首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Pepino mosaic virus isolates and differential symptomatology in tomato   总被引:1,自引:0,他引:1  
Based on a survey conducted in commercial tomato production in Belgium in 2006, four Pepino mosaic virus (PepMV) isolates that differed in symptom expression in the crop of origin were selected for greenhouse trials. The selected isolates were inoculated onto tomato plants grown in four separate plastic tunnels. PepMV symptom development was assessed regularly and extensive sampling followed by ELISA analyses, genotyping and sequencing was performed to study viral presence and variation in PepMV sequences throughout the trial period. Two isolates (EU-mild and CH2-mild) that were selected based on mild symptom expression in the crop of origin caused only mild symptoms in the trial, while two other isolates (CH2-aggressive and EU + CH2) that were selected for severe symptom display, caused considerably more severe symptoms. Sequence homology between CH2-mild and CH2-aggressive was as high as 99·4%. Results of this study show that differential symptom expression can, at least partially, be attributed to the PepMV isolate, which may be related to minor differences at the nucleotide level between isolates.  相似文献   

3.
RNA interference (RNAi) or gene silencing is a natural defence response of plants to invading viruses. Here, we applied this approach against pepino mosaic virus (PepMV) isolates in their natural host, tomato. PepMV isolates differ in their genetic sequences, the severity of the disease they induce, and their worldwide distribution. PepMV causes heavy crop losses, mainly due to impaired tomato fruit quality. Resistant varieties are not yet available, despite many years of resistance breeding efforts within the tomato seed industry. To generate broad resistance to PepMV strains, conserved sequences from three different strains of PepMV (US1, LP, and CH2) were synthesized as a single insert and cloned in a hairpin configuration into a binary vector, which was used to transform tomato plants. Transgenic tomato lines that expressed a high level of transgene-siRNA exhibited immunity to PepMV strains, including a new Israeli isolate. This immunity was maintained even after graft inoculation, in which a transgenic scion was grafted onto nontransgenic infected rootstocks. However, an immune transgenic rootstock was unable to induce resistance in a nontransformed scion. These results provide the first example of engineered immunity to diverse PepMV strains in transgenic tomato based on gene silencing.  相似文献   

4.
Pepino mosaic virus (PepMV) has recently emerged as a highly infectious viral pathogen in tomato crops. Greenhouse trials were conducted under conditions similar to commercial tomato production. These trials examined whether tomato plants can be protected against PepMV by a preceding infection with an attenuated isolate of this virus. Two potential attenuated isolates that displayed mild leaf symptoms were selected from field isolates. Two PepMV isolates that displayed severe leaf symptoms were also selected from field isolates to challenge the attenuated isolates. The isolates with aggressive symptoms were found to reduce bulk yields by 8 and 24% in single infections, respectively. Yield losses were reduced to a 0–3% loss in plants that were treated with either one of the attenuated isolates, while no effects were observed on the quality of the fruits. After the challenge infection, virus accumulation levels and symptom severity of the isolates with aggressive symptoms were also reduced by cross-protection. Infection with the attenuated isolates alone did neither affect bulk yield, nor quality of the harvested tomato fruits.  相似文献   

5.
6.
7.
Pepino mosaic virus (PepMV, Genus Potexvirus, Family Flexiviridae) is a mechanically transmitted viral disease that has emerged as a significant problem of greenhouse tomato crops in Europe and around the world. Although previous studies in Cyprus suggested that the virus was not present on the island, in 2009 tomato fruits from two major tomato production areas exhibited symptoms of yellow mosaic and discolouration, similar to those induced by PepMV. Consequently, an extensive survey was conducted in all tomato producing areas of the country to identify the incidence and prevalence of PepMV in protected and open field tomato crops. Analysis of 3500 leaf samples from tomato plants and weeds with DAS-ELISA and real-time RT-PCR showed that PepMV was present in all tomato growing areas of the island. The virus was detected in both protected and open field tomato plants, as well as in 20 weed species in the families of Amaranthaceae, Chenopodiaceae, Compositae, Convolvulaceae, Malvaceae, Plantaginaceae and Solanaceae. All Cypriot isolates assayed belonged to the CH2 genotype. Biological assays with two Cypriot isolates showed that they could infect cultivated and weed species including Vigna unguiculata, Solanum melongena, Nicotiana tabacum, Malva parviflora, Sonchus oleraceus, Solanum nigrum, Convolvulus arvensis, Chrysanthemum segetum and Calendula arvensis. To our knowledge, this is the first study to report Chrysanthemum segetum and Calendula arvensis as hosts of PepMV.  相似文献   

