首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
蒋林  林宁  莫德祥  卓宇 《安徽农业科学》2012,(18):9728-9730,9861
[目的]对南亚热带低山区柳杉人工林碳汇进行研究。[方法]研究广西国营六万林场低山区的31年生柳杉人工林生态系统碳素含量、碳储量及其空间分配特征。[结果](1)柳杉人工林不同器官平均碳素含量变化在498.5~530.3 g/kg,其含量排列为:叶子枯枝树干根蔸枝条细根干皮中根粗根;碳素含量随土壤深度的增加而逐渐减少。(2)低山区柳杉人工林的生态系统碳储量为393.651 t/hm2,其中植被层碳储量占生态系统碳储量的29.22%,而0~100 cm土壤层占70.78%。31年生柳杉人工林年净固碳量估算为3.709 t/(hm2.a),其中乔木层的年净固碳量为3.537 t/(hm2.a)。(3)0~20 cm土壤表层碳储量为132.418 t/hm2,比植被层的碳储量还高。[结论]加强低山区的植被保护,减少表层土壤的水土流失,可有效保持南亚热带低山区土壤对碳的长期吸存和维持。  相似文献   

2.
大岗山毛竹扩张对常绿阔叶林生态系统碳储特征的影响   总被引:4,自引:0,他引:4  
采用时空替代法对江西大岗山毛竹(Phyllostachys edulis)扩张对常绿阔叶林生态系统碳储特征的影响进行了研究.结果表明:毛竹扩张导致常绿阔叶林逐渐演变成毛竹林,森林生态系统总的碳储量由267.94 t/hm2减少到226.75 t/hm2,减少了15.37%,其中植被碳储量由93.26 t/hm2减少到8...  相似文献   

3.
江西大岗山毛竹林碳贮量及其分配特征   总被引:4,自引:0,他引:4  
采用收获法研究了江西大岗山毛竹林生态系统的碳贮量及其分布特征。结果表明:毛竹各器官碳密度波动在0.463 0~0.491 7 g/g,其大小顺序为竹枝竹秆蔸根竹蔸竹叶。随着毛竹年龄的增长,碳密度无明显的变化规律。在毛竹林植被层中,碳密度依次为:竹枝竹秆竹鞭蔸根鞭根竹蔸竹叶林下植被枯落物。毛竹林生态系统土壤层碳密度以0~20 cm层最高,且各层次之间碳密度差异极显著。毛竹林生态系统碳贮量为243.22 t/hm2,其中土壤层碳贮量占84.03%,植被层占15.97%。毛竹林生态系统年固碳量为12.15 t/(hm2·a)。其中植被层年固碳量为11.36 t/(hm2·a),土壤层年固碳量为0.79 t/(hm2·a)。   相似文献   

4.
对福州市主要经济林毛竹和油茶林生态系统各组分的生物量、含碳率和碳贮量进行比较研究,结果表明,毛竹林和油茶林乔木层生物量分别为277.18、35.76 t·hm-2,高于林下植被和凋落物生物量,其中,干的生物量最大,分别占乔木层生物量的68.80%和34.00%。毛竹林和油茶林地上部分含碳率分别在44.65%-48.84%、44.72%-49.78%之间,碳贮量分别为137.157、18.104 t·hm-2。林地土壤3个层次(60 cm)含碳率分别介于0.70%-3.02%、0.46%-2.46%之间,表层(0-20 cm)含碳率和碳贮量最高,毛竹和油茶林地土壤碳贮量为107.223、92.540 t·hm-2。毛竹林生态系统碳贮量为246.445 t·hm-2,油茶林为111.446 t·hm-2。  相似文献   

5.
蜀南竹海风景区毛竹林生态系统碳储量及其空间分配特征   总被引:1,自引:0,他引:1  
为评价风景区在减缓全球气候变化方面的作用,研究了蜀南竹海风景区毛竹林生态系统的碳储量以及空间分配特征。结果表明:毛竹各器官碳含量介于0.451 2~0.531 3 g/g之间,碳含量从高到低排序为秆(0.531 3 g/g)>枝(0.517 3 g/g)>鞭(0.503 1 g/g)>叶(0.489 2 g/g)>蔸(0.459 0 g/g)>根(0.451 2 g/g);不同龄级的毛竹平均碳含量从高到低排序为Ⅳ(0.521 5 g/g)>Ⅲ(0.514 0 g/g)>Ⅰ(0.508 9 g/g)>Ⅱ(0.487 5 g/g)。毛竹林生态系统碳储量为105.07 t/hm2。其中,乔木层碳储量为40.88 t/hm2,土壤层碳储量为61.0 t/hm2,枯落物层碳储量最低,为3.19 t/hm2,分别占生态系统碳储量的38.91%、58.06%和3.91%,其分配上表现为土壤层碳储量最大。研究结果表明风景区在减缓大气CO2浓度方面有着重要的作用。  相似文献   

