首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding cover crop influences on N availability is important for developing N management strategies in conservation tillage systems. Two cover crops, cereal rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.), were evaluated for effects on N availability to cotton (Gossypium hirsutum L.) in a Typic Kanhapludult soil at Watkinsville, Ga. Seed cotton yields following clover and rye were 882 kg ha–1 and 1,205 kg ha–1, respectively, in 1997 and were 1,561 kg ha–1 and 2,352 kg ha–1, respectively, in 1998. In 1997, cotton biomass, leaf area index, and N were greater on some dates following crimson clover than following rye but not in 1998. During 1997, net soil N mineralized increased with time in both systems, but a similar response was not observed in 1998. Net soil N mineralization rates following crimson clover and rye averaged, respectively, 0.58 kg and 0.34 kg N ha–1 day–1 in 1997 and 0.58 kg and 0.23 kg N ha–1 day–1 in 1998. Total soil N mineralized during the cotton growing season ranged from 60 kg ha–1 to 80 kg ha–1 following crimson clover and from 30 kg ha–1 to 50 kg ha–1 following rye. Soil N mineralization correlated positively with heat units and cumulative heat units. Net soil N mineralization rates were 0.023 kg ha–1 heat unit–1 once net mineralization began. Soil heat units appeared to be a useful tool for evaluating N mineralization potential. Nearly 40% of the rye and 60% of the clover biomass decomposed during the 6 weeks prior to cotton planting, with nearly 35 kg N ha–1 mineralized from clover.  相似文献   

2.
Nitrogen (N) release from roll-killed legume cover crops was determined for hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and a hairy vetch + rye (Secale cereale L.) biculture in an organic corn production system in North Carolina, USA. Cover crops were planted at two locations in fall 2008 and 2009, roll-killed in May, and no-till planted with corn (Zea mays L.). Inorganic soil N and mineral N flux were determined using potassium chloride (KCl) extractions and ion-exchange resin (Plant Root Simulator, PRS) probes at 2-week intervals for 12 weeks and compared to fertilized controls of 0 and 168 kg N ha?1. In 2009, greater plant available N under hairy vetch than under either 0 N control or crimson clover was found, with peak soil N occurring between 4 and 6 weeks after roll kill. Available soil N under crimson clover mulches was less than or equal to 0 N, suggesting net immobilization.  相似文献   

3.
Cover crop and tillage effects on soil enzyme activities following tomato   总被引:2,自引:0,他引:2  
Increasing numbers of vegetable growers are adopting conservation tillage practices and including cover crops into crop rotations. The practice helps to increase or maintain an adequate level of soil organic matter and improves vegetable yields. The effects of the practices, however, on enzyme activities in southeastern soils of the United States have not been well documented. Thus, the objectives of the study were to investigate the effects of cover crops and two tillage systems on soil enzyme activity profiles following tomato and to establish relationships between enzyme activities and soil organic carbon (C) and nitrogen (N). The cover crops planted late in fall 2005 included black oat (Avena strigosa), crimson clover (Trifolium incarnatum L.), or crimson clover–black oat mixed. A weed control (no cover crop) was also included. Early in spring 2006, the plots were disk plowed and incorporated into soil (conventional tillage) or mowed and left on the soil surface (no-till). Broiler litter as source of N fertilizer was applied at a rate of 4.6 Mg ha−1, triple super phosphate at 79.0 kg P ha−1, and potassium chloride at 100 kg K ha−1 were also applied according to soil testing recommendations. Tomato seedlings were transplanted and grown for 60 days on a Marvyn sandy loam soil (fine-loamy, kaolinitic, thermic Typic Kanhapludults). Ninety-six core soil samples were collected at incremental depths (0–5, 5–10, and 10–15 cm) and passed through a 2-mm sieve and kept moist to study arylamidase (EC 3.4.11.2), l-asparaginase (EC 3.5.1.1), l-glutaminase (EC 3.5.1.2), and urease (EC 3.5.1.5) activities. Tillage systems affected only l-glutaminase activity in soil while cover crops affected activities of all the enzymes studied with the exception of urease. The research clearly demonstrated that in till and no-till systems, l-asparaginase activity is greater (P ≤ 0.05) in plots preceded by crimson clover than in those preceded by black oat or their mixture. Activity of the enzyme decreased from 11.7 mg NH4+–N kg−1 2 h−1 at 0–5 cm depth to 8.73 mg NH4+–N kg−1 2 h−1 at 5–10 cm and 10–15 cm depths in the no-till crimson clover plots. Arylamidase activity significantly correlated with soil organic C (r = 0.699**) and soil organic N (r = 0.764***). Amidohydrolases activities significantly correlated with soil organic N but only urease significantly correlated with soil organic C (r = 0.481*). These results indicated that incorporation of cover crops into rotations may increase enzyme activities in soils.  相似文献   