8.
As Pepino mosaic virus has become a pathogen of major importance in worldwide tomato production, information is needed on possible differences between the sensitivity of cultivars towards infection. Furthermore, it is important what hosts other than Solanaceae may be virus reservoirs and are, therefore, threats for tomato cultivation. Two PepMV isolates (PepMV-Sav, E397, a European tomato isolate and PV-0554, a Peruvian pepino isolate) differing in their origin and virulence were used for several experiments to investigate these issues. The response to mechanical inoculation with PepMV was studied using 25 tomato cultivars, seven indicator plant species, and nine other possible horticultural host plants. Symptom development after infection with PepMV was monitored and the virus was detected by DAS-ELISA and IC-RT-PCR. Garlic and broad bean were shown to be additional hosts of PepMV depending on the virus isolate. Nicotiana benthamiana seems to be the most sensitive indicator among all tested indicator plants developing symptoms. Both PepMV isolates infected all tested tomato cultivars. Development of disease symptoms depended on the cultivar and the virus isolate but symptoms were not visible in all cases. None of the cultivars showed tolerance against the two isolates but two responded with a lower susceptibility at an absorbance level of 0.2 (healthy control 0.09). It was observed that some cultivars grown hydroponically showed also lower losses in biomass and yield. Data indicated a correlation between absorbance level in DAS-ELISA and reduction in total tomato growth.  相似文献   

9.
A RT-PCR was developed for the simultaneous detection and identification of three groups of Pepino mosaic virus (PepMV): European/Peruvian, Chilean 1/US1 and Chilean 2/US2 groups, followed by a restriction analysis that allowed the separation of the European, Peruvian, Chilean 2 and US2 isolates (patent pending). The multiplex RT-PCR reaction was performed by a mix of six primers that amplified a part of the RNA-dependent RNA polymerase gene of PepMV plus an internal control. Amplifications resulted in a 980 bp, 703 bp or 549 bp PCR product for European/Peruvian, Chilean 1/US1 or Chilean 2/US2 groups, respectively. For the identification of the isolates present within the European/Peruvian and Chilean 2/US2 groups, the amplified PCR fragments were directly digested with SacI enzyme. The multiplex RT-PCR method presented higher sensitivity to detect CH1/US1 isolates in field samples than the RFLP-PCR method described by Hanssen et al. (European Journal of Plant Pathology 121:131–146, 2008). The detection limit observed with the multiplex RT-PCR was equal to or 3,125 times higher when compared to single RT-PCR or ELISA-DAS and molecular hybridisation methods, respectively. The use of the multiplex RT-PCR method in routine analysis of field tomato samples allowed the detection of 36.2 and 33.4% more positives when compared to the serological and molecular hybridisation methods, respectively, and the identification of plants infected with one, two or three isolates of PepMV.  相似文献   

10.
ABSTRACT The population structure of Pepino mosaic virus (PepMV), which has caused severe epidemics in tomato in Spain since 2000, was analyzed. Isolates were characterized by the nucleotide sequence of the triple gene block and coat protein gene and, for a subset of isolates, a part of the RNA-dependent RNA polymerase gene. The full-length sequence of the genomic RNA of a Solanum muricatum isolate from Peru also was determined. In spite of high symptom diversity, the Spanish population of PepMV mostly comprised highly similar isolates belonging to the strain reported in Europe (European tomato strain), which has been the most prevalent genotype in Spain. The Spanish PepMV population was not structured spatially or temporally. Also, isolates highly similar to those from nontomato hosts from Peru (Peruvian strain) or to isolate US2 from the United States (US2 strain) were detected at lower frequency relative to the European strain. These two strains were detected in peninsular Spain only in 2004, but the Peruvian strain has been detected in the Canary Islands since 2000. These results suggest that PepMV was introduced into Spain more than once. Isolates from the Peruvian and US2 strains always were found in mixed infections with the European tomato strain, and interstrain recombinants were detected. The presence of different strains of the virus, and of recombinant isolates, should be considered for the development of control strategies based on genetic resistance.  相似文献   

