首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both water movement and nitrate leaching in structured soils are strongly influenced by the nature of the macro-porosity. That macro-porosity can however also be manipulated by choice of tillage operations. In order to investigate the potential impacts of tillage on rates of nitrate leaching from structured soils, a model specific to these soils, CRACK-NP was developed. The model, its application and validation for an experimental site on a heavy clay soil (Verti-Eutric Gleysoil) at Brimstone Farm, Oxfordshire, UK, is described. The model considers the soil as a series of aggregates whose size is also the spacing of the macro-porosity. Water and solutes move in the macro-pores, but within the peds they move only by diffusion, internal infiltration and root uptake (evaporation). The model reflects the influence of diffusion limitation in the release of solutes to by-passing water. The model was then used to investigate the influence of variable ped spacings which were created by variations in tillage practices. The results both from the model and from the field data demonstrated that finer soil structures, which have larger surface contact areas and shorter diffusion path lengths, present greater opportunities for interaction between peds and the water moving around them, and so release more nitrates through the drainage waters.  相似文献   

2.
The clay minerals of more than 200 soil samples collected from various sites of Fujian Province were studied by the X-ray diffraction method and transmission electron microscopy to study their distribution and evolution.Montmorillonite was found in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit,and some lateritic red soil,red soil and yellow soil with a low weathering degree.Chlorite existed mainly in coastal solonchak and paddy soil developed from marine deposit.1.4nm intergradient mineral appeared frequently in yellow soil,red soil and lateritic red soil.The content of 1.4nm intergradient mineral increased with the decrease of weathering degree from lateritic red soil to red soil to yellow soil.Hydrous micas were more in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit.and puple soil from purple shale than in other soils.Kaolinte was the most important clay mineral in the soils iun this province.The higher the soil weathering degree,the more the kaolinite existed.From yellow soil to red soil to lateritic red soil,kaolinite increased gradually,Kaolinite was the predominant clay mineral accompanied by few other minerals in typical lateritic red soil. Tubular halloysite was a widespread clay mineral in soils of Fujian Province with varying quantities.The soil derived from the paent rocks rich in feldspar contained more tubular halloysite.Spheroidal halloysite was found in a red soil and a paddy soil developed from olivine basalt gibbsite in the soils in this district was largely“primary gibbsite” which formed in the early weathering stage.Gibbsite decreased with the increase of weathering degree from yellow soil to red soil to lateritic red soil.Goethite also decreased in the same sequence while hematite increased.  相似文献   

3.
Water dispersible clay (WDC) is a good indicator of the risk of soil erosion by water and the consequent losses of nutrients and contaminants in overland flow. We measured the content and studied the properties of WDC in 26 samples of calcareous Xeralfs, Xerepts and Xererts of southwestern Spain collected from fields under different crop and tillage management; the soils ranged widely in total clay content (60–455 g kg− 1), calcium carbonate equivalent (CCE) (< 1–559 g kg− 1) and active calcium carbonate equivalent (ACCE; 2–135 g kg− 1), and were poor in organic carbon and soluble salts. The WDC content was determined by shaking 10 g of soil in 1 L of simulated rainwater for 4 hours. Non-carbonate WDC contents were found to be strongly correlated with the total clay content of the soils and ranged from 1 to 92 g kg− 1 soil (mean = 29 g kg− 1), the non-carbonate WDC/total clay ratio ranging from 0.01 to 0.29 (mean = 0.12). Based on regression analyses, illite was more dispersible than smectite and iron oxides decreased dispersion of clay. Carbonate WDC contents ranged from 1 to 27 g kg− 1 (mean = 8 g kg− 1) and were averaged one third the non-carbonate WDC contents; also, they were strongly correlated with the soil ACCE. WDC was rich in phosphorus (P) relative to the bulk soil. The enrichment ratio (ER) for total P (i.e. the ratio of total P in WDC to total P in soil) ranged from 0.2 to 29 (mean = 5) and was inversely related to the total clay content. On average, about one tenth of the soil total P was exported in the WDC and about one fifth of the total P in WDC was in the form of bicarbonate-extractable P (i.e. relatively soluble or ‘labile’ P). Part of the P in WDC seemingly occurred as metal phosphate particles formed by reaction of P fertilizers with soil. In summary, significant amounts of P can be exported via WDC, even though the proportion of total clay that is water dispersible is substantially lower in these soils than in cultivated soils of other semiarid regions.  相似文献   

