首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the primiparous lactating sow undernutrition affects LH, but the effect on FSH is less clear. This study was conducted to investigate the effect of ad libitum (AL; n = 5) and restricted (RE; 70% of the AL feed; n = 5) feeding on the secretion patterns of FSH and LH, and on follicular development in primiparous lactating sows. Body side fat thickness (BSFT) was measured prior to farrowing and at weaning on day 21 postpartum (pp). Sows had an intravenous catheter fitted on day 6 or 7 pp. Blood samples were taken on days 12, 15 and 18 pp, every 15 min starting at 0700 h for 11 h, and plasma analysed for FSH and LH by radioimmunoassay (RIA). Daily transcutaneous ultrasonography of the ovaries was performed between days 10 and 20 pp to monitor follicular growth. Reduction in BSFT was higher in RE than in AL sows (p < 0.05). Mean and basal LH were significantly higher in AL than in RE sows on days 12 and 15 pp. (p < 0.05), and LH pulse frequency tended to be higher (p < 0.1). Mean FSH was higher in AL than in RE sows on days 15 and 18 (p < 0.05), and had a tendency to be higher on day 12 (p = 0.1). Follicle size increased in AL sows between days 10 and 20 of lactation (p < 0.05; r = 0.71), but remained unaffected in RE sows. In conclusion, the study demonstrates that feed restriction of primiparous sows during lactation affects not only LH, but also FSH, as well as lactational follicular growth. An association between those events is suggested.  相似文献   

2.
Our objective was to study the effects of dietary-induced insulin enhancement during and after lactation on the reproductive performance of primiparous sows. During a 21-d lactation period, 48 sows were allotted to a 2x2 factorial experiment. Treatments were feeding level (high or low; 44 MJ or 33 MJ NE/d) and dietary energy source (fat or starch). After weaning, all sows received the same amount of feed (31 MJ NE/d from weaning to estrus and 17.5 MJ NE/d from breeding until slaughter) of the same energy source as fed during lactation. On d 7, 14, and 21 of lactation and d 22 (weaning), blood samples were taken every 12 min for 12 h and analyzed for plasma glucose, insulin, and LH. Sows were slaughtered on d 35 of the subsequent pregnancy, and ovulation rate was assessed. During lactation, postprandial plasma glucose and insulin concentrations were higher for sows fed the starch diet than for those fed the fat diet (P<.001), whereas feeding level had no effect. Basal and mean LH concentrations were not affected by treatments. The LH pulse frequency on d 7 of lactation was greater for sows fed the starch diet than for those fed the fat diet (.52 vs .17 pulses/12 h; P = .03). The high compared with the low feeding level resulted in a greater LH pulse frequency on d 21 of lactation (.89 vs .47 pulses/12 h; P = .05) and on d 22 (8.63 vs 5.77 pulses/12 h; P = .02), in a higher percentage of sows that exhibited estrus within 10 d after weaning (96 vs. 63%; P = .01), and a tendency for a higher ovulation rate (18.0 vs. 16.2; P = .09). Plasma glucose and insulin concentrations were not related to any of the LH traits. The LH pulse frequency after weaning was related to the weaning-to-estrus interval (WEI) and was best explained by a linear-plateau model. In sows fed the low feeding level, follicle size after weaning was correlated with LH pulse frequency after weaning and with the WEI, whereas in sows fed the high feeding level these correlations were not significant. Our results indicate that an improved dietary-induced insulin status during and after lactation does not overcome the inhibitory effects of lactation on subsequent reproduction at any of the feeding levels.  相似文献   

