首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
油茶壳制活性炭的研究   总被引:13,自引:0,他引:13  
以油茶壳为原料,用物理法(水蒸汽为活化剂)制备活性炭。研究了活化温度、活化时间、水蒸汽用量等对活性炭的得率、碘吸附值和亚甲基蓝吸附值的影响。确定了用油茶壳制备活性炭适宜的工艺条件为:活化温度为850℃、活化时间为2.5h,水蒸汽用量为210g。在此工艺条件下所制取的油茶壳活性炭的得率为33.7%。活性炭的碘吸附值968mg/g,亚甲基蓝吸附值180mg/g,比表面积935m^2/g。  相似文献   

2.
磷酸活化法制备纤维素基颗粒活性炭   总被引:1,自引:0,他引:1  
以微晶纤维素为原料,在不添加黏结剂的条件下,采用磷酸活化法制备纤维素基颗粒活性炭。分析了捏合过程和炭活化工艺对活性炭耐磨强度、吸附性能和孔隙结构的影响。研究结果表明,炭活化温度的升高及保温时间的延长有利于颗粒活性炭强度的提高;随着浸渍比值的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积、微孔容积和中孔容积均呈不断上升的趋势;浸渍比值较小,较细微孔结构发达,浸渍比值较大,较大微孔结构发达。在较佳的工艺条件下:捏合温度150℃,浸渍比值1.25,捏合时间55 min,炭活化温度450℃和保温时间1.0 h,制得颗粒活性炭的碘吸附值、亚甲基蓝吸附值、强度、比表面积、总孔容积、微孔容积、中孔容积和平均孔径分别为896.6 mg/g、131.3 mg/g、94.69%、1 377.3 m2/g、1.083 cm3/g、0.514 cm3/g、0.569 cm3/g和3.14 nm。  相似文献   

3.
以废弃的松子壳为原料,采用水蒸气活化法制备松子壳活性炭,系统研究了炭化温度、活化温度、活化时间、活化剂用量等关键工艺因素对活性炭产品性能的影响,分析其对碘吸附值和亚甲基蓝吸附性能的影响。结果显示,松子壳活性炭最佳工艺条件为:炭化温度为500℃、活化温度为860℃、活化时间为90 min、水蒸气流量为2.5 m L/min,此时松子壳活性炭得率为26.08%,碘吸附值为1 338 mg/g,亚甲基蓝吸附值为300 mg/g。松子壳活性炭孔径主要集中在3 nm左右,其平均孔径为2.396 nm,BET比表面积为105 2.68 m~2/g,总孔容积为0.630 6 cm~3/g,微孔容积为0.355 8 cm~3/g,占总孔容积的56.43%。  相似文献   

4.
以碱木糖渣为原料,磷酸为活化剂,经预处理后活化,制备高吸附性能活性炭。考察了不同条件对活性炭吸附性能的影响,并结合N2吸附-脱附等温线对其孔结构进行表征。结果表明,当浸渍比为2.0∶1,预处理温度和时间分别为270℃和60 min,活化温度和时间分别为400℃和90 min时,制得的活性炭得率为36.36%,亚甲基蓝吸附值360 mg/g,碘吸附值1 142 mg/g,焦糖脱色率120%,比表面积1 850.6 m2/g,总孔容积1.48 cm3/g,中孔孔容0.81 cm3/g,平均孔径3.2 nm。  相似文献   

5.
以稻秆为原料,通过磷酸法活化制备得到了中孔活性炭,并采用氮气吸附、元素分析和扫描电镜对其进行了表征分析。实验结果表明:稻秆制备活性炭的工艺条件为10 g稻秆,浸渍比3∶1(质量比),在140℃下预活化60 min,活化温度450℃,活化时间60 min。在此条件下制备得到的活性炭得率为25%,亚甲基蓝吸附值215 mg/g,碘吸附值835 mg/g,A法焦糖值110%,灰分3.03%,其比表面积为967.7 m2/g,总孔容为1.12 cm3/g,平均孔径为4.6 nm,中孔率可以达到84.8%。  相似文献   