4.
This paper describes the results of an investigation of changes in soil water pressure head (ψ) and its relationship to the macropore network in a cracking clay soil. Four vertical nests, each consisting of three tensiometers positioned at depths of 30 cm, 60 cm and 90 cm below the surface, were monitored continuously over a two-year period to study changes in ψ. On one occasion an anionic tracer (Br-) was applied to investigate the extent of macropore flow. The results revealed considerable temporal variation in ψ with consistent variations between adjacent tensiometer nests. Variations in ψ indicated the seasonal development of a soil macropore system, followed by its subsequent decay and demonstrated the significant effect of rainfall intensity, duration and timing on percolation pathways. Differences in ψ were examined for individual summer rain events which were characterised by differences in precipitation amount and intensity. A total of 79 rain events extending across the period of study were analysed to assess the degree to which time-invariant parameters can be used to describe changes in ψ at a depth of 30 cm below the surface. The results indicated that individual regression models had considerable success in predicting ψ, although the residuals in the regression models were high for the specific case of large summer rain events, and in particular for three events.  相似文献   

5.
Water dispersible clay (WDC) can influence soil erosion by water. Therefore, in highly erodible soils such as the ones in eastern Nigeria, there is a need to monitor the clay dispersion characteristics to direct and modify soil conservation strategies. Twenty‐five soil samples (0–20 cm in depth) varying in texture, chemical properties and mineralogy were collected from various locations in central eastern Nigeria. The objective was to determine the WDC of the soils and relate this to selected soil physical and chemical attributes. The soils were analysed for their total clay (TC), water‐dispersible clay (WDC), clay dispersion ratio (CDR), dispersion ratio (DR), dithionite extractable iron (Fed), soil organic matter (SOM), exchangeable cations, exhangeable sodium percentage (ESP) and sodium adsorption ratio (SAR). Total clay contents of the soil varied from 80–560 g kg−1. The USLE erodibility K ranges from 0·02 to 0·1 Mg h MJ−1 mm and WEPP K fall between 1·2 × 10−6–1·7 × 10−6 kg s m−4. The RUSLE erodibility K correlated significantly with CDR and DR (r = 0·44; 0·39). Also, a positive significant correlation (r = 0·71) existed between WEPP K and RUSLE K. Soils with high clay dispersion ratio (CDR) are highly erodibile and positively correlates (p < 0·51) with Fed, CEC and SOM. Also, DR positively correlates with Mg2+ and SOM and negatively correlate with ESP and SAR. Principal component analysis showed that SAR, Na+ and percent base saturation play significant role in the clay dispersion of these soils. The implication of this result is that these elements may pose potential problem to these soils if not properly managed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract. The ability of two nitrogen cycle models, of contrasting complexity, to predict N mineralization from a range of grassland soils in the UK, was evaluated. These were NCYCLE, a simple mass balance model of the N cycle in UK grasslands, and CENTURY, a more complex model simulating long-term C, N, P & S dynamics in grassland ecosystems. The models were tested using field measurements of net N mineralization from a range of grassland soils (differing in soil type, history & management practice), obtained over a 2 year period using a soil core incubation technique. This method was considered to measure the total net release of mineral N from the soil organic matter over a specified time, including N which may have been recycled several times. NCYCLE consistently under-estimated mineralization rates at all sites. By contrast, there was some correlation between CENTURY predictions of net N mineralization and field measurements. This may have reflected the different abilities of the two models to simulate N recycling. Neither model, however, was able to predict adequately the effect of cultivation and reseeding on net N mineralization.  相似文献   

7.
Abstract. The catchment simulated comprises 57 hectares of heavy clay soil managed as six arable fields. Mole and pipe drains carry surplus water into two ditches, one feeding into the other. Their combined flow was passed through a flume with an automatic water sampler, samples from which were analysed for nitrate. Measurements of nitrate concentration made during periods of water flow from 1990 to 1993 were simulated using a model comprising sub-models for leaching, mineralization, nitrogen uptake by crops and subsoil denitrification. The simulations were plotted against the measurements. For statistical evaluation, the correlation coefficient was used to assess the degree of association between the measurements and the simulations and the mean difference to assess the agreement. The correlation between the simulations and the measurements was significant in two of the three seasons, but the mean difference was significant in all three. However, taking all three seasons together gave a very highly significant correlation and a non-significant mean difference.  相似文献   