3.
The present study investigated the effects of pre‐weaning energy substitutions on follicular development, endocrine characteristics and subsequent litter size in primiparous sows. Sows were fed a standard lactation diet (14.1 DE MJ/kg) and then allocated to a Control (C, n = 24), Fat (F, n = 23), Sugar (S, n = 23) or post‐weaning Regumate (positive control; R, n = 22) treatment at 9 days before weaning of the C, F and S treatments. During the treatment period (8 days), 1 kg of the lactation diet was substituted with 1 kg of a fat‐rich (F, 23.85 DE MJ/kg) or sugar‐rich (S, 15.75 DE MJ/kg) substitution for F and S sows, respectively. For the R treatment, sows were weaned 8 days earlier than other treatments and fed a lactation diet at 3.5 kg with two doses of altrenogest as topdressing from 1 day before weaning until the day on which the other sows were weaned. The F treatment aimed to increase energy intake, and the S treatment aimed to elevate post‐prandial glucose and insulin concentrations. Weaning‐to‐ovulation interval tended to be reduced in the S treatment compared with C (p = 0.06) and F (p = 0.08) treatments. Body weight (BW) loss during the treatment period, post‐weaning follicle development, plasma oestradiol and pre‐weaning leptin did not differ among C, F and S sows, although BW loss was lower and leptin was higher in the R treatment. Post‐ovulatory progesterone concentration in the S treatment was higher (p < 0.05). Sows in the S and R treatments had a greater proportion of litters with larger litter sizes (p < 0.05). The outcome suggests that increasing circulating insulin and glucose concentrations during late lactation or a week of metabolic recovery positively improves subsequent litter size in primiparous sows.  相似文献   

4.
The current experiment was carried out to determine whether exogenous GnRH treatment in primiparous, lactating sows undergoing feed restriction would improve reproductive performance after weaning. Sows were allocated to one of three treatments: AA sows (n = 8) were fed to appetite throughout a 28-d lactation, AR (n = 12) and AR + GnRH (n = 12) sows were fed as AA sows from farrowing to d 21 of lactation, and feed intake was reduced to 50% of the ad libitum intakes from d 22 to 28. The AR + GnRH sows received 800 ng of GnRH i.v. every 6 h from d 22 to 28 of lactation, and AA and AR sows received saline. Sow weight, backfat, and litter weight were recorded weekly. Within 2 d after farrowing, litter size was standardized to 8 to 10. At d 17 of lactation, an indwelling jugular catheter was surgically implanted in each sow. Blood samples were taken for characterization of plasma LH, FSH, insulin, IGF-I, and leptin by RIA at d 21 and before and after weaning on d 28 of lactation. After weaning, all sows were given ad libitum access to feed, checked for onset of standing estrus twice daily with mature vasectomized boars, and inseminated 12 and 24 h after onset of standing estrus with pooled semen from the same fertile boars (3 x 10(9) sperm/AI). After breeding, feed allowance was reduced to NRC (1988) requirements for gestation. At d 28 +/- 3 of gestation, sows were killed and ovulation rate and embryo survival were determined. Restricted sows lost more weight during lactation than AA sows (P < .02). During the period of feed restriction, plasma IGF-I and postprandial insulin and leptin in AR and AR + GnRH sows, and LH pulse frequency in AR sows, were lower than those in AA sows (P < .04). Associations (P < .004) between plasma insulin and leptin and between leptin and mean LH concentrations were established. The LH pulse frequency in AR + GnRH sows did not differ from that in AA sows before weaning. After weaning, maximum, mean, and minimum LH concentrations in the AA and AR sows, and FSH concentrations in AR sows, increased (P < .05) in response to weaning. Paradoxically, GnRH treatment in lactation seemed to suppress the expected LH and FSH responses to weaning. Ovulation rate and embryo survival were not different among the three groups. In conclusion, although exogenous GnRH therapy restored LH secretion in feed-restricted sows, it did not improve overall reproductive performance.  相似文献   