4.
Cover crop and nitrogen(N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We evaluated the effects of cover crops and N fertilization rates on soil organic carbon(C)(SOC), total N(STN), ammonium N(NH_4-N), and nitrate N(NO_3-N) contents at the0–5, 5–15, and 15–30 cm depths under perennial bioenergy grass from 2010 to 2014 in the southeastern USA. Treatments included unbalanced combinations of perennial bioenergy grass, energy cane(Saccharum spontaneum L.) or elephant grass(Pennisetum purpureum Schumach.), cover crop, crimson clover(Trifolium incarnatum L.), and N fertilization rates(0, 100, and 200 kg N ha~(-1)). Cover crop biomass and C and N contents were greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1) than in the treatment of energy cane and elephant grass. The SOC and STN contents at 0–5 and 5–15 cm were 9%–20% greater in the treatments of elephant grass with cover crop and with or without 100 kg N ha~(-1)than in most of the other treatments. The soil NO_3-N content at 0–5 cm was 31%–45% greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1)than in most of the other treatments.The SOC sequestration increased from 0.1 to 1.0 Mg C ha~(-1)year~(-1)and the STN sequestration from 0.03 to 0.11 Mg N ha~(-1)year~(-1)from 2010 to 2014 for various treatments and depths. In contrast, the soil NH_4-N and NO_3-N contents varied among treatments,depths, and years. Soil C and N storages can be enriched and residual NO_3-N content can be reduced by using elephant grass with cover crop and with or without N fertilization at a moderate rate.  相似文献   

5.
Cover crops may influence soil carbon (C) sequestration and microbial biomass and activities by providing additional residue C to soil. We examined the influence of legume [crimson clover (Trifolium incarnatum L.)], nonlegume [rye (Secale cereale L.)], blend [a mixture of legumes containing balansa clover (Trifolium michelianum Savi), hairy vetch (Vicia villosa Roth), and crimson clover], and rye + blend mixture cover crops on soil C fractions at the 0–150 mm depth from 2001 to 2003. Active fractions of soil C included potential C mineralization (PCM) and microbial biomass C (MBC) and slow fraction as soil organic C (SOC). Experiments were conducted in Dothan sandy loam (fine-loamy, kaolinitic, thermic, Plinthic Kandiudults) under dryland cotton (Gossypium hirsutum L.) in central Georgia and in Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) under irrigated cotton in southern Georgia, USA. Both dryland and irrigated cotton were planted in strip tillage system where planting rows were tilled, thereby leaving the areas between rows untilled. Total aboveground cover crop and cotton C in dryland and irrigated conditions were 0.72–2.90 Mg C ha−1 greater in rye + blend than in other cover crops in 2001 but was 1.15–2.24 Mg C ha−1 greater in rye than in blend and rye + blend in 2002. In dryland cotton, PCM at 50–150 mm was greater in June 2001 and 2002 than in January 2003 but MBC at 0–150 mm was greater in January 2003 than in June 2001. In irrigated cotton, SOC at 0–150 mm was greater with rye + blend than with crimson clover and at 0–50 mm was greater in March than in December 2002. The PCM at 0–50 and 0–150 mm was greater with blend and crimson clover than with rye in April 2001 and was greater with crimson clover than with rye and rye + blend in March 2002. The MBC at 0–50 mm was greater with rye than with blend and crimson clover in April 2001 and was greater with rye, blend, and rye + blend than with crimson clover in March 2002. As a result, PCM decreased by 21–24 g CO2–C ha−1 d−1 but MBC increased by 90–224 g CO2–C ha−1 d−1 from June 2001 to January 2003 in dryland cotton. In irrigated cotton, SOC decreased by 0.1–1.1 kg C ha−1 d−1, and PCM decreased by 10 g CO2–C ha−1 d−1 with rye to 79 g CO2–C ha−1 d−1 with blend, but MBC increased by 13 g CO2–C ha−1 d−1 with blend to 120 g CO2–C ha−1 d−1 with crimson clover from April 2001 to December 2002. Soil active C fractions varied between seasons due to differences in temperature, water content, and substrate availability in dryland cotton, regardless of cover crops. In irrigated cotton, increase in crop C input with legume + nonlegume treatment increased soil C storage and microbial biomass but lower C/N ratio of legume cover crops increased C mineralization and microbial activities in the spring.  相似文献   