8.
The effects of planting cereal or leguminous crops in rotation with irrigated cotton (Gossypium hirsutum L.) on the properties of cracking clay (swelling) soils in the Macquarie and Namoi Valleys of New South Wales, Australia were evaluated during the summer of 1992–3. The observations were made on commercial farmers' fields. The soil properties evaluated were the particle size distribution, the dispersion index, the plastic limit, the percentage of coarse (particle diameter 212–2000 μm) and fine (particle diameter 53-212 μm) particulate soil organic matter, soil respiration rate, soil reactivity, soil aggregate density, pH, nitrate-N and exchangeable Ca, Mg, K and Na. In general, the planting of rotation crops decreased the dispersion index, plastic limit and soil aggregate density, and increased the amount of coarse particulate organic matter. Planting rotation crops also resulted in significantly higher clay and lower silt contents in the Macquarie Valley, and significantly higher soil respiration in the Namoi Valley. Soil pH, nitrate-N and exchangeable cation concentrations were not significantly affected by planting rotation crops in the Macquarie Valley, whereas exchangeable Na was increased in the Namoi Valley. The retention of crop residues in situ, compared with burning crop residues, decreased the dispersion index, plastic limit and aggregate density, and increased the amount of coarse particulate soil organic matter at all measured depths of the Macquarie Valley. The retention of crop residues in the Namoi Valley decreased the plastic limit and dispersion index only in the 0–50 mm depth range, whereas burning crop residues increased exchangeable K at all depths. In general, planting rotation crops and the retention of crop residues had greater beneficial effects on the soil physical properties in the Macquarie Valley than in the Namoi Valley, and in the topsoil compared with the subsoil. These differences are attributed to a shorter rotation interval in the Namoi Valley, smaller amounts of coarse particulate soil organic matter in the subsoil, and differing soil types in the two valleys. In the Namoi Valley the coarse organic matter produced by leguminous crops appeared to be more effective in promoting structural stability than that from non-leguminous crops, although no such difference was observed in the Macquarie Valley.  相似文献   

9.
The release of non-exchangeable potassium from 24 calcareous soils of divergent mineralogy, from southern Iran, was examined. Sand, silt and clay particles were fractionated after dispersion with an ultrasonic probe. Samples were extracted with 0.01 M CaCl2 for 30 successive 2-h periods. The clay fraction released the largest amount of K in each soil. Cumulative K released ranged from 175 to 723, 35 to 128, and 71 to 146 mg kg?1 contributing 20–90, 4–39 and 2–54% for clay, silt and sand fractions, respectively. The lower proportion of K released from sand and silt fractions can be explained by the presence of a high content of CaCO3 and quartz in these fractions. The release kinetics for the non-exchangeable K data showed that parabolic diffusion and power function were the best fitting kinetic models. This indicated that slow diffusion of K from the mica interlayer positions is the main rate-controlling process. Cumulative K released and constant b values of parabolic diffusion model correlated significantly with the mica content of the clay fraction.  相似文献   

10.
北京耕地土壤重金属空间自回归模型及影响因素   总被引:14,自引:8,他引:6  
为了揭示土壤重金属含量与其影响因素间的作用关系,为土壤重金属的污染控制和治理提供参考,该研究以北京市耕作土壤重金属元素为例,采用传统线性回归模型和空间自回归模型分析和比较了土壤重金属含量及其影响因素间的相关关系。结果表明:Cr、Ni、Zn、Hg空间自回归模型的拟合度较传统线性回归模型好,并且残差的空间自相关性消失。因此,空间自回归模型能够很好地解释重金属含量与其影响因素间的相关关系。结果表明:Cr、Ni含量的影响因素主要为土壤母质和土地利用强度,Zn、Hg含量的主要影响因素为道路、工矿企业和土壤母质。  相似文献   

11.
Progress in studies of nitrate leaching from grassland soils   总被引:2,自引:0,他引:2  
Abstract. The large input of research effort on aspects of nitrate leaching over the last two decades has produced many innovative scientific and practical results. The MAFF Nitrate Programme has enabled considerable progress to be made in unravelling much of the complexity of the grassland nitrogen (N) cycle, and identifying gaps as essential first stages in providing improved managements for N in grassland systems. From a practical standpoint, there have been key outputs which have allowed the identification of options for policy, and which should allow grassland farmers to increase the efficiency of N use throughout their farming system and thereby improve the sustainability of their enterprises. As well as quantifying N transformations, transfers and losses, other important outcomes have been the development of user-friendly models of N cycling (NCYCLE and variants) and an easy to use field kit to determine mineral N in pasture soils. The use of modelling to produce fertilizer recommendations with a Decision Support System and of new approaches developed within the Programme, in particular system synthesis desk studies, and 'farmlet' investigations to determine the consequences of modifying N flows and losses, have allowed us to produce solutions to satisfy the dual aims of meeting environmental and economic production targets.  相似文献   

12.