5.
Seventeen Landrace X Large White primiparous sows that farrowed in August 1982 were fed ad libitum (AL, n = 8) or their intakes were restricted (R, n = 9) during lactation. Litter sizes were equalized after farrowing and pigs were not allowed creep feed. Pigs were weaned 23.8 +/- .4 d postpartum. On d 6, 12 and 20 postpartum, all sows were fasted for 16 h and blood samples were collected prior to feeding for analysis of plasma glucose (GLU), urea nitrogen (UN), free fatty acids (FFA), prolactin (PRL) and serum insulin (INS). On d -2, 2 and 4 from weaning, sows were fasted for 16 h and then blood samples were collected hourly from 0 to 6 postprandial for analysis of GLU, UN, FFA, PRL and INS. Serum for analysis of luteinizing hormone (LH), progesterone and estradiol was collected every 6 h from 1 d before until 12 d after weaning. Samples for LH were also collected at 15-min intervals for 3 h at -18, -6, 6, 18, 78, 102, 126, 150, 240 and 480 h from weaning. After weaning all sows were fed 1.8 kg X d-1, and were checked for estrus twice daily. Daily intakes of metabolizable energy (ME) during lactation were greater in AL (12,194 +/- 465 kcal) than in R sows (8,144 +/- 90 kcal). Compared with AL sows, R sows lost more weight and backfat during lactation and had higher postprandial UN levels 2 d before and 4 d after weaning. Reproductive performance and reproductive hormones were not affected by restriction of energy, but frequency of episodic release of LH prior to weaning was greater in sows that exhibited estrus after weaning (n = 12) than in anestrous sows (n = 5). After weaning, LH and estradiol concentrations were similar between estrous and anestrous sows until onset of the preovulatory increase in estradiol in the sows that exhibited estrus. Energy intake, body condition and productivity were similar between anestrous sows and sows that exhibited estrus. On d 12 and 20 of lactation, preprandial levels of GLU were greater and FFA were lower in anestrous than estrous sows. We conclude that restriction of feed intake during lactation affected body condition and metabolism of primiparous sows, but reproductive performance and productivity were not affected. Aberrations in partitioning of energy during lactation may predispose primiparous sows to postweaning anestrus, but the mechanisms by which this occurs have yet to be defined.  相似文献   

6.
The object of this investigation was to determine the relationships between clinical findings and hormonal patterns in primiparous sows with different lactation length and litter size during lactation, weaning and to the first oestrus. Seven pairs of primiparous full sib sows were used to determine the effect of lactation length with normal litter size. One sow of each pair was assigned to nurse the piglets for 3 weeks (group A) while the other nusred for 5 weeks (group B). Another 8 primiparous sows (group C) were assigned to nurse 2–4 piglets during a 5-week lactation period. Oestrus detection was performed twice daily and laparoscopic examination every 2 weeks. If the sows did not come in oestrus within 3 weeks after weaning they were slaughtered. Peripheral plasma levels of progesterone, oestradiol-17β and LH were estimated by radioimmunoassays throughout the experimental period.  相似文献   

7.
In a previous study, we showed that follicle size at weaning affects the response of a sow to a short-term altrenogest treatment after weaning. In this study, an attempt was made to prevent the growth of follicles into larger size categories before weaning by using different altrenogest treatments before weaning to improve reproductive performance after postweaning altrenogest treatments. Sows (87 primiparous and 130 multiparous) were assigned to the following treatments: control (no altrenogest treatment; n=59), RU0-20 (20 mg of altrenogest from d -1 to 6; weaning=d 0; n=53), RU40-20 (40 mg of altrenogest from d -3 to 0 and 20 mg of altrenogest from d 1 to 6; n=53), and RU20-20 (20 mg of altrenogest from d -3 to 6; n=52). Follicle size was assessed daily with transabdominal ultrasound. Follicle sizes on d -3 (3.6 ± 0.7 mm) and at weaning (4.0 ± 0.7 mm) were similar for all treatments. Altrenogest-treated sows had larger follicles at the beginning of the follicular phase than did control sows [5.4 ± 0.1 and 3.8 ± 0.2 mm (least squares means), respectively; P < 0.0001] and on d 4 of the follicular phase [8.0 ± 0.1 and 6.7 ± 0.2 mm (least squares means), respectively; P < 0.0001]. Multiparous sows had larger follicles than did primiparous sows at the beginning of the follicular phase [5.3 ± 0.1 and 4.7 ± 0.1 mm (least squares means), respectively; P < 0.01] and on d 4 of the follicular phase [8.0 ± 0.1 and 7.0 ± 0.1 mm (least squares means), respectively; P < 0.0001]. Farrowing rate and litter size (born alive + dead) were not affected by treatment or parity. However, in primiparous sows, when mummies were included in litter size, altrenogest-treated sows had larger litters than did control sows (13.4 ± 0.5 and 11.9 ± 0.7 piglets, respectively; P=0.02). In primiparous control sows, backfat depth at weaning and litter size were positively related (slope of the regression line=0.82; P < 0.05), which was not the case in primiparous sows receiving altrenogest. In conclusion, the different altrenogest treatments before weaning did not prevent the growth of follicles before weaning and similarly affected subsequent follicle development and fertility. In primiparous sows, altrenogest treatment after weaning increased the number of fetuses during pregnancy, but positive effects seemed limited by uterine capacity. Altrenogest treatment after weaning improved litter size in primiparous sows with reduced backfat depth at weaning, which suggests a specific positive effect of a recovery period after weaning in sows with reduced BCS at weaning.  相似文献   