6.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

7.
Total, extractable, and microbial C, N, and P, soil respiration, and the water stability of soil aggregates in the F-H layer and top 20 cm of soil of a New Zealand yellow-brown earth (Typic Dystrochrept) were compared under long-term indigenous native forest (Nothofagus truncata), exotic forest (Pinus radiata), unfertilized and fertilized grass/clover pastures, and gorse scrub (Ulex europaeus). Microbial biomass C ranged from 1100 kg ha-1 (exotic forest) to 1310kg ha-1 (gorse scrub), and comprised 1–2% of the organic C. Microbial N and P comprised 138–282 and 69–119 kg ha-1 respectively, with the highest values found under pasture. Microbial N and P comprised 1.8–7.0 and 4.9–18% of total N and P in the topsoils, and 1.8–4.4 and 23–32%, respectively, in the F-H material. Organic C and N were higher under gorse scrub than other vegetation. Total and extractable P were highest under fertilized pasture. Annual fluxes through the soil microbial biomass were estimated to be 36–85 kg N ha-1 and 18–36 kg P ha-1, sufficiently large to make a substantial contribution to plant requirements. Differences in macro-aggregate stability were generally small. The current status of this soil several years after the establishment of exotic forestry, pastoral farming, or subsequent reversion to scrubland is that, compared to levels under native forest, there has been no decline in soil and microbial C, N, and P contents or macro-aggregate stability.  相似文献   

8.
The aim of this experiment was to investigate the growth and residual‐nitrogen (‐N) effects of different catch‐crop species on a low–N fertility coarse sandy soil. Six legumes (white clover [Trifolium repens L.], red clover [Trifolium pratense L.], Persian clover [Trifolium resupinatum L.], black medic [Medicago lupulina L.], kidney vetch [Anthyllis vulneraria L.], and lupin [Lupinus angustifolius L.]), four nonlegumes (ryegrass [Lolium perenne L.], chicory [Cichorium intybus L.], fodder radish [Raphanus sativus L.], and sorrel [Rumex Acetósa L.]), and one mixture (rye/hairy vetch [Secale cereale L./Vicia villosa L.]) were tested in a field experiment with three replicates in a randomized block design. Four reference treatments without catch crops and with N application (0, 40, 80, and 120 kg N ha–1) to a succeeding spring barley were included in the design. Due to their ability to fix N2, the legume catch crops had a significantly larger aboveground dry‐matter production and N content in the autumn than the nonlegumes. The autumn N uptake of the nonlegumes was 10–13 kg N ha–1 in shoots and approx. 9 kg ha–1 in the roots. The shoot N content of white clover, black medic, red clover, Persian clover, and kidney vetch was 55–67 kg ha–1, and the root N content in white clover and kidney vetch was approx. 25 kg ha–1. The legume catch crops, especially white and red clover, seemed to be valuable N sources for grain production on this soil type and their N fertilizer–replacement values in a following unfertilized spring barley corresponded to 120 and 103 kg N ha–1, respectively. The N fertilizer–replacement values exceeded the N content of shoots and roots.  相似文献   