11.
Pepino mosaic virus (PepMV) was shown to be efficiently transmitted between tomato plants grown in a closed recirculating hydroponic system. PepMV was detected in all plant parts after transmission via contaminated nutrient solution using ELISA, immunocapture RT‐PCR, RT‐PCR, electron microscopy, and by inoculation to indicator plants. Detection of PepMV in nutrient solution was only possible after concentration by ultracentrifugation followed by RT‐PCR. Roots tested positive for PepMV 1–3 weeks after inoculation, and subsequently a rapid spread from the roots into the young leaves and developing fruits was found within 1 week. PepMV was only occasionally detected in the older leaves. None of the infected plants showed any symptoms on fruits, leaves or other organs. Pre‐infection of roots of tomato cv. Hildares with Pythium aphanidermatum significantly delayed PepMV root infections. When mechanically inoculated with PepMV at the 2–4 leaf stage, yield loss was observed in all plants. However, only plants of cv. Castle Rock recorded significant yield losses when infected via contaminated nutrient solution. Yield losses induced by infection with PepMV and/or P. aphanidermatum ranged from 0·4 up to 40% depending on experimental conditions.  相似文献   

12.
13.
In four neighbouring regions of southern Italy, Basilicata, Campania, Apulia and Calabria, pepper and zucchini plants showing Phytophthora blight symptoms, tomato plants with either late blight or buckeye rot symptoms, plants of strawberry showing crown rot symptoms and declining clementine trees with root and fruit rot were examined for Phytophthora infections by means of polymerase chain reaction (PCR) assays, using primers directed to nuclear ribosomal DNA (rDNA) repeat sequences. All diseased plants and trees examined tested positive. The detected fungal-like organisms were differentiated and characterized on the basis of primer specificity as well as through extensive restriction fragment length polymorphism (RFLP) and sequence analysis of PCR-amplified rDNA. Phytophthora capsici was identified in diseased pepper and zucchini plants, P. infestans was identified in tomato with late blight symptoms whereas buckeye rot-affected tomatoes and diseased strawberry plants proved to be infected by P. nicotianae and P. cactorum, respectively. Declining clementine trees were infected with P. citrophthora and P. nicotianae in about the same proportion. Also, thirty-one pure culture-maintained isolates of Phytophthora which had previously been identified in southern Italy by traditional methods but were never examined molecularly, were examined by RFLP and sequence analysis of PCR-amplified nuclear rDNA. Among these, an isolate from gerbera which had previously been identified by traditional methods only at genus level, was assigned to P. tentaculata. For the remaining pure culture-maintained isolates examined, the molecular identification data obtained corresponded with those delineated by traditional methods. Most of the diseases examined were already known to occur in southern Italy but the pathogens were molecularly detected and fully characterized at nuclear rDNA repeat level only from other geographic areas, very often outside Italy. A new disease to southern Italy was the Phytophthora blight of zucchini. This is also the first report on the presence and molecular identification of P. tentaculata from Italy.  相似文献   

14.
为明确番茄黄化曲叶病毒北京分离物(Beijing isolate of tomato yellow leaf curl virus,TYLCV-BJ)致病性的强弱,以感染TYLCV-BJ的番茄叶片DNA为模板PCR扩增获得该分离物基因组全长序列,并构建该分离物的侵染性克隆,将其分别接种到番茄、烟草和拟南芥植株上,比较该分离物和TYLCV上海分离物2(TYLCV-Shanghai 2,TYLCV-SH2)致病性的差异。结果显示,该分离物基因组全长序列同TYLCV-SH2的相似度为99.03%,在番茄和烟草植株上TYLCV-BJ比TYLCV-SH2发病更早,症状更重,TYLCV DNA和外壳蛋白积累量更高。TYLCV-BJ可以通过农杆菌Agrobacterium tumefaciens注射法在拟南芥中复制和系统侵染,而TYLCV-SH2不能有效侵染拟南芥。表明TYLCV-BJ的致病性强于TYLCV-SH2,所建立的侵染性克隆有广泛的研究和应用价值。  相似文献   