Scope and Background

It is acknowledged that diffuse sources cause the most important nitrogen (N) and phosphorus (P) losses to the river system and substantially enrich the groundwater in nitrates. These losses arise primary from agricultural activities mainly fertilizer applications, and they are determined by soil attributes. In cold climates, winter conditions and freezing of soils may influence the infiltration capacity of the soil and thereby can have a serious effect on the partitioning of excess precipitation and subsequently on the soil and nutrient transportation. The purpose of this article is to investigate the behaviour of six widespread and different textured soil types, on nutrient (N, P) losses under cold climate conditions. The investigation was conducted in the Norwegian Vansjø-Hobølv catchment through the application of a physical model named Soil and Water Assessment Tool (SWAT), taking into consideration the additional aspect of freezing soils during winter, which distinguishes Scandinavian from other European soils.

Methods

SWAT is a physical river basin model that was developed for the U.S.D.A. Agricultural Research Service, by the Blackland Research Center in Texas. In the current modeling approach the catchment was divided into 43 Hydrologic Response Units (HRUs) which consist of different combinations of the existed landcover and soil types. Nitrogen and phosphorus losses arising from these HRUs were estimated for the period 1990–2001 through the simultaneous simulation of water and sediment processes that are closely linked to the nutrient processes. The model took into account soil temperature in order to quantify water and nutrient transport to deeper layers, considering negligible downward movement when the soil temperature was under 0°C. It also simulated the aboveground development of the snowpack and the snowmelt processes on a daily basis. The six different soil types were distinguished in two groups according to their similarity in texture and other physical properties, one group of fine-textured soils and a group of coarse soils. The results were evaluated for different crop cultivations (barley, oats and wheat) of the aforementioned soils. Finally, the model was calibrated and validated by comparing predicted results with measured data.

Results and Discussion

Fine-textured soils caused significant runoff, sediment, total nitrogen (TN) and total phosphorus (TP) yields to the river system while coarser soils were characterized by high water drainage and nitrates leaching. The first soil group caused a mean of 517 mm of runoff in annual basis, 200 mm higher than this arising from coarse soils. Moreover, 3 tonnes of sediments per hectare, 24.6 kgN/ha and 0.54 kgP/ha were lost annually to surface water from fine soils while the average respective losses originating from coarse soils were only 1.3 tn of sediments/ha, 13.6kgN/ha and 0.17kgP/ha. The sensitivity ranking of the soil types to TN and TP losses was silty-clay-loam>silty-loam>clay>loamy>sandy-loam>sandy. An average of 277 mm of water was percolated annually under the bottom of the soil profile in coarse soils causing the additional leaching of 5.6 kgN-NO3/ha whereas the losses originating from fine-textured soils were 153 mm and 2.5 kg/ha respectively. According to their sensitivity in nitrates leaching, the six soil types were ranked in the following order: sandy>loamy>sandy-loam>silty-loam>silty-clay-loam>clay.

Conclusions and Perspectives

The results showed that even though under cold climate conditions, with monthly periods of average air-temperatures below zero, the overall amounts of annual TN and TP losses to surface waters as well as nitrates leaching to groundwater were considerable. This demonstrates that the cold climate conditions did not affect the long-term behavior of the six widespread Norwegian soils, which on an annual basis responded similarly to the respective European soils. According to the model’s estimations, infiltration with N and P transport still occur in wintertime, and comparing to other studies that reported similar results, different possible explanations were considered. The results demonstrate the need of considering the soil differentiation in Scandinavian countries similarly to the rest of Europe in order to apply mitigation measures against nitrogen and phosphorus losses to surface and groundwater.
  相似文献   

