korean Alfisols and Ultisols and Thai Ultisols were distinguished from each other on the status of exchangeable base and Al  相似文献   

18.
Chemistry of aqueous Al in a podzol on a Norway spruce (Picea abies [L.] Karst.) site in the Black Forest (SW Germany) and changes induced by experimental applications of MgSO4 were studied. Soil solution taken from the O, E and BC horizons were analyzed for the fractions ‘labile monomeric Al’, ‘non-labile monomeric Al’, and ‘acid-reactive Al’. The activities of ‘inorganic monomeric Al’ species and the saturation indices (SI) of the soil solution with respect to Al-bearing minerals were calculated using the equilibrium speciation model WATEQF. On the untreated plot, soil leachates are characterized by Altot concentrations of 0.1 mg L?1 (mineral soil). In the O horizon, the fractions ‘acidsoluble Al’ and ‘non-labile monomeric Al’ (mainly organically complexed Al) together comprise 80% of Altot. In the leachates from the mineral soil Al3+ prevails, being 50% of Altot. Al-F-complexes make up 5 to 10% in all horizons. MgSO4 and (NH4)2SO4 treatments resulted in an intense Al mobilization up to 50 mg L?1. In this situation, 60% of Altot is covered by Al3+ and 40% by non-phytotoxic Al-SO4-complexes. After rainfall events, mobilized Al is quickly translocated into the subsoil, with water flow through macropores then appearing to be an important mechanism. In both treatments, soil solution chemistry was favorable for the precipitation of the Al(OH)SO4-type minerals alunite and jurbanite. However, a control of Al solubility by this process is not likely due to kinetic restraints. Application of MgSO4 was followed by an increase of the Mg/Al molar ratio in the soil solution, whereas the Ca/Al ratio decreased. After treatment with (NH4)2SO4 both the Ca/Al and the Mg/Al ratios deteriorated.  相似文献   

19.
Although water chemistry of precipitation and lakes in Nova Scotia is dominated by C1 from sea salt, correction for marine influence reveals that the dominant anion in acidified lakes is SO4. Atmospheric deposition of non-marine SO4 (SO4) and NO3- for the period 1977–1980 at 4 stations in southwest Nova Scotia averaged 47 meq SO4 * m?2 yr?1 and 21 meq NI3-m?2 yr?1 compared with 38 and 13 meq, respectively, for the average of 3 stations in the northeastern third of the province. Precipitation pH increased from 4.5 to 4.8 along the same axis. Almost 50% of the SO4 deposition occurred when storms came from the southwest, indicating low pressure tracks which pass south of major Canadian sources of S. SO4 * deposition in metropolitan Halifax (1982 bulk data) was 87 meq m?2 yr?1, due to local emissions of ca. 28 300 tonne S in the area, as well as LRTAP. Concurrent deposition of NO3-N was 15 meq m?2 yr?1 (2.1 kg ha?1 yr ?1). Loadings from SO4 deposition in the Halifax area amount to 42 kg ha?1 yr?1 and clearly exceed the federal guideline (M.O.I., 1983) of 20 kg ha?1 yr?1. Water chemistry of southwest, northeast, and Halifax area lakes show the same general SOI trends as observed for atmospheric deposition. In addition we find a positive relationship between SOI concentrations in the urban lakes and proximity to the center of the urban area.  相似文献   

20.
Ninety percent of the pines (P. Sylvestris) in the forests of Berlin (West) are classified as damaged. Needle and leaf analyses do not indicate nutrient deficiencies. In site of high S-inputs (55 kg ha?1 yr?1 with throughfall) total acid inputs are moderate (2.4 kmol ha?1 yr?1) due to their neutralization by carbonatic dusts. Heavy metal depositions have led to accumulations in the forest floor (e.g. Pb 150 mg kg?1, Cd 0.5 mg kg?1). The dominating soil type, a cambic arenosol (Ustipsamment) is strongly acidified (pH 3.2 – 4.0) and poor in available nutrients. On an experimental plot, the application of dolomitic lime (6.1 tons ha?1) and fertilizer (145 kg ha?1 K2SO4) led to a significant increase m pH and base saturation in the top 10 cm of the mineral soil after 2 yr. The data on element fluxes give evidence for increased mineralization rates, enhanced heavy metal accumulation in the forest floor and increased soil solution concentrations of potentially hazardous substances (Al, Cd, NO3). The lime application is discussed in terms of site specific effects on ecosystem stability and groundwater quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号