15.
ABSTRACT The temporal and spatial patterns of Phytophthora infestans population genetic structure were analyzed in the Del Fuerte Valley, Sinaloa, Mexico, during the crop seasons of 1994 to 1995, 1995 to 1996, and 1996 to 1997 by geographical information systems. Isolates of P. infestans were obtained from infected tissue of tomato and potato collected from two areas: (i) where both potatoes and tomatoes are grown, and (ii) where only tomatoes are grown. The isolates were characterized by mating type, allozymes at the glucose-6-phosphate isomerase and peptidase loci, restriction fragment length polymorphism (RFLP) fingerprint with probe RG57, metalaxyl sensitivity, and aggressiveness to tomato and potato. The results suggest presence of an asexual population with frequent immigrations from outside the valley. There was a shift of mating type in the population from predominantly A2 to completely A1 in this period. The co-occurrence of mating types was restricted to very few fields in the area around Los Mochis where tomato and potato crops are grown. Genotype variation based on allozyme analysis and mating type was low with only one genotype affecting both crops each year. The genotypes affecting both crops were the only genotypes highly aggressive to both tomato and potato in laboratory aggressiveness tests and the only genotypes widespread on both the tomato and potato crops in the valley each year. These predominant genotypes were highly resistant to the fungicide metalaxyl. Data on metalaxyl sensitivity indicate that allozyme analysis can discriminate between sensitive and resistant isolates in the Del Fuerte Valley. RFLP analysis with the probe RG57 gives further discrimination of genotypes within an allozyme genotype. In the 1995 to 1996 season, four different RFLP genotypes were found within an allozyme genotype. However, there were five other dilocus allozyme genotypes that could not be further split by RFLP analysis in 1995 to 1996 and 1996 to 1997 seasons. Spatial analysis of genotypes suggests that each season individual fields near Los Mochis became infected with one or more genotypes, but only a single genotype, aggressive on both potato and tomato, occurred south and east to the Guasave area.  相似文献   

16.
Two experiments were conducted to investigate the transmission of the Pepino mosaic virus (PepMV) by the greenhouse whitefly (Trialeurodes vaporariorum) from tomato to tomato. In the 1:1 system (in which a single virus-contaminated plant was placed next to a healthy plant in a cage containing 469 whiteflies on average) the virus was transmitted to three out of 10 plants. In the 1:4 system (in which a virus-contaminated plant was surrounded by four healthy plants in a cage with 601 whiteflies on average) the virus was transmitted to five out of 32 plants. In order to investigate the mechanism involved in the transmission, the insect bodies were washed to determine the external presence of viral particles. The results showed that the number of PepMV particles carried on whitefly bodies was low, with an average occurrence of 1.33 on the 55 whiteflies tested after the insects were in contact with infected plants for 5 days. This low occurrence was confirmed by observation under microscope, which showed an absence of PepMV-contaminated tomato sap on the insect bodies, suggesting that PepMV transmission by whiteflies could occur when they feed on the plant.  相似文献   

17.
In 2011, an outbreak of the quarantine-regulated pathogen Potato spindle tuber viroid (PSTVd) occurred in a commercial glasshouse-grown tomato crop in Queensland, Australia. Phylogenetic studies showed that the genotype of this isolate grouped in a cluster of PSTVd genotypes from tomato and Physalis peruviana, and exhibited an interesting mutation (U257→A) that has previously been linked to lethal symptom expression in tomato. Transmission studies showed that the viroid could be mechanically transmitted from crushed fruit sap, but not from undamaged fruits. A low rate of asymptomatic infection was determined for plants in the affected glasshouse, demonstrating the efficacy of using symptoms to detect PSTVd infections in tomato. No PSTVd infections were detected in solanaceous weeds located outside of the infected glasshouse, excluding them from playing a role in the viroid epidemiology. Monitoring and subsequent testing of new tomato crops grown in the facility demonstrated successful eradication of the pathogen. A trace-back analysis linked the outbreak of PSTVd to an infected imported tomato seed-lot, indicating that PSTVd is transmitted internationally through contaminated seed.  相似文献   