6.
对广西南宁良风江27年生青钩栲人工林生态系统的生物量尧碳密度尧碳储量及其空间分配特征进行了研究遥结果表明院青钩栲人工林不同器官的平均碳素密度为459.6~491.9 g/kg袁其含量由高到低依次为院枯枝>干>根兜>中根>粗根>大枝>细枝>细 根>叶袁青钩栲各器官的碳素密度存在显著差异曰青钩栲人工林生态系统中的碳储量表现为院土壤层>乔木层>灌木层>凋落物层>草本层曰土壤碳素密度随着深度的增加逐渐降低袁碳素含量主要集中在0~40 cm的土层曰青钩栲人工林生态系统的碳储量为206.96t/hm2袁其中乔木层占39.61%袁灌木层占2.53%袁草本层占0.14%袁凋落物层占0.54%袁土壤层占57.18%曰乔木层中树干的碳储量最高袁为43.24 t/hm2袁占总碳储量的20.89%曰青钩栲人工林每年的净生产力为21.51 t/hm2袁净固碳量为8.80 t/hm2袁净碳素积累量为3.05 t/hm2袁有较好的碳汇潜力遥  相似文献   

7.
不同经营措施对毛竹林土壤呼吸温度敏感性的影响   总被引:1,自引:0,他引:1  
【目的】森林经营与管理降低土壤呼吸是实现CO2减排的重要手段。全球气候变暖背景下,确定不同经营措施对毛竹林土壤呼吸温度敏感性的影响有助于揭示毛竹林地下生态过程对气候变化的响应和适应,并有助于了解毛竹林土壤呼吸对气候变化的正负反馈。【方法】以无经营毛竹纯林为对照(Ⅰ),以垦复(Ⅱ)、施用除草剂(Ⅲ)、劈草(Ⅳ)毛竹纯林为研究对象,采用壕沟法和凋落物移除法区分了各组分呼吸,利用LI-8100测定了土壤呼吸速率及5cm土壤温度,并分析了土壤呼吸温度敏感性(Q10)。【结果】①土壤呼吸及组分呼吸与5cm处土壤温度呈指数相关;②土壤总呼吸Q10冬季>夏季>春季>秋季。垦复、施用除草剂、劈草均降低了土壤总呼吸温度敏感性;③根呼吸Q10夏季>冬季>春季>秋季。垦复、施用除草剂、劈草均降低了根呼吸温度敏感性;④凋落物呼吸Q10夏季>冬季>秋季>春季。垦复、施用除草剂、劈草均降低了凋落物呼吸温度敏感性;⑤矿质呼吸Q10春季>冬季>夏季>秋季。垦复增加了矿质呼吸温度敏感性,施用除草剂、劈草降低了矿质呼吸温度敏感性。【结论】相对降低土壤表面CO2通量和土壤呼吸适应未来全球气候变化而言,施用除草剂是本研究区毛竹林经营较为合理的方式。  相似文献   

8.
擎天树人工林生态系统碳贮量及分布格局   总被引:1,自引:1,他引:0  
对32年生擎天树人工林生态系统的碳素含量、碳贮量及其空间分配特征进行了研究。结果表明,擎天树不同器官碳素平均含量的变化范围为465.1~493.5 g/kg,各器官碳素含量依次为:细根〉树干〉树叶〉根兜〉中根〉粗根〉树枝〉干皮;32年生擎天树人工林生态系统的碳贮量为300.70 t/hm2,其中植被层碳储量为169.71 t/hm2,乔木层地上部分碳储量占整个植被层的84.22%。经估算,擎天树人工林乔木层净固碳量和碳素净积累量分别为11.30和5.20 t/(hm2.a)。  相似文献   