8.
Fifty-three primiparous sows were used to study the effects of a high-energy, fat-supplemented diet on sow lactation and rebreeding performance. Sows received either a low [Lo, 12.5 Mcal metabolizable energy (ME)/d] or high (Hi, 16.0 Mcal ME/d) energy sorghum-soybean diet during a 28-d lactation. At weaning, sows were randomly allotted, within lactation treatment, to a low (lo, 5.54 Mcal ME/d) or high (hi, 9.61 Mcal ME/d) energy sorghum-soybean diet until the day of first postweaning estrus. Primiparous sows fed Lo weaned larger (P less than .05) litters than sows fed Hi; however, average pig weight was not affected by lactation treatments. Primiparous sows fed Hi had more backfat at weaning (P less than .01) than Lo sows. In contrast, sow weight was not affected by dietary treatments. Neither lactation nor rebreeding treatments influenced days to rebreeding; however, an interaction (P less than .01) was observed. Mean days from weaning to rebreeding for Lolo, Lohi, Hilo and Hihi sows were 10.0, 7.6, 6.9 and 17.1, respectively. Forty sows were maintained on the same dietary treatments during their second parity. Sows receiving Lo during their second parity farrowed and weaned more (P less than .05) pigs than Hi sows. Multiparous sows fed Hi nursed heavier (P less than .05) pigs on d 21 of lactation and at weaning compared with Lo sows. Sows fed Hi were heavier (P less than .05) and had more (P less than .01) backfat at weaning of their second litter compared to Lo sows. Days to postweaning estrus were not affected by lactation or rebreeding diets. Mean length of the second parity rebreeding interval for Lolo, Lohi, Hilo and Hihi sows was 6.2, 10.2, 7.0 and 10.5 d, respectively. These results suggest that feeding levels during lactation of 12.5 Mcal ME/d or higher supported adequate rebreeding performance. Postweaning feeding levels did not influence days to first estrus. Feeding a high energy diet continuously throughout the lactation and rebreeding phases in primiparous sows may lengthen the postweaning interval to estrus.  相似文献   

9.
The effects of dietary consumption of high-fructose corn syrup (HFCS) and dextrose during a 28-d lactation on sow and litter performance and sow plasma constituents were examined in 45 multiparous and 36 primiparous crossbred sows. Isocaloric and isonitrogenous corn-soybean meal diets were formulated to contain either 20% fructose or 20% glucose. Diets were fed on a metabolic BW basis from d 0 to d 28 of lactation. Litter and pig weights on d 28 were not affected (P greater than .05) by treatment. Litter size was greater (P less than .10) at weaning for primiparous sows fed HFCS, but multiparous sows weaned heavier (P less than .05) pigs. Sow weight change during lactation was not influenced by diet, but primiparous sows lost more (P less than .05) weight during lactation and had longer intervals to estrus than multiparous sows did. Milk yields on d 17 and 21 of lactation were not different (P greater than .05) for sows fed HFCS vs dextrose, but sows fed HFCS tended to have greater (P = .05) percentage of milk fat. Preprandial concentrations of fructose in plasma were low in sows fed HFCS and nondetectable in those fed dextrose but were elevated (P less than .05) after consumption of HFCS. Conversely, similar (P greater than .05) concentrations of glucose in plasma preprandially were followed by greater (P less than .05) postprandial glucose concentrations in sows fed dextrose. Although postprandial concentrations of insulin were not affected (P greater than .05) by diet, sows fed dextrose had greater (P less than .05) preprandial insulin concentrations in plasma. Concentrations of nonesterified fatty acids and growth hormone in plasma and response to a glucose challenge were not affected (P greater than .05) by feeding HFCS. However, concentrations of insulin in plasma following glucose infusion were less (P less than .05) during the glucose challenge period on d 25 than on d 13 of lactation.  相似文献   