13.
冻土水力传导系数多采用经验公式来描述,其结果缺少理论依据。该文从冰水界面水膜热力学理论出发,对克拉贝隆方程进行修正,得到孔隙水冻结温度与孔隙半径的关系式。基于此,结合毛细管束理论和土壤冻结特征曲线(SFCC),给出预测冻土水力传导系数的理论模型,并与前人的实测值和经验公式进行对比分析。结果表明:孔隙冻结温度随着孔隙半径的减小而下降,且温度下降速率也随之逐渐增大;考虑未冻孔隙水和未冻水膜作为水分的迁移通道,该模型计算值与试验结果具有很好吻合度,且优于经验公式,验证该模型的合理性;最后指出SFCC的拟合效果会影响该模型的预测结果。  相似文献   

14.
Abstract. Eight lysimeters, each with a surface area of 0.5 m2 and a length of 60 cm, were taken over mole drains from a Denchworth soil and divided into two groups with either a standard agricultural tilth or a finer, deeper topsoil tilth. They were variously instrumented to measure soil moisture content at three depths and losses of nitrate, a bromide tracer and radiolabelled isoproturon, all of which were followed over a year. Leaching of isoproturon was initiated by artificial irrigation either 1 or 39 days after application. The finer tilth seemed to increase the water-holding capacity of the topsoil, and this resulted in slower wetting of the subsoil, decreased flow volumes from the first events of the season and a delay of approximately four weeks in the time to the maximum concentration of the bromide tracer in leachate. The finer topsoil tilth also decreased maximum concentrations of isoproturon from 29 to 15 μg l−1 following irrigation 1 day after treatment and from 43 to 9 μg l−1 following irrigation 39 days after treatment. Total losses of isoproturon were three times larger with the standard agricultural tilth. Differences were attributed to a decrease in bypass flow through the topsoil with the finer tilth, particularly during events early in the season. There was a small decrease in total losses of nitrate in leachate from the finer tilth compared to that from the standard tilth.  相似文献   

15.
Abstract. This paper describes the development and application of a simple empirical model describing differences in water movement through a cracking clay soil at Brimstone Farm, Wiltshire, UK. An extended data set comprising readings of soil water tension has been collected from an area of 9 m2 instrumented with 4 nests each of 3 tensiometers. The cracks are responsible for considerable differences both in water pathway and flow magnitude. Variations in water flow suggested by changes in soil-water tension are described by a model developed using 'ModelMaker' and applied separately to each profile nest. The model envisages water flow to occur through three soil layers, and to be partitioned into matrix and macropore flow components. Water is lost via drainage to clay tile drains at 60 cm depth. Water flow between layers is described as a function of the hydraulic gradient using Darcy's Law, with additional drainage from structural voids within the soil. Differences in the effective hydraulic conductivity describing slow and rapid flow components equate to macro and matrix flow for each tensiometer profile. The results illustrate heterogeneous patterns of flow through a soil block and demonstrate that a comparatively simple model is able to represent satisfactorily water flow dynamics through a cracking clay soil.  相似文献   

16.
Abstract. Degradation of isoproturon in a heavy clay soil followed first-order reaction kinetics with half-lives at 15 °C of 27 and 208 days in the topsoil and subsoil, respectively. Adsorption when shaken with 3 mm sieved samples of the soil fitted the empirical Freundlich relationship with k values of 3.25 in the topsoil and 1.06 in the subsoil. Adsorption in a static system with different sized aggregates of soil did not reach equilibrium, even after 24 hours contact, and the rate of adsorption was slower with larger aggregates. Following an adsorption period of 24 hours, desorption equilibrium was reached more rapidly with larger (6–10 mm) than with smaller (<3 mm) aggregates. Adsorption isotherms measured in a static system with a soil:water ratio typical of field conditions in winter also indicated less adsorption than that measured in shaken, laboratory systems with low soil:water ratios. The rate of change in water extractable residues of the herbicide was more rapid than that of total extract-able residues following application of isoproturon to the heavy clay soil in the field. The implications of the results for isoproturon leaching under field conditions are discussed.  相似文献   