9.
不同管理模式对毛竹林碳贮量的影响   总被引:5,自引:0,他引:5  
该研究旨在比较不同管理模式对毛竹林碳贮量的影响和1年生毛竹碳积累的动态变化.结果表明,1年生毛竹碳积累量在10月份前随时间推移呈直线增加,此后碳积累量的增加趋缓;集约经营和粗放经营毛竹林中1年生毛竹碳积累量在6个月内分别为10.11和5.61 t/hm2,且碳积累主要集中在竹秆,占总碳贮量的71.6%~78.0%;集约经营和粗放经营毛竹林下凋落物的碳贮量分别为1.173和 2.156 t/(hm2·a);集约经营毛竹林年固碳量为12.750 t/(hm2·a),是粗放经营毛竹林的1.56倍;与杉木人工林、热带山地雨林和马尾松林相比,毛竹林具有更大的固定CO2的能力.因此,毛竹是森林植被中固碳效果最好的林木之一.   相似文献   

10.
杉木二代林生态系统碳素积累的动态特征   总被引:1,自引:1,他引:0  
对杉木二代林碳贮量和碳素年净固定量的动态特征进行了研究.结果表明,8、11和14年生杉木二代林生态系统碳贮量分别为136.24、147.59和161.83 t·hm-2,其分布序列为土壤层(0~60 cm)>植被层>凋落物层.随着林分林龄的增加,乔木层碳积累量明显增加,由8年生的17.09 t·hm-2增加到14年生的37.29 t·hm-2,分别占生态系统碳贮量的12.54%和23.04%.碳贮量在林木各器官中的分配,基本上与各自生物量成正比,其中树干碳贮量占乔木层碳贮量的46.05%以上,并随林木生长而明显增加.3种杉木林林地土壤层(0~60 cm)碳贮量分别为117.60、119.26和122.06 t·hm-2,占生态系统总碳贮量的75.42%以上,其中表层土壤(0~20 cm)分别占土壤总碳贮量的56.45%、54.29%和57.37%.3种林分的年净生产力分别为5.49、6.18和7.62 t·hm-2·a-1,碳素年净固定量分别为2.62、3.04和3.74 t·hm-2·a-1.  相似文献   

11.
基于2009年庐山森林资源二类调查小班数据库和一类调查样地调查数据,利用CBM-CFS3模型的估算功能,估算江西庐山2009年森林生态系统碳储量。结果显示:庐山森林生态系统碳储量为6.4 T g(T=106t,t=106g),各主要森林类型之间因森林面积大小不同其碳储量差距很大;其中马尾松碳储量最大,占总碳储量的41.64%,国外松最小为2.18%。庐山森林生态系统平均碳密度为262.55 t/hm2,其中混交林碳密度最大为365.95 t/hm2,杉木碳密度最小为194.96 t/hm2。利用一类样地数据和平均生物量法得到庐山森林生态系统生物量碳密度为32.87 t/hm2,与模型计算结果 31.86 t/hm2基本一致。庐山总生物量碳库碳储量占庐山生态系统碳储量的12.47%,死有机质(DOM)碳库占比为87.53%,土壤碳库在整个生态系统中占有很大的比例为66.30%。  相似文献   

12.
广西沙塘林场马尾松和杉木人工林的碳储量研究   总被引:1,自引:0,他引:1  
【目的】量化广西沙塘林场马尾松(Pinus massoniana)和杉木(Cunninghamia lanceolata)人工林碳储量,为评价其碳汇功能和可持续经营提供依据。【方法】 在广西沙塘林场选择处于中龄和成熟期的马尾松和杉木人工林,设置样地测算乔木、林下植被和枯落物的生物量,按20 cm分层挖取样地0~60 cm土层土样,最后依据有关方程,计算马尾松和杉木中龄和成熟人工林生态系统的含碳率和碳储量。【结果】 马尾松、杉木人工林林下植被含碳率变化于40.06%~45.23%, 枯落物含碳率为40.79%~46.06%,0~60 cm土层含碳率变化于0.34%~1.26%。马尾松和杉木人工林生态系统平均碳储量分别为168.36和128.08 t/hm2,其乔木层的平均碳储量分别为106.33和54.8 t/hm2,分别占总碳储量的63.15%和42.79%;土壤平均碳储量分别为54.96和67.33 t/hm2,其分别占总碳储量的32.64%和52.57%;其林下植被和枯落物平均碳储量分别占总碳储量的1.28%,1.02%和2.93%,3.63%。【结论】 马尾松人工林总碳储量以成熟林显著高于中龄林,杉木则以中龄林略高于成熟林;土壤和乔木层碳储量是马尾松和杉木人工林生态系统碳储量的主体部分,而林下植被和枯落物对碳储量的贡献较小。  相似文献   