10.
Ninety-one primiparous and multiparous sows and their pigs were used to evaluate the effects of a novel carbohydrate- and protein-based feed ingredient (Nutri-Pal, NP) on sow and litter performance during lactation. Nutri-Pal is a feed supplement for sows that consists of a blend of milk chocolate, brewer's yeast, whey products, and glucooligosaccharides. The dietary treatments consisted of a corn-soybean meal control and a corn-soybean meal plus 5% NP fed from d 110 of gestation to weaning. The diets were formulated to be equal in total Lys and ME. Sows were allotted to treatment based on parity, body weight, and the date of d 110 of gestation. There were 46 and 45 sows per treatment over four farrowing groups. Litters were standardized to 10 pigs and weighed within 1 d of farrowing, and all sows weaned at least 8 pigs at an average age of 21 d. Sows were weighed on d 110 of gestation, d 1 postfarrowing, and at weaning. Sows were fed three times daily during lactation. Sows were checked twice daily after weaning for signs of estrus. The weaning weight of sows fed NP was increased (P < 0.10) compared with those fed the control diet. Sows fed the control diet tended (P = 0.11) to lose more weight per day from d 110 of gestation to weaning than the sows fed NP. Otherwise, sow response variables (sow weight on d 110 of gestation and d 1 postfarrowing, d 110 of gestation to d 1 postfarrowing and lactation weight change per day, d 110 of gestation to d 1 postfarrowing, lactation, and total feed intake, days to estrus, pigs born alive or dead, and litter and average pig birth weight) were not affected (P > 0.10) by diet. There were no effects (P > 0.10) of diet on litter performance response variables (pigs weaned, litter and average pig weaning weight and gain, and survival percent). The NP feed ingredient had minor effects on sow productivity, but it did not affect litter productivity indices.  相似文献   

11.
The objective of this study was to investigate whether nursing a large number of piglets has negative effects on lactation and postweaning performance of primiparous sows and whether a greater lactation feed intake can prevent possible negative effects. Data were recorded on 268 ad libitum-fed sows of three genotypes (G1, G2, and G3) in an experiment where litter size was standardized to 8, 11, or 14 piglets during a 4-wk lactation. Compared to G1 and G2, G3 sows were heavier (P < 0.05) and leaner (P < 0.05) at weaning of their litters, lost similar amounts of BW and backfat, and their piglets grew faster (P < 0.05). Compared to G1, feed intake during lactation was higher for G3 sows (P < 0.05), and their risk of a prolonged weaning-to-estrus interval was lower (P < 0.01). Daily feed intake by sows was not affected by litter size in G1 and G3, but it was quadratically affected in G2 (P < 0.05), with a maximum at 10.8 piglets. Backfat loss of the sows increased linearly with litter size (P < 0.05) in G1 and G3. In G2, backfat loss increased only at litter sizes > 9.8 piglets (P < 0.01). Body weight loss of the sow and litter weight gain increased linearly with litter size (P < 0.001). Per extra piglet nursed, sows had a 23% (P < 0.01) higher probability of a prolonged weaning-to-estrus interval. A higher daily feed intake during lactation reduced tissue loss of the sow, increased litter weight gain (P < 0.01), and reduced the probability of a prolonged weaning-to-estrus interval (by 42% per extra kilogram; P < 0.01). Sows with a lower daily body weight loss during first lactation had a larger second litter (1.28 piglets/kg; P < 0.01), and their probability of a prolonged weaning-to-estrus interval was reduced by 61% per kilogram (P < 0.001). With increasing litter size, it is therefore recommended to reduce body weight loss during lactation by stimulating daily feed intake and by genetic selection.  相似文献   