6.
油茶果壳基活性炭的制备及其中孔结构调控研究   总被引:2,自引:0,他引:2  
研究了油茶果壳经水蒸气活化后,浸渍磷酸再活化对活性炭中孔结构调控的影响,制备出中孔丰富的活性炭。实验结果显示:820℃下制备的水蒸气法油茶果壳活性炭以微孔为主,BET比表面积1 076 m2/g,总孔容积0.81 cm3/g,微孔率63%,中孔率33%,亚甲基蓝吸附值180 mg/g,碘吸附值1 012 mg/g;水蒸气法油茶果壳活性炭经800℃下磷酸再活化后,可明显增加BET比表面积(1 608 m2/g)和总孔容积(1.17 cm3/g),尤其对中孔率(61%)的发展更有效,同时保留一定比例的微孔(37%),显示出更高的亚甲基蓝吸附值(330 mg/g)和碘吸附值(1 326 mg/g)。  相似文献   

7.
油茶壳活性炭的制备工艺研究   总被引:1,自引:0,他引:1  
以油茶壳为原料,采用直接炭化和二步炭化法制备活性炭,探讨炭化温度和保温时间对活性炭产品得率、亚甲基蓝吸附值和碘吸附值的影响。研究结果表明,随着炭化温度的升高,直接炭化法制得的油茶壳活性炭的吸附性能呈先升后降的趋势;二步炭化法随着保温时间的延长,活性炭的吸附性能呈不断上升的趋势,在较优的工艺条件下,活性炭的亚甲基蓝吸附值和碘吸附值为210.0 mg.g-1和1 016.2 mg.g-1。二步炭化有利于进一步提高直接炭化的油茶壳活性炭的吸附性能,制得吸附性能良好的活性炭材料。  相似文献   

8.
以山杏壳为原料,用正交试验法,分别采用氯化锌、水蒸气活化法制备杏壳活性炭,并测定吸附能力,优选制备杏壳活性炭的最佳工艺参数,为杏壳活性炭的产业化生产提供技术依据。研究结果表明,以氯化锌为活化剂制备杏壳活性炭的最佳工艺参数为:氯化锌溶液浓度50%,料液比1∶1,活化温度500℃,活化时间90min;水蒸气活化法制备杏壳活性炭的最佳工艺参数为:水蒸气流量5mL/min,活化温度900℃,活化时间120min。在本试验确定的最佳工艺条件下,以氯化锌为活化法制备的活性炭得率为41.83%,碘吸附值为948.06mg/g,亚甲基蓝吸附值为133.42mg/g;以水蒸气活化法制备的杏壳活性炭得率为48.11%,碘吸附值为1001.67mg/g,亚甲基蓝吸附值为153.05mg/g,2种方法制备的杏壳活性炭均具有较强的吸附能力。  相似文献   

9.
油茶壳中半纤维素含量丰富,可作为制备木糖的潜在原料。笔者通过稀酸(H_2SO_4)水解方法处理油茶壳原料,采用正交实验法详细分析了稀硫酸浓度、反应温度、反应时间3个因素对木糖得率的影响。结果表明:在稀酸质量分数为1.0%、催化温度为80℃、反应时间为2.0 h的最佳反应条件下,可实现最高为98.2%的木糖得率。稀硫酸水解油茶壳的同时也通过酸洗的方式去除了油茶壳原料中的灰分。用磷酸法活化水解后的固体残渣制备活性炭,所得活性炭的碘吸附值和亚甲基蓝吸附值分别为937.9和145.5 mg/g,其灰分仅为0.60%。在相同条件下,以油茶壳作为原料制备的活性炭的碘吸附值和亚甲基蓝吸附值分别为881.5和121.5 mg/g,其灰分为2.40%。采用FT-IR和XRD对水解后的固体残渣进行分析,结果表明稀硫酸催化水解油茶壳主要水解其中的半纤维素,并未水解或破坏其中的纤维素和木质素。本研究中油茶壳的高值化综合利用方法制备出了高得率木糖及低灰分活性炭,实现了油茶壳的全值化利用。  相似文献   