13.
该研究通过对海南西部不同林龄橡胶人工林土壤剖面进行有机碳含量实测,估算土壤有机碳储量,结果表明4种不同林龄橡胶人工林生态系统土壤有机碳含量为6.20~14.36 g/kg;橡胶人工林土壤有机碳碳含量随土壤层的增深而逐渐减少,除33 a胶林0~60cm各层土壤有机碳含量差异显著外,其他同一林龄橡胶人工林不同土壤层间差异不显著,不同林龄橡胶人工林在同一土壤层间有机碳含量差异显著,土壤有机碳集中于0~30 cm土壤层;5、10、19和33 a橡胶人工林生态系统土壤有机碳储量分别为76.85、74.48、81.74和85.31 t/hm2。气候条件、土壤质地、凋落物量累积与分解、林龄大小和胶林经营管理是影响橡胶人工林土壤有机碳蓄积的主导因子。  相似文献   

14.
杉木观光木混交林C库与C吸存   总被引:16,自引:0,他引:16  
对福建三明 2 7年生杉木观光木混交林和杉木纯林C库和C吸存的研究结果表明 ,混交林C库总量为2 2 2 5 0 8t hm2 ,比纯林增加了 2 1 85 %,其中活植物体部分和土壤碳库分别为 139 75 5t hm2 和 80 2 81t hm2 ,分别占C库总量的 6 2 81%和 36 0 8%.混交林和纯林杉木乔木层有机碳年均积累量 6~ 11年最大 ,分别达 7 35t hm2 和 5 79t hm2 .混交林乔木层 2 7~ 2 8年C净固定量为 7 970t hm2 ,折算成CO2 为 2 9 2 2 3t hm2 ,是纯林的 1 19倍 ,其中凋落物和死细根C年归还量分别为 2 5 2 8t hm2 和 0 871t hm2 ,分别是纯林的 1 0 5倍和 1 17倍 ;混交林和纯林中叶和枝C年归还量分别占凋落物C年归还量的 6 6 5 7%、2 3 81%和 6 1 0 3%、2 5 2 0 %;而 <0 5mm的枯死细根C年归还量分别占枯死细根C年归还量 6 0 %和 5 9%.凋落物中叶和枝及 <0 5mm的死细根是该森林生态系统有机碳归还的主体 .  相似文献   

15.
桂北地区不同林龄油茶林碳储量分配格局   总被引:1,自引:0,他引:1  
调查并分析了桂北地区不同林龄油茶人工林生态系统各部分的碳储量。结果表明:幼龄林、中林龄、老龄林油茶人工林生态系统总碳储量分别为91.58、127.97和110.14 mg/hm~2,植被层碳储量分别为6.41、24.12和31.77 mg/hm~2,土壤层碳储量分别为85.17、103.85和78.37mg/hm~2;乔木层和土壤层是生态系统总碳储量的主体,两者中的碳储量所占比例达到总碳储量的98%以上。  相似文献   

16.
地下滴灌对杨树速生丰产林碳储量的影响   总被引:2,自引:0,他引:2  
研究了北京潮白河沿河沙地6年生I 214杨树速生丰产林地下滴灌(SDI)和常规灌溉(NI)条件下的林地碳储量,同时对10年生中林46杨树地下滴灌速生丰产示范林碳汇能力进行了评价。结果表明:1)与常规灌溉相比,地下滴灌能大大增加林地碳储量。2002年(栽植第6年),SDI区乔木层、枯落物层和土壤碳储量分别为25.81、3.53和42.00 t/hm2,是NI区的1.27、2.02和1.32 倍;SDI区的林地总碳储量76.50 t/hm2,比NI区49.61 t/hm2增加了54.2%;年净碳增量9.49 t/(hm2•a),是NI区5.01 t/(hm2•a)的近2倍。2)2010年(栽植第10年),地下滴灌示范林达到了较高固碳水平,乔木层、草本层、枯落物层和土壤碳储量分别为34.71、8.60、8.45和56.20 t/hm2,林地总碳储量为107.19 t/hm2,年净碳增量达到了8.84 t/(hm2•a),比对照区625 t/(hm2•a)增加了41.4%。建议在干旱半干旱及存在季节性干旱的地区结合当地经济条件推广基于地下滴灌的优化水肥管理技术,大幅度提高杨树速生丰产林林地生产力和碳汇能力,为减缓全球增暖趋势发挥一定的作用。   相似文献   