12.
The effect of weaning the 4-5 heaviest piglets in the litter on day 33 of lactation and the remainder 2 days later (fractionated weaning) on plasma levels of prolactin, cortisol, oestradiol-17 beta (E2), progesterone (P4) and LH, as well as on the weaning to oestrus interval in primiparous sows was studied. Twelve crossbred sows were grouped into 6 pairs according to farrowing date and litter size. The litter of 1 sow in each pair (F) was weaned in 2 stages, and the other conventionally weaned at 35 days (C). Blood samples were collected via a permanent jugular vein catheter every 3 h from 9 a m to 9 p m daily throughout the experimental period, and intensively at 15 min intervals for 12 h on the day of first and final weaning and for 6 h on the day after each weaning. All sows were slaughtered following their first post-weaning oestrus and the reproductive organs were macroscopically examined. Lactational oestrus was not observed in any of the sows. Sows from 5 out of 6 pairs showed oestrus within 8 days of weaning and post-mortem examination showed normal ovulation. There was a tendency for the F sows to have a shorter weaning to oestrus interval, as compared with the C sows (5 of 6 pairs, 4.8 days v 5.6 days). The plasma levels of prolactin around weaning were not significantly different between the 2 groups. Within 6 h after final weaning, the prolactin concentrations decreased gradually from 7.6 and 8.7 to 1.6 and 1.7 microgram/l in the control and treatment groups, respectively. The plasma levels of cortisol, showing a diurnal rhythm (with the lowest level at 6 and/or 9 p m), did on no occasion differ between the 2 groups. On the day of final weaning, no diurnal rhythm was observed, with cortisol remaining high at 6 and 9 p m. The plasma levels of E2 and P4 were low until final weaning in both groups. After final weaning the E2 levels rose faster in the F sows than in the C sows, to 44.3 and 34.8 pmol/l, respectively, on day 2 (p less than 0.01). No significant differences in levels of plasma LH and the number of LH pulses were observed between the groups. After final weaning the average and base levels of LH and the number of LH pulse(s) increased significantly.  相似文献   

13.
Abstract

The study evaluates the first three parities of 144 Swedish Landrace×Yorkshire sows from three certified organic and three conventional commercial piglet-producing herds. Sows and litters were weaned at seven and five weeks post partum (pp) in organic and conventional herds, respectively. Herdsmen judged sow behaviour and maternal ability at farrowing, two weeks pp and at weaning. Herdsmen collected registrations of litter size, litter weight and sow fat status at farrowing and at weaning. Piglet mortality and oestrous signs were registered continuously during the nursing period. Sows in organic herds were scored to be more cautious among piglets, and to have better nursing behaviour and maternal ability in early lactation than sows in conventional herds. Piglet mortality was higher in organic than in conventional herds. Oestrus during lactation was only observed among sows in organic herds, and sows showing oestrus during lactation were fatter at weaning.  相似文献   

14.
Forty-five gravid cross-bred sows (mean parity 3.3 +/- .3) were randomly allotted to two dietary treatments: corn-soybean mean (CS) or CS plus 60 mg salinomycin per kilogram of diet (CSS). Sows were fed their respective diets through two successive parities with dietary treatment initiated at 100 d postcoitum and continued until weaning of the second successive litter. Therefore, sows fed CSS received salinomycin for 14 d before the first parturition and for approximately 153 d before the second parturition. Daily feed intake was restricted to 2 kg.hd-1.d-1 during gestation and to 3 kg.hd-1.d-1 from weaning to breeding. All sows. had ad libitum access to feed during lactation. Sows were weighed 7 d prior to parturition, at weaning and at breeding. Weaning-to-estrus interval and farrowing interval were recorded for all sows. Litters were weighed at birth and weaning. There were no differences (P greater than .05) between dietary treatments in sow weights before parturition, at weaning or at breeding for either first or second farrowing. The CSS-fed sows lost more weight from weaning to breeding after the first (P less than .03) and second (P less than .05) lactation periods than CS-fed sows. The CSS-fed sows tended to gain more (P = .06) weight during lactation than CS-fed sows. There were no differences (P greater than .05) between treatments in lactation feed intake, weaning-to-estrus interval, farrowing interval, litter size born or weaned, litter weights at birth or at weaning, or in sow culling rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A total of 146 primiparous sows was used in four replications of an experiment to investigate the effect of energy intake during a 28-d lactation on sow and litter performance. Dietary treatments consisted of three energy intakes; 10, 12 or 14 Mcal of metabolizable energy (ME) X sow-1 X d-1. All sows were fed equal amounts of crude protein, vitamins and minerals daily, which met or exceeded standard recommendations. The experiment was initiated at parturition. Sow weight and backfat loss during lactation decreased linearly (P less than .001) as energy intake increased. There were no differences in litter size at either 14 d of lactation or weaning. Pig weights on d 14 increased linearly (P less than .05) and litter weights tended to increase linearly (P = .13) as energy intake increased. At weaning, pig weights and litter weights increased (P less than .05) as sow energy intake increased. There were no significant differences in the percentages of sows in estrus by 7, 14, 21 and 70 d postweaning, but sows fed 10 Mcal ME/d had a slightly longer interval from weaning to first estrus than sows fed higher energy intakes. Serum urea concentrations of sows were inversely related to energy intake during lactation. Serum creatinine concentrations were not affected by energy intake. An intake of 10 Mcal ME/d by primiparous sows during a 28-d lactation resulted in reduced sow and litter performance; there was little difference between sows fed 12 and 14 Mcal ME/d.  相似文献   