9.
 This study was conducted to determine effects of long-term winter cover cropping with hairy vetch, cereal rye and annual ryegrass on soil N availability and corn productivity. From 1987 to 1995, with the exception of the first year of the study, the cover crops were seeded each year in late September or early October after the corn harvest and incorporated into the soil in late April or early May. Corn was seeded 10 days to 2 weeks after the cover crop residues had been incorporated, and N fertilizer was applied as a side-dressing at rates of 0, 67, 134, or 201 kg N ha–1 each year. While the average annual total N input from the above-ground biomass of the cover crops was highest for hairy vetch (72.4 kg N ha–1), the average annual total C input was highest for cereal rye (1043 kg C ha–1) compared with the other cover crops. Hairy vetch was the only cover crop that significantly increased pre-side-dressed NO3 -N (Ni) corn biomass and N uptake at 0 N. At an N fertilizer rate of 134 kg N ha–1 or higher, the cover crops had a minimal effect on corn biomass. This indicated that even after 9 years of winter cover cropping, the effect of the cover crops on corn growth resulted primarily from their influence on soil N availability. The amount of available N estimated from the cover crops (Nac) was significantly correlated with relative corn biomass production (r 2=0.707, P<0.001). The total amount of available N, comprising Nac and N added from fertilizer (Nf), was strongly correlated (r 2=0.820, P<0.001)) with relative corn biomass production. The correlation was also high for the available N comprising Ni and Nf (r 2=0.775, P<0.001). Although cereal rye and annual ryegrass did not improve corn biomass production in the short term, they benefited soil organic N accumulation and gradually improved corn biomass production compared with the control over the long term. Received: 10 August 1999  相似文献   

10.
Winter legumes can serve dual purposes in no-tillage cropping systems. They can provide a no-tillage mulch, and supply a considerable quantity of N for thesummer crops. Cotton (Gossypium hirsutum L.) was no-tillage planted into crimson clover (Trifolium incarnatum L.), common vetch (Vicia sativa L.), and fallowed soil for two years to determine the effects of winter legume mulches on growth, yield, and N fertilizer requirements. The legumes were allowed to mature and reseed prior to planting cotton. The winter legumes produced no measurable changes in soil organic matter, N, or bulk density, but water infiltration was more rapid in the legume plots than in the fallowed soil. In the fallow system, 34 kg ha?1 N fertilizer was required for near maximum yields. In the clover plots, yields without N fertilizer were higher than when N (34 and 68 kg ha?1) was applied. In the vetch plots, cotton yields were highest without N fertilizer the first year, but yields were increased with 34 kg ha?1 N the second year because of a poor vetch seed crop and a subsequently poor legume stand. In the clover plots, a 20–30% cotton seedling mortality occurred in one year, but this stand reduction apparently did not affect cotton yields. Winter legume mulches can provide the N needs for no-tillage cotton without causing an excessive and detrimental quantity of N in sandy soils naturally low in soil N (0.04%). Unless the reseeding legume systems are maintained for at least 3 years, the legumes do not, however, provide an economical N source for cotton when N fertilizer requirementsare low (34 kg ha?1 in this study). A possible disadvantage of the system for reseeding legumes is that cotton planting is delayed 4–6 weeks beyond the normal planting date, which can reduce yields in some years.  相似文献   