10.
以杉木屑为原料,采用磷酸氢二铵活化法制备活性炭。讨论了预处理温度、浸渍比和活化温度对活性炭碘吸附值的影响。结果表明,随着预处理温度、浸渍比和活化温度的升高,活性炭的碘吸附值均呈先升后降的趋势。在较佳生产工艺条件下:预处理温度160℃,浸渍比1.25:1,活化温度450℃,活性炭的碘吸附值达到930.2mg·g^-1。  相似文献   

11.
以硬杂木龙凤檀的加工剩余物为原料,研究了磷酸活化法的活化温度、磷酸质量分数和浸渍比对龙凤檀活性炭吸附性能的影响,通过N2吸附-脱附等温线对活性炭的结构进行分析,并根据吸附理论和DFT孔径分布图,拟合计算出活性炭有效孔道所占的孔容积与液相吸附性能(碘吸附值、亚甲基蓝吸附值和焦糖脱色率)的构效关系。研究结果表明:在磷酸质量分数60%、磷酸溶液与龙凤檀浸渍比3∶1(mL∶g)、活化温度500℃、活化时间120 min的条件下,磷酸活化法制备的龙凤檀活性炭具有最佳的吸附性能和优异的孔隙结构,碘吸附值为841 mg/g,亚甲基蓝吸附值为270 mg/g,焦糖脱色率为120%,比表面积为1 516 m2/g,总孔容为1.145 cm3/g,均优于软杂木杉木制备得到的活性炭。应用密度泛函理论(DFT),计算出龙凤檀活性炭不同孔径区间对应的孔容积,经过理论分析和拟合计算,发现碘吸附值与孔径在1.0~2.7 nm之间的孔容积、亚甲基蓝吸附值与孔径在1.7~5.0 nm之间的孔容积、焦糖脱色率与孔径在2.7~6.3 nm之间的孔容积有着很好...  相似文献   

12.
采用微波辐照氯化锌法,对以酸枣核壳为原料制备活性炭开展了工艺及性能研究。通过正交试验法研究了不同因素:氯化锌浓度(A)、浸渍时间(B)、微波功率(C)、辐照时间(D)对酸枣核壳活性炭的得率、碘吸附值、亚甲基蓝吸附值的影响。结果表明:微波辐照氯化锌法制备酸枣核壳活性炭的最佳制备工艺条件为A3B1C3D2,即氯化锌浓度50%,浸渍时间14 h,微波功率700 W,辐射时间7 min;在此条件下,酸枣核壳活性炭的得率为60%,碘吸附值与亚甲基蓝脱色力分别为933.24 mg/g和111.92 m L/g;不同处理量的梯度试验表明,该工艺具备大规模处理酸枣核壳的能力。  相似文献   

13.
竹材是重要的林业可再生资源,以竹材代替木材制备活性炭可节省大量木材。以竹粉为原料,经磷酸活化成型后进行水蒸气二次活化,在不同工艺条件下制备了高吸附性能活性炭。通过碘吸附值、亚甲基蓝吸附值、N_2吸附-脱附等温线、二硫化碳动态吸附量等对所制活性炭的性能进行表征。结果表明:在磷酸浸渍比1.2∶1、活化时间20 min、活化温度450℃,水蒸气活化温度875℃、活化时间1 h、流量3.0 m L/min条件下,制得的活性炭BET比表面积为1 264.60 m~2/g、总孔容积为1.227 cm~3/g、平均孔径为3.88 nm、碘吸附值为1 452.96 mg/g、亚甲基蓝吸附值为307.5 mg/g、强度为91.76%、得率为30.42%;在动态干燥和30%相对湿度条件下,对二硫化碳的单位质量吸附量分别为0.416和0.390 g/g。活性炭对CS2的吸附能力主要与活性炭的孔结构有关,微孔发达、平均孔径小、碘吸附值高的活性炭更有利于CS2的吸附。由于竹材表观密度相对较低,且受到竹材自身组分的限制,所制活性炭的强度低于椰壳活性炭。  相似文献   