16.
Primiparous (P1) sows commonly lose excessive body reserves to meet energy requirements for maintenance and milk production during lactation, and consequently, post‐weaning reproductive performance may be compromised. The present studies determined whether ad libitum feeding a glucogenic carbohydrate diet (CHO) during late lactation could stimulate insulin and glucose secretion (experiment 1) and improve subsequent litter size (experiment 2). For experiment 1, 15 P1 sows, and for experiment 2, 99 P1 sows (198.5 ± 2.7 kg) were allocated randomly according to suckled litter size (≥10 piglets), either to a CHO diet (14.3 MJ DE/kg, 19.8% crude protein) or a standard lactation diet (control; 14.2 DE MJ/kg, 19.5% crude protein) at 8 days before weaning. The CHO diet aimed to provide glucogenic content (extruded wheat, dextrose and sugar) as energy sources instead of fat sources without changing total dietary energy. Pre‐prandial plasma glucose and insulin concentrations were not influenced by treatments. However, post‐prandial plasma glucose and insulin concentrations and their peaks were both higher (p < .05) compared to the control treatment. Body weight loss during lactation was relatively low at 3%–4% for both treatments and did not differ between control and CHO treatments (?7.6 ± 1.6 vs ?5.4 ± 1.2 kg; > .05). Second litter size was not influenced by diet (> .05), but the weaning‐to‐mating interval was shorter in CHO sows (p < .05). This study demonstrates that providing an enriched CHO diet in late lactation did influence post‐weaning follicle growth but did not improve subsequent litter size. This may be due to the primiparous sows in this study not experiencing severe negative energy balance and there was no second litter syndrome in this farm which limited the ability of diet to improve sow fertility.  相似文献   

17.
The impact of the dietary amino acid regimen of primiparous sows on LH secretion and weaning-to-estrus interval was evaluated. Thirty-six sows, nursing litters of 13 pigs, were allocated daily 6 kg of a corn-soybean meal diet containing a high (HP, 1.20% lysine) or low (LP, .34% lysine) protein content during a 23-d lactation. Dietary lysine concentration was achieved by altering the ratio of corn and soybean meal in the diet. Plasma LH, ACTH, and estradiol-17beta were evaluated at 15 min, hourly, and at 6-h intervals, respectively, during 6-h periods on d 0, 5, 10, 15, and 20 of lactation. Sows were checked daily for estrus from weaning to 45 d postweaning. Sows fed the LP and HP diets consumed 4.41 and 4.98 kg of feed daily during lactation. The LP sows weighed less (P < .05), had lighter (P < .05) litters at weaning, and had (P < .05) extended weaning-to-estrus intervals. Mean and baseline LH concentrations and LH pulses/6 h were lower (P < .01) in LP sows, and the differences between LP and HP sows were established by d 10 of lactation. Plasma estradiol and ACTH concentrations were not altered by diet. Mean LH concentrations on d 5 and 10 of lactation were correlated (r = -.54 and -.56, respectively, P < .01) with weaning-to-estrus interval. Also, mean LH concentrations on d 10 were correlated (P < .05) with the magnitude of dietary lysine deficiencies relative to demand for milk synthesis on d 0 to 5 and d 5 to 10 (r = -.39 and -.49, respectively). Inadequate dietary amino acid intake in sows during early lactation results in lower LH secretion by d 10 postpartum and is associated with increased weaning-to-estrus interval.  相似文献   

18.
Normally, sows are in anoestrus during lactation and start their new cycle at the day of weaning. Modern hybrid primiparous sows that suckle large numbers of piglets may lose substantial amounts of body reserves during lactation. This compromises follicle development during lactation. As modern sows have short weaning-to-oestrus intervals, these compromised follicles are recruited for ovulation directly after weaning, resulting in lower ovulation rates and lower embryo survival. Postponing or skipping first oestrus after weaning in primiparous sows may help to limit the negative consequences of lactation on subsequent reproduction. Multiparous sows may have very high litter sizes, especially after long lactations as applied in organic sows. These high litter sizes compromise piglet birthweight and survival and subsequent performance. Inducing lactation oestrus in multiparous sows may help to limit litter size and improve piglet survival and performance. This study discusses physiological and reproductive effects of extending the start of a new pregnancy after lactation in primiparous sows and induction of lactation oestrus in multiparous sows. We thereby challenge the view that weaning is an ideal start for the reproductive cycle in modern sows.  相似文献   