11.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

12.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

13.
Soil C and N contents play a crucial role in sustaining soil quality and environmental quality. The conversion of annually cultivated land to forage grasses has potential to increase C and N sequestration. The objective of this study was to investigate the short-term changes in soil organic C (SOC) and N pools after annual crops were converted to alfalfa (Medicago sativa L. Algonguin) forage for 4 years. Soil from 24 sets of paired sites, alfalfa field versus adjacent cropland, were sampled at depths of 0–5, 5–10 and 10–20 cm. Total soil organic C and N, particulate organic matter (POM) C and N were determined. Organic C, total N, POM-C, and POM-N contents in the 0–5 cm layer were significantly greater in alfalfa field than in adjacent cropland. However, when the entire 0–20 cm layer was considered, there were significant differences in SOC, POM-C and POM-N but not in total N between alfalfa and crop soils. Also, greater differences in POM-C and POM-N were between the two land-use treatments than in SOC and total N were found. Across all sites, SOC and total N in the 0–20 cm profile averaged 22.1 Mg C ha−1 and 2.3 Mg N ha−1 for alfalfa soils, and 19.8 Mg C ha−1and 2.2 Mg N ha−1 for adjacent crop soils. Estimated C sequestration rate (0–20 cm) following crops to alfalfa conversions averaged 0.57 Mg C ha−1 year−1. Sandy soils have more significant C accumulation than silt loam soils after conversion. The result of this suggests that the soils studied have great C sequestration potential, and the conversion of crops to alfalfa should be widely used to sequester C and improve soil quality in this region.  相似文献   

14.
Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of near-equilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation tillage, residue stover (returned or harvested) and two N fertilization rates were imposed on a Waukegan silt loam (fine-silty over skeletal, mixed, superactive, mesic Typic Hapludoll) at Rosemount, MN. The surface (0–20 cm) soils with no-tillage (NT) had greater than 30% more SOC and N than moldboard plow (MB) and chisel plow (CH) tillage treatments. The trend was reversed at 20–25 cm soil depths, where significantly more SOC and N were found in MB treatments (26 and 1.5 Mg SOC and N ha−1, respectively) than with NT (13 and 1.2 Mg SOC and N ha−1, respectively), possibly due to residues buried by inversion. The summation of soil SOC over depth to 50 cm did not vary among tillage treatments; N by summation was higher in NT than MB treatments. Returned residue plots generally stored more SOC and N than in plots where residue was harvested. Nitrogen fertilization generally did not influence SOC or N at most soil depths. These results have significant implications on how specific management practices maximize SOC storage and minimize potential N losses. Our results further suggest different sampling protocols may lead to different and confusing conclusions regarding the impact of tillage systems on C sequestration.  相似文献   

15.
The long-term effects of cropping systems and management practices on soil properties provide essential information for assessing sustainability and environmental impact. Field experiments were undertaken in southern Spain to evaluate the long-term effects of tillage, crop rotation and nitrogen (N) fertilization on the organic matter (OM) and mineral nitrogen (Nmin) contents of soil in a rain-fed Mediterranean agricultural system over a 6-year period. Tillage treatments included no tillage (NT) and conventional tillage (CT), crop rotations were of 2 yr with wheat (Triticum aestivum L.)-sunflower (Helianthus annuus L.) (WS), wheat-chickpea (Cicer arietinum L.) (WP), wheat-faba bean (Vicia faba L.) (WB), wheat-fallow (WF), and in addition, continuous wheat (CW). Nitrogen fertilizer rates were 50, 100, and 150 kg N ha−1. A split-split plot design with four replications was used. Soil samples were collected from a depth of 90 cm at the beginning of the experiment and 6 yr later. Soil samples were also collected from a depth of 30 cm after 4 yr. These samples, like those obtained at the beginning of the experiment, were subjected to comprehensive physico-chemical analyses. The soil samples that were collected 6 yr later were analyzed for OM, NH4+---N and NO3---N at the 0–30, 30–60 and 60–90 cm soil depths. The tillage method did not influence the OM or Nmin contents of the soil, nor did legume rotations increase the OM content of soil relative to CW. A longer period may have been required for differences between treatments to be observed owing to the small amount of crop residue that is returned to soil under rain-fed conditions of semi-arid climates. The WF rotation did not raise the Nmin content of the soil relative to the other rotations. The consistent significant interaction between tillage and crop rotation testifies to the differential effect of the management system on the OM content and N status of the soil. The ammonium levels clearly exceeded those of NO3---N throughout the soil profile. The high Nmin content of the soils reveals the presence of abundant N resources that should be borne in mind in establishing N fertilization schemes for crops under highly variable climatic conditions including scant rainfall such as those of the Mediterranean region.  相似文献   