18.
The objective of this study was to screen wild and domesticated tomatoes for resistance to Tomato yellow leaf curl virus, Israel (TYLCV-Is) and Tomato leaf curl virus from Bangalore isolate 4, India (ToLCV-[Ban4]) to find sources of resistance to both viruses. A total of 34 tomato genotypes resistant/tolerant to TYLCV-Is were screened for resistance to ToLCV-[Ban4] under glasshouse and field conditions at the University of Agricultural Sciences, Bangalore, India. Resistance was assessed by criteria like disease incidence, symptom severity and squash-blot hybridization. All the tomato genotypes inoculated with ToLCV-[Ban4] by the whitefly vector Bemisia tabaci (Gennadius) produced disease symptoms. In some plants of the lines 902 and 910, however, the virus was not detected by hybridization. The tomato genotypes susceptible to ToLCV-[Ban4] by whitefly-mediated inoculation were also found susceptible to the virus under field conditions. However, there were substantial differences between genotypes in disease incidence, spread, symptom severity and crop yield. Despite early disease incidence, many genotypes produced substantially higher yields than the local hybrid, Avinash-2. Sixteen tomato genotypes from India resistant/tolerant to ToLCV-[Ban4] were also tested for TYLCV-Is resistance at the Hebrew University of Jerusalem, Rehovot, Israel. Accessions of wild species, Lycopersicon hirsutum LA 1777 and PI 390659 were the best sources of resistance to both viruses. Lines 902 and 910, which were, resistant to TYLCV-Is were only tolerant to ToLCV-[Ban4] and accession Lycopersicon peruvianum CMV Sel. INRA, resistant to ToLCV-[Ban4], was only tolerant to TYLCV-Is. Implications of using the resistant lines in breeding programme is discussed.  相似文献   

19.
Barley yellow dwarf (BYD) is one of the main viral diseases of small-grain cereals. This disease, reported on numerous plant species of the Poaceae family, is caused by a complex of eight viral species including the species Barley Yellow Dwarf Virus-PAV (BYDV-PAV), frequently found in western Europe. Resistance sources against BYDV-PAV are scarce and only identified in perennial Triticineae. Some BYDV-resistant wheat lines have been obtained by introgressing these resistances into bread wheat germplasms. Genetic and biological characterization of the resulting lines has been undertaken. However, little information on the resistant behaviour of these lines during the early stages of the infection process is available. To evaluate the resistance of two genetically distinct resistant lines (Zhong ZH and TC14), 1740 young plantlets, belonging to susceptible reference hosts (barley cv. Express and wheat cv. Sunstar), Zhong ZH or TC14 wheat lines, were inoculated in controlled conditions with French BYDV-PAV isolates. The infection process was monitored during the first 21 days after inoculation (DAI) using a semi-quantitative ELISA. A standardized protocol including five successive samplings of leaves from all inoculated plants and the collection of plant roots at the end of the monitored period was carried out. This protocol enabled an assessment of the infection percentage and the evolution of the viral load in plants from the 7th DAI to the 21st DAI. Statistical analyses of the BYDV infection kinetics using raw ELISA data, a model of the time-dependent variation of the percentage of infected plants and the area under concentration progress curves (AUCPC) demonstrated that Zhong ZH and TC14 lines (1) reduce the development rate of the BYD disease during the first days of infection, (2) decrease the infection efficiency of BYDV-PAV isolates, in the leaves, from 98.7% for susceptible plant genotypes to 81.9% and 71.7% for Zhong ZH and TC14, respectively, (3) reduce the virus load in the leaves of infected plants and (4) are not spared from BYDV infection, as 95.1% of Zhong ZH and 90.2% of TC14 inoculated plants accumulated viral particles in roots and/or in leaves at 21 DAI. These results confirm the BYDV-partial resistant behaviour of both Zhong ZH and TC14 lines. The development rate of the disease was the single parameter that allowed the distinction between the two resistant sources present in the tested lines.  相似文献   

20.
Optical and electron microscopy studies were carried out to investigate the cytopathology induced in tomato leaves infected by Tomato torrado virus (ToTV), a new picorna‐like virus associated with the ‘Torrado’ disease. Infected leaves, showing typical Torrado disease symptoms were surveyed in commercial greenhouses in the main tomato production areas of Spain. The effect of the co‐infection of ToTV with other viruses which commonly infect tomato crops was also studied. Ultra‐thin sections of ToTV‐infected tomato leaves did not show a strong cellular alteration. However, crystalline arrays of isometric virus‐like particles (VLPs) of 20–30 nm in the inclusion bodies were observed in phloem parenchyma cells of the infected tissues. Tissues co‐infected by ToTV and either Tomato chlorosis virus (ToCV) or Pepino mosaic virus (PepMV) presented more severe cellular alterations. The most deleterious consequences for tomato cells were found in triple infections of ToTV, PepMV and Tomato spotted wilt virus (TSWV), where characteristic cell wall overgrowth was distinguishable, together with a large amount of necrotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号