19.
This experiment was designed to compare the effects of high ambient temperature and of feed restriction on plasma hormones and metabolites in primiparous lactating sows. Females were exposed to a constant thermoneutral (20 degrees C) or hot environment (30 degrees C) during lactation. Sows housed at 30 degrees C were given free access to feed (30AL: n = 12), whereas those housed at 20 degrees C were either pair-fed with those at 30 degrees C (20RF: n = 6) or were fed ad libitum (20AL: n = 6). A jugular vein catheter was surgically inserted in all sows at 100 d of gestation. Absorption of nutrients during the meal induced significant increases in plasma glucose, insulin, and glucagon, and a decrease in nonesterified fatty acids on Day 19 of lactation and Day 1 postweaning (P < 0.05). On Day 19, feed restriction at 20 degrees C was associated with higher plasma glucagon before the meal, lower plasma insulin after the meal and a lower insulin-to-glucagon ratio (I/GA) before and after the meal (P < 0.05). On Day 19, mean plasma concentrations measured in 30AL females were between those measured in 20AL and 20RF sows for nonesterified fatty acids and glucagon before feeding, and for glucose, nonesterified fatty acids, insulin, and glucagon after feeding. None of the differences between the 30AL and the 20RF groups was significant (P < 0.1). On Day 19, the only significant differences between the 30AL and 20AL groups were observed after the meal for plasma insulin and I/GA. Plasma insulin-like growth factor-I increased after farrowing in 20AL and 30AL sows only (P < 0.05). It was higher in 20AL than in 20RF and 30AL sows on Days 4 and 19 of lactation (P < 0.05). Overall, underfeeding at 20 degrees C induced changes in plasma insulin, glucagon, I/GA, and insulin-like growth factor-I, which would favor gluconeogenesis and body-reserve mobilization during lactation. Differences in glucagon and I/GA before the meal between well-fed sows at 20 degrees C and heat-exposed sows were attenuated, which could have detrimental consequences on glucose availability to the mammary gland and hence on milk production at 30 degrees C.  相似文献   

20.
This study investigated follicular development during and after postweaning altrenogest treatment of primiparous sows in relation to subsequent reproductive performance. Primiparous sows (n = 259) were randomly assigned at weaning (d 0) to 1 of 4 groups: control (no altrenogest, n = 71), RU4 (20 mg of altrenogest from d -1 to 2, n = 62), RU8 (20 mg of altrenogest from d -1 to 6, n = 65), or RU15 (20 mg of altrenogest from d -1 to 13, n = 61). Average follicular size (measured by ultrasound) increased during altrenogest treatment and resulted in larger follicles at the start of the follicular phase for RU4, RU8, and RU15 compared with controls (5.3 ± 0.9, 5.5 ± 1.3, 5.1 ± 1.2, and 3.4 ± 0.6 mm, respectively; P < 0.0001). Farrowing rate was greater in RU15 (95%) than in RU8 (76%; P = 0.04). The RU15 group also had more piglets (2 to 3 more piglets total born and born alive; P < 0.05) than the other treatment groups. Follicular development at weaning clearly affected reproductive performance. At weaning, average follicular size: small (<3.5 mm), medium (3.5 to 4.5 mm), or large (≥ 4.5 mm), was associated with farrowing rates of 86, 78, and 48%, respectively (P < 0.001). Sows with large follicles at weaning had low farrowing rates (71%) in RU4, very low farrowing rates (22%) in RU8, but normal farrowing rates in RU15 (83%). In conclusion, this study showed that 15 d of postweaning altrenogest treatment of primiparous sows may allow follicle turnover in sows that had large follicles at weaning and that this was associated with an improved reproductive performance. It also showed that shorter treatment with altrenogest (4 or 8 d) is beneficial for sows with small follicles at weaning, but is not recommendable for sows with large follicles at weaning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号