16.
From 1993 to 2001, a maize-vegetable-wheat rotation was compared using either 1) composts, 2) manure, or 3) synthetic fertilizer for nitrogen nutrient input. From 1993 to 1998, red clover (Trifolium pratense L.) and crimson clover (Trifolium incarnatum L.) were used as an annual winter legume cover crop prior to maize production. From 1999 to 2001, hairy vetch (Vicia villosa Roth.) served as the legume green manure nitrogen (N) source for maize. In this rotation, wheat depended entirely on residual N that remained in the soil after maize and vegetable (pepper and potato) production. Vegetables received either compost, manure, or fertilizer N inputs. Raw dairy manure stimulated the highest overall maize yields of 7,395 kg/ha (approximately 140 bushels per acre). This exceeded the Berks County mean yield of about 107 bushels per acre from 1994 to 2001. When hairy vetch replaced clover as the winter green manure cover crop, maize yields rose in three of the four treatments (approximately 500-1,300 kg/ha, or 10-24 bu/a). Hairy vetch cover cropping also resulted in a 9-25 % increase in wheat yields in the compost treatments compared to clover cover cropping. Hairy vetch cover crops increased both maize and wheat grain protein contents about 16 to 20% compared to the clover cover crop. Compost was superior to conventional synthetic fertilizer and raw dairy manure in 1) building soil nutrient levels, 2) providing residual nutrient support to wheat production, and 3) reducing nutrient losses to ground and surface waters. After 9 years, soil carbon (C) and soil N remained unchanged or declined slightly in the synthetic fertilizer treatment, but increased with use of compost amendments by 16-27% for C and by 13-16% for N. However, with hairy vetch cover crops, N leaching increased 4 times when compared to clover cover crops. September was the highest month for nitrate leaching, combining high rainfall with a lack of active cash crop or cover crop growth to use residual N. Broiler litter leaf compost (BLLC) showed the lowest nitrate leaching of all the nutrient amendments tested (P= 0.05).  相似文献   

17.
The extreme climate of the northern Great Plains of North America requires cropping systems to possess a resilient soil resource in order to be sustainable. This paper summarizes the interactive effects of tillage, crop sequence, and cropping intensity on soil quality indicators for two long-term cropping system experiments in the northern Great Plains. The experiments, located in central North Dakota, were established in 1984 and 1993 on a Wilton silt loam (FAO: Calcic Siltic Chernozem; USDA1: fine-silty, mixed, superactive frigid Pachic Haplustoll). Soil physical, chemical, and biological properties considered as indicators of soil quality were evaluated in spring 2001 in both experiments at depths of 0–7.5, 7.5–15, and 15–30 cm. Management effects on soil properties were largely limited to the surface 7.5 cm in both experiments. For the experiment established in 1984, differences in soil condition between a continuous crop, no-till system and a crop–fallow, conventional tillage system were substantial. Within the surface 7.5 cm, the continuous crop, no-till system possessed significantly more soil organic C (by 7.28 Mg ha−1), particulate organic matter C (POM-C) (by 4.98 Mg ha−1), potentially mineralizable N (PMN) (by 32.4 kg ha−1), and microbial biomass C (by 586 kg ha−1), as well as greater aggregate stability (by 33.4%) and faster infiltration rates (by 55.6 cm h−1) relative to the crop–fallow, conventional tillage system. Thus, soil from the continuous crop, no-till system was improved with respect to its ability to provide a source for plant nutrients, withstand erosion, and facilitate water transfer. Soil properties were affected less by management practices in the experiment established in 1993, although organic matter related properties tended to be greater under continuous cropping or minimum tillage than crop sequences with fallow or no-till. In particular, PMN and microbial biomass C were greatest in continuous spring wheat (with residue removed) (22.5 kg ha−1 for PMN; 792 kg ha−1 for microbial biomass C) as compared with sequences with fallow (SW–S–F and SW–F) (Average=15.9 kg ha−1 for PMN; 577 kg ha−1 for microbial biomass C). Results from both experiments confirm that farmers in the northern Great Plains of North America can improve soil quality and agricultural sustainability by adopting production systems that employ intensive cropping practices with reduced tillage management.  相似文献   