17.
以长白山金沟岭林场作为研究区域,研究了主要森林类型碳储量和碳密度的时空变化,为我国森林生态系统碳平衡提供基础资料。结果表明:1)金沟岭林场森林植被碳储量从1997年的7 621.842 2 t 增加到2007年的8 018.125 9 t,净增加了466.283 7 t。碳储量分布以中龄林与近熟林为主,1997年与2007年所占的比例分别为87%与79%,是一个潜在的巨大碳库;2)森林植被的平均碳密度随着龄级结构的增长而增加,1997年与2007年分别为47.541 7 mg·hm-2与50.186 6 mg·hm-2,高于全国2008年森林平均植被碳密度42.82 mg·hm-2,但是低于世界的平均水平86.00 mg·hm-2;3)利用1997年与2007年两期数据分析了该林场森林植被的年固碳增量为39.63 t·hm-2·a-1,平均年增长率0.51%,低于我国森林的平均年增长率1.6%,该林场森林植被仍具有潜在的固碳空间;4)对森林植被的碳汇效益进行了计量, 1997年与2007年分别为2 728.130 8万元与2 744.954 8万元,净增长了16.824 0万元。应加强对现有森林经营,尤其是中幼龄林抚育,提高森林质量,从而增加现存森林的碳密度,以此来提高森林固碳潜力。  相似文献   

18.
分别应用平均木法、样方收获法和分层取样法采样并测定三亚地区莲雾果园生态系统乔木层、草本及凋 落物层和土壤层的生物量及碳含量,并探讨了莲雾果园生态系统各组分的碳储量及其分布特征。结果表明,三亚地 区莲雾果园生态系统总碳储量为76.87 t/hm2,其中乔木层、草本及凋落物层和土壤层碳储量分别为11.63、1.21、64.03 t/hm2,分别占总碳储量的15.13%、1.57%、83.30%;乔木层各器官碳储量大小为树枝>树根>树叶>树干>果实;土壤层 随深度的增加碳储量逐渐降低。总体而言,三亚地区莲雾果园生态系统固碳潜力较大且系统碳储量主要位于土壤 层,乔木层碳储量以树枝和树根较多,草本及凋落物层碳储量较低。  相似文献   

19.
柳州市三种人工林土壤有机碳储量的空间分布   总被引:1,自引:0,他引:1  
采用野外调查、取样和实验室分析等方法,对柳州市杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和桉树(Eucalyptus sp.)人工林生态系统的土壤有机碳含量和有机碳储量及其分配进行了研究.结果表明,马尾松、杉木和桉树人工林土壤有机碳含量为3.2~12.6 g/kg,杉木人工林土壤有机碳含量最高,桉树人工林最小.马尾松、杉木和桉树人工林0~20 cm土层的土壤有机碳储量分别为26.25、30.09和17.05 t/hm2,分别占其土壤总有机碳储量的48.56%、44.70%和41.36%,成为土壤有机碳储量的主体,土壤的有机碳含量和有机碳储量均随着土层深度的增加而减少.土壤有机碳储量表现为杉木人工林(67.33 t/hm2)>马尾松人工林(54.06 t/hm2)>桉树人工林(41.22 t/hm2);马尾松人工林土壤有机碳储量表现为中龄林>幼龄林>过熟林>成熟林;杉木中龄林的土壤有机碳储量大于成熟林,彼此间差异不显著;三年生的桉树人工林的土壤有机碳储量高于二年生和四年生的;杉木中龄林和成熟林的土壤有机碳储量分别高于马尾松中龄林和成熟林.  相似文献   

20.
厚荚相思人工幼林生态系统碳贮量及其分布研究   总被引:2,自引:0,他引:2  
对1.5、2.5和3.5年生的厚荚相思人工林生态系统的碳素含量、贮量及其空间分布特征进行了研究。结果表明:厚荚相思不同器官碳素含量的变化范围为457.6~525.1 g/kg,厚荚相思各器官碳素含量高低排列次序基本一致,表现为树叶>树枝>树干>树根>树皮;土壤碳素含量随土层深度增加而减少。3个林龄厚荚相思人工林生态系统碳素贮存量分别为73.04、86.14和96.34 t/hm2,其分布序列为土壤(0~60 cm)>植被层>凋落物层。碳贮量在林木不同器官中的分配基本上与各器官生物量成正比,3个林龄厚荚相思人工林年净固碳量分别为3.89、8.26和9.23 t/(hm2.a)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号