17.
该文选取17种具有代表性的中国土壤,研究了土壤孔隙水以及0.01mol/LCaCl2浸提态Cu对西红柿生长的毒害,结果发现对于土壤孔隙水中Cu对西红柿生物量10%抑制的毒性阈值(EC10)和50%抑制的毒性阈值(EC50),在17个非淋洗土壤中变化范围分别为0.06~1.47和0.17~3.42mg/L,淋洗土壤变化范围分别为0.05~2.24和0.13~4.37mg/L,最大值与最小值相差为23~41倍;0.01mol/LCaCl2提取态Cu的EC10和EC50,在非淋洗土壤变化范围分别为0.18~2.64和0.57~6.14mg/kg,淋洗土壤变化范围分别为0.18~1.28和0.61~7.11mg/kg,相差从6.9~14.4倍,表明土壤溶液性质影响水溶性Cu对西红柿的毒性阈值。同时,发现土壤孔隙水中Ca2+、溶解性有机碳是影响孔隙水中Cu对西红柿生长毒性的主要因子。当进一步考虑土壤溶液的重要因子(溶解性有机碳、土壤溶液pH值、电导率、全硫含量、Ca2+、Mg2+、K+、Na+),发现基于水溶性Cu的毒性阈值和土壤溶液性质的多元回归系数变化范围为0.75~0.99,说明利用土壤溶液性质能较好的预测土壤中水溶性Cu对西红柿的毒性阈值。该研究可为土壤水溶性Cu的风险评估提供参考。  相似文献   

18.
Soil cracking is a well-known phenomenon, also seen in clay soils in the boreal climatic zone. This study was carried out to quantify soil shrinkage properties in six differently managed clay soils in Finland (Vertic Cambisols, 51% clay). Cylinder samples (100 cm3) were taken in spring from two depths (0–5 and 5–10 cm), then saturated with water and dried as a function of applied suction. The heights of the sample were measured after each drying step and the volume of soil was calculated assuming isotropic shrinkage. The volume loss by shrinkage at a suction of −50 kPa was 1.6–3.8% and the total shrinkage was 5.2–10.5% of the total soil volume, respectively. All shrinkage curves showed structural shrinkage which occurred in the matric potential range from saturation to around −6 kPa. The shrinkage curves were characterized by minor proportional and wide residual shrinkage zones. Eight of twelve sites showed a steeper shrinkage in the proportional shrinkage zone than the theoretical 1:1 line. Large slope values, up to 3.0, reflect the collapse of inter-aggregate pore space due to shrinkage pressure. The results indicate significant particle rearrangement and structural changes, e.g. structural collapse and changes in inter-aggregate pore space due to shrinkage pressure. Continuous water saturation and variable periods of freezing between spring and autumn are mostly responsible for soil weakness against increasing effective stress as soil dries. It is presumed that shrinkage behaviour will change substantially with increases in drying and wetting cycles.  相似文献   

19.
Overview of the studies on the cracking clay soil at Brimstone Farm, UK   总被引:1,自引:0,他引:1  
Abstract. As leaching of nutrients and agrochemicals can occur readily in cracking clay soils, which are important to UK agriculture, it is essential to identify management systems for them that can minimize the risk of contaminants reaching surface waters. The long-term Brimstone Farm study has provided considerable evidence on the movement of water and solutes through such soils and offers a unique opportunity to determine the factors influencing these processes. Management procedures, such as subsurface drainage and tillage, which are widely used for the production of cereals in these soil types, greatly influence the risk of contamination. At Brimstone Farm, tillage has been shown to change the hydrology in terms of both water table control and the route of water movement, and to increase the mineralization of nitrogen and the consequent risk of nitrate leaching. Drainage, essential in these soils, also creates a risk of solute losses, especially pesticides. Ways to retain effective drainage yet decrease losses to surface waters are discussed.  相似文献   

20.
Ammonium chemistry in surface soils collected from major soil series of Bangladesh was studied in terms of quantity-intensity (Q/I) relationship. Soils were classified according to physiography and parent materials; calcareous floodplain soils were dominated by mica and smectite, while non calcareous floodplain soils, terrace soils, and hill soils were dominated by mica or kaolinite and lacked smectite as a major clay mineral. Different Q/I parameters were obtained between soils of smectitic and non-smectitic types. Soils of smectitic type had a high potential buffering capacity which kept the equilibrium activity ratio at a low and fixed level.. The content of labile ammonium was high and estimated to increase with increasing addition of NH4 +. In contrast, soils of non-smectitic type with a low potential buffering capacity showed a considerable variation of both the equilibrium activity ratio and labile ammonium content, as affected by the application of NH4 +. Based on the ammonium chemistry, expected N-fertilizer application was compared with the prevailing application method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号