18.
The contribution of organic resources to the restoration of soil fertility in smallholder farming systems in East Africa is being tested as an alternative to costly fertilizers. Organic inputs are expected to have advantages over fertilizers by affecting many biochemical properties controlling nutrient cycling. Our study examined changes in soil C and N, C and N mineralization, microbial biomass C (MBC) and N (MBN), and particulate organic matter (POM) in a P-limiting soil in western Kenya after applications of organic residues and fertilizers to overcome P limitation to crops. Leaf biomass from six different tree (shrub) species was incorporated into the soil at 5 Mg ha–1 for five consecutive maize growing seasons, over 2.5 years. Triple superphosphate was applied separately at 0, 10, 25, 50, and 150 kg P ha–1 in combination with 120 kg N ha–1 as urea. Soil inorganic N, soil organic C, mineralizable N, and total C in all POM fractions and total N in the 53- to 250-m POM fraction increased following addition of all organic residues compared to the control. Whether there was an advantage of organic residue incorporation over inorganic fertilizer use depended on the soil parameter studied, the organic residue and the rate of fertilization. Most differences were found in N mineralization where 14.4–21.6 mg N kg–1 was mineralized in fertilizer treatments compared to 25.2–30.5 mg N kg–1 in organic residue treatments. C and N mineralization and the 53- to 250-m POM fractions were the most sensitive parameters, correlating with most of the studied parameters. Organic residues can contribute to improved soil nutrient cycling while the magnitude of their contribution depends on the biochemical properties of the residues.  相似文献   

19.
ABSTRACT

Broccoli (Brassica oleraceaL. var. italica) and lettuce (Latuca sativaL.) were grown under greenhouse conditions with nitrogen (N) from a cover crop mixture of rye (Secale cerealeL.) and crimson clover (Trifolium incarnatumL.) and ammonium nitrate (NH4NO3). Individual cover crop species were produced with non-enriched or enriched (5 atom % NH4 15NO3) Hoagland Nutrient Solutions resulting in enriched rye [0.799% atom % 15N, 24:1 carbon (C):N ratio] and enriched clover (0.686% atom % 15N, 19:1 C:N ratio). Cover crops were applied as an equal mixture of rye and clover at 1884, 3768, and 5652 kg·ha? 1 dry weight to supply 26, 52, and 78 kg·ha? 1 N. Enriched materials were only applied at the 3768 kg·ha? 1 rate, either as enriched rye plus non-enriched clover or non-enriched rye plus enriched clover. Additional treatments consisted of an unfertilized control and three NH4NO3 fertilizer rates; 112, 224, and 336 kg·ha? 1 N for broccoli and 70, 140, and 210 kg·ha? 1 N for lettuce. Combination treatments were the standard cover crop rate (3768 kg·ha? 1) plus the lowest N fertilizer rate for each vegetable. Cover crops did not increase yield of either broccoli or lettuce, and contributed only 17% of the N in broccoli and 15% of the N in lettuce. The majority of cover crop 15N remained in the soil: 54.8% and 81.3% of rye and clover N, respectively, after broccoli harvest; and 68.1% and 79.2% of rye and clover N, respectively, after lettuce harvest. Broccoli plant tissue recoveries were 8.0% of the rye and 11.0 % of the clover 15N; while lettuce plant tissue recoveries were 6.3% (rye) and 4.1% (clover). Broccoli yield could not be assessed due to lack of floret development, but dry matter accumulation was maximized at 224 kg·ha? 1N. Lettuce yield and fertilizer N recovery efficiency (by mass balance) was maximized at 140 g·ha? 1 N.  相似文献   