14.
以椰壳、杏核、油茶壳和杉木屑为原料,不外加活化剂,采用高温自生压活化法制备微孔发达的活性炭,研究了反应条件对活性炭孔结构和吸附性能的影响。结果表明,以椰壳原料,在自生压力下选择活化温度900℃并保温6 h,制得的活性炭得率13.8%,微孔率达87.8%,比表面积1 194 m2/g、总孔容积0.528 cm3/g、碘吸附值1 280 mg/g和亚甲基蓝吸附值315 mg/g。自生压活化机理研究表明,木质原料热解产生的水蒸气和二氧化碳形成了良好的混合活化气氛,密闭反应器内产生的自生压力有效促进了气固活化反应的进行,明显提高微孔率。为活性炭生产提供了一种无污染,清洁方便,高得率的新型活化方法。  相似文献   

15.
以椰壳为原料,采用热解活化法制备微孔发达活性炭.研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响.实验结果表明:活化温度为900℃,活化时间为4h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g.N2吸附结果表明活性炭的平均孔径在2nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%.对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低.  相似文献   

16.
热解活化法制备微孔发达椰壳活性炭及其吸附性能研究   总被引:1,自引:0,他引:1  
以椰壳为原料,采用热解活化法制备微孔发达活性炭。研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响。实验结果表明:活化温度为900℃,活化时间为4 h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g。N2吸附结果表明活性炭的平均孔径在2 nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%。对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低。  相似文献   

17.
以毛竹为炭前驱体,KOH作活化剂,制备具有高比表面积的活性炭(HSAAC)材料,考察了KOH与竹炭的质量比(碱炭比)对活性炭孔结构、吸附性能和电容性能的影响。结果表明:随着碱炭比值的增加,活性炭的比表面积、中孔容积和总孔容增大,微孔孔容先增大后减小;碘吸附值、亚甲基蓝吸附值均呈现先增大后减小的趋势,碱炭比值为4时达到最大,分别为2 168和569 mg/g。当碱炭比值为4时,可制得比表面积为2 610 m2/g、总孔容为1.24 cm3/g(其中微孔孔容0.81 cm3/g,中孔孔容0.382 cm3/g)的活性炭材料。以其为电极材料组装的电容器在30%H2SO4电解液中的比电容为206 F/g。  相似文献   

18.
研究利用机械力化学技术制备了性能良好的活性炭。采用Central Composite Design中心复合设计和响应面分析,对影响活性炭碘吸附值的主要影响因素进行多项回归模型建立和参数优化,并通过低温液氮(N2/77 K)吸附测定较优条件下制备的活性炭的比表面积、孔容及孔径分布。结果表明,利用氯化锌为活化剂的机械力化学技术制备活性炭的较优工艺条件为:氯化锌与绝干木屑的质量之比(锌屑比)值3.00,研磨时间10 min,活化温度584℃,活化时间2.5 h,此条件下制备的活性炭碘吸附值为1 262.47 mg/g。  相似文献   

19.
研究利用机械力化学技术制备了性能良好的活性炭.采用Central Composite Design中心复合设计和响应面分析,对影响活性炭碘吸附值的主要影响因素进行多项回归模型建立和参数优化,并通过低温液氮( N2/77 K)吸附测定较优条件下制备的活性炭的比表面积、孔容及孔径分布.结果表明,利用氯化锌为活化剂的机械力化学技术制备活性炭的较优工艺条件为:氯化锌与绝干木屑的质量之比(锌屑比)值3.00,研磨时间10 min,活化温度584℃,活化时间2.5h,此条件下制备的活性炭碘吸附值为1 262.47 mg/g.  相似文献   

20.
以椰壳炭化料为原料,通过KOH活化法制备高比表面积活性炭,并探索温度、时间和活化比对活性炭吸附性能的影响.通过单因素试验发现,活化温度800℃,活化时间60 min,活化比值为5的条件下活性炭的吸附性能最优.制备出的活性炭比表面积为3 360 m2/g,总孔孔容为1.798 cm3/g,平均孔径为2.140 nm,对碘的吸附性能为2809 mg/g,对亚甲基蓝溶液的吸附性能为675mg/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号