20.
Organic matter influences soil structure and compactibility by binding soil mineral particles, reducing aggregate wettability, and influencing the mechanical strength of soil aggregates, which is the measure of coherence of inter-particle bonds. This work was carried out to examine how differences in water-stable aggregates influence the distribution of soil organic carbon and soil organic nitrogen under two tillage techniques [minimum tillage (only planting holes were opened) and conventional tillage (raised beds, 30 cm high, prepared manually with traditional hoes)] in soils of a Fluvisol in Owerri, southeastern Nigeria. Three pedons were dug and studied for each of the tillage technique along a soil sequence. Soil organic carbon and soil organic nitrogen distribution in whole soil and in water-stable aggregates under minimum tillage and conventional tillage were determined for the soils. Soil organic carbon contents in water-stable aggregates (WSA) of the pedons varied according to method of tillage. The highest mean values of soil organic carbon were obtained from minimum tillage and in water-stable aggregates 4.75–2.00 mm (16.03 Mg C ha−1), 1.00–0.50 mm (14.06 Mg C ha−1) and water-stable aggregates 2.00–1.00 mm (13.99 Mg C ha−1) whereas under conventional tillage, water-stable aggregates 1.00–0.50 mm with soil organic carbon of 24.6 Mg C ha−1 had the highest soil organic carbon content. Soil organic carbon correlated significantly with mean weight diameter (r = 0.48; P = 0.05; n = 15), water-stable aggregates 4.75–2.00 mm (r = 0.73; P = 0.05; n = 15), water-stable aggregates 2.00–1.00 mm (r = 0.55; P = 0.05, n = 15), water-stable aggregates 1.00–0.50 mm (r = 0.44; P = 0.05; n = 15) whereas no relationship was found between soil organic carbon and water-stable aggregates 0.50–0.25 mm (r = 0.15; P = 0.05; n = 15) and water-stable aggregates <0.25 mm (r = 0.17; P = 0.05; n = 15) in soils under minimum tillage. There was a significant correlation (r = 0.45–0.58; P = 0.05; n = 14) between all water-stable aggregates classes studied and soil organic carbon in soils under conventional tillage. Mean values of soil organic nitrogen were higher in soils under minimum tillage with 4.75–2.00 mm and 2.00–1.00 mm aggregate classes having 1.64 Mg N ha−1 and 1.57 Mg N ha−1 soil organic nitrogen when compared to 1.01 Mg N ha−1 and 1.00 Mg N ha−1 in conventionally tilled soils of the same aggregate classes, respectively. Larger water-stable aggregate classes (4.75–2.00; 2.00–1.00) had slightly more soil organic nitrogen (22–26%) than smaller aggregate classes (1.00–0.50; 0.50–0.25; >0.25) with 14–24% soil organic nitrogen in minimum tilled soils. In soils under conventional tillage, 1.00–0.50 mm, 0.50–0.25 mm and <0.25 mm aggregate classes contributed more soil organic nitrogen (19.66–22.40%) to the soil whereas larger water-stable aggregate classes contributed 19.22% soil organic nitrogen. The proportion of soil organic carbon and total nitrogen retained in soils with higher percentage of water-stable aggregates are less likely to be lost through soil and wind erosion. The higher values of SOC in the whole soil and WSA classes less than 2.00 mm are indications of positive influence of SOC on the stability